
Greedy vs Backtracking

A Comparative Study of Graph Vertex Coloring Algorithms with C++ Implementations

Jonathan Kris Wicaksono - 13524023
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: jonathankw2005@gmail.com,13524023@std.stei.itb.ac.id

Abstract—Graph vertex coloring is a classic problem in

graph theory with numerous applications in computer science,

scheduling, and resource management. This paper provides a

comparative study between greedy and backtracking approaches

for vertex coloring, highlighting their algorithmic principles,

complexity, and practical performance. Through detailed imple-

mentation and experimentation, we analyze how each method

performs on various graph instances, illustrating the trade-

offs between computational efficiency and solution optimality.

Our findings offer valuable insights for selecting appropriate

algorithms based on problem requirements.

Keywords—Graph coloring, Partition problem, Backtracking,

Basic greedy, DSatur.

I. INTRODUCTION
At its core, the graph vertex coloring problem seems quite

straightforward: given a graph, how can we assign colors to
its vertices so that (a) no two adjacent vertices share the same
color, and (b) we use as few colors as possible? Even though
the idea is simple, the problem itself is rich in both theory
and real-world relevance. Its origins trace back to the well-
known Four Color Theorem. Since then, graph coloring has
become a fundamental topic in graph theory. Vertex coloring
appears in many real-world situations, especially in problems
where resources need to be assigned or organized efficiently
without conflicts. Among the many algorithmic approaches
developed to tackle vertex coloring, two broad paradigms
stand out: greedy heuristics and backtracking-based exact
methods. These approaches differ greatly in design philosophy,
efficiency, and the quality of solutions they produce.

In the sections that follow, we will first formalize the defini-
tion of graph vertex coloring and review foundational concepts
from elementary graph theory to ensure a shared baseline of
understanding. We will then shift our focus to a comparative
analysis of two major algorithmic paradigms used to solve the
problem: greedy methods and backtracking-based approaches.
We examine several representative algorithms—Basic Greedy
and DSatur for the greedy category, alongside a standard
backtracking algorithm for exact coloring—evaluating their
computational complexity, implementation characteristics, and
practical trade-offs. Through this comparison, we aim to
clarify the strengths and limitations of each approach and
provide insight into their behavior under different types of
graph instances. In this paper, I aim to provide clarity and
implementation that can be used right away. Thus, I will first

talk about an algorithm in high-level pseudocode, and from
there, I will implement the algorithm in C++.

II. THEORETICAL PREREQUISITE & BASIC
TERMINOLOGY

A. Elementary Graph Terminology

Before diving straight to the heart of graph coloring, we
will briefly review some elementary graph terminology that is
necessary for understanding the content of this paper. Recall
that a graph can be thought of as a collection of vertices
along with a rule that tells us which pairs of vertices are
connected. More formally, we define a graph G as an ordered
pair (V,E), where V is the set of vertices and E is the set
of edges that describe connections between those vertices. In
general, we write E → {(u, v) : u, v ↑ V } to represent this.
Now, consider a graph that contains loops (a loop is an edge
such that it connects a vertex to itself); this will automatically
make our coloring problem on this graph impossible since
there exists an edge e = (u, u) (a loop) which violates the
fundamental rule of proper vertex coloring (this will be defined
below). In the vertex coloring case, multiple edges will not
actually fail our coloring problem, but this will be problematic
in the case of edge coloring. Thus, from now on when we
mention a graph G, we will assume it’s a simple graph unless
stated otherwise. Formally, a simple graph is an undirected
graph in which loops and multiple edges between vertices
are forbidden. Consequently, each element of E in a simple
graph is written as an unordered pair {u, v} indicating the
existence of an undirected edge between u and v with u ↓= v
and u, v ↑ V .

A graph that contains a cycle can also help us understand
how to determine a proper coloring. To define what a cycle
is, we must first understand the concept of a path in graph
theory. A path is a non-empty graph P = (V,E) of the form

V = {x0, x1, . . . , xk},

E = {{x0, x1}, {x1, x2}, . . . , {xk→1, xk}},

where the vertices xi are all distinct. Now, suppose P is such
a path and k ↔ 2, then we can form a cycle by adding an
edge that connects the last vertex back to the first. That is, the
graph G := (V,E ↗ {{xk, x0}}) is called a cycle.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

B. Graph Coloring

The graph coloring problem can be defined more formally
as follows. Given a graph G = (V,E), the goal is to assign
each vertex v ↑ V a color c(v) ↑ C = {1, 2, . . . , k} such
that (a) for every edge {u, v} ↑ E, the colors of its endpoints
are different, i.e., c(u) ↓= c(v) (no two adjacent vertices share
the same color), and (b) the total number of colors k used is
minimized. We define a clash as a situation in which a pair
of adjacent vertices u, v ↑ V are assigned the same color, i.e.,
↘{u, v} ↑ E such that c(u) = c(v). A coloring is said to
be proper if it contains no clashes; otherwise, it is improper.
Unless stated otherwise, the term "coloring" in this paper will
always refer to a proper coloring. Finally, we say that a graph
G is k-colorable if there exists a proper coloring of G using at
most k distinct colors. A k-coloring refers to a proper coloring
that uses exactly k colors.

In the graph coloring problem, we can also seek out an
equivalent problem (this is a common practice in solving
hard problems, since looking at a problem from a different
perspective may give us new insights). Observe that coloring a
graph in a proper way is equivalent to a partitioning problem.
A proper k-coloring solution is a class (collection of sets)
S containing k colors, S = {S1, S2, . . . , Sk}, where the
following properties must be obeyed by S to ensure a proper
coloring:
i. the union of all sets in S must be equal to V :

k⋃

i=1

Si = V,

ii. the sets in S must be pairwise disjoint:

≃i, j ↑ {1, 2, . . . , k}, i ↓= j, Si ⇐ Sj = ⇒,

iii. adjacent vertices must be assigned to different sets:

≃i ↑ {1, 2, . . . , k}, ≃u, v ↑ Si, {u, v} /↑ E,

with k being minimized. This way of viewing the graph
coloring problem as a partitioning problem will be of particular
importance in the upcoming section.

C. Chromatic Number

We shall define the set of available colors of a coloring as
C = {1, 2, . . . , k}. We are not interested in the elements of C
but rather in its size (since we are trying to minimize it). We
define the chromatic number of a graph G as the smallest k
such that G has a k-coloring. We denote the chromatic number
of G as ω(G) = k.

To make the theory that has been laid out so far more
concrete, let us take a look at fig. 1.

With simple observation, it is obvious that ω(G) = 3 for
this particular graph since a 2-coloring is impossible. This
follows from the structure of the graph, which contains odd
cycles (cycles with an odd amount of vertices) that prevent
a 2-coloring (also known as bipartite coloring). The coloring
shown assigns one of three colors to each vertex such that

Fig. 1. Proper 3-coloring on a dodecahedron

Fig. 2. Partitioning of fig. 1

no adjacent vertices share the same color, satisfying the
requirements of a proper coloring.

We can also view the above graph as a partition of 20
vertices. This is shown in fig. 2. This figure is easier for
checking proper coloring in a graph since it’s just a partition
of the graph into 3 columns. Reassembling a graph into a
partition is generally easier for us to check whether a graph
is properly colored or not.

III. COMPUTATIONAL COMPLEXITY OF GRAPH
COLORING

A. How Hard Is It to Color a Graph?
At first glance, the graph coloring problem seems straight-

forward. Try assigning colors to each vertex and check whether
the coloring is proper. However, as the size of the graph
increases, the number of possible colorings grows extremely
fast. For example, even with only three colors, a graph with n
vertices has 3n possible assignments to consider. In general, a
brute-force approach considering all possible k-colorings from
k = 1 to k = n is at worst O(nn). This can be reduced with
lots of optimization and observation, but the time complexity
in general is still exponential. Due to the discussion in [1],
we can make a faster algorithm (although still exponential) by

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

observing that an arrangement such as c(1) = 1, c(2) = 2,
c(3) = 1, and c(4) = 2 is equivalent to c(1) = 2, c(2) = 1,
c(3) = 2, and c(4) = 1. We say that such an arrangement is
equivalent because, if we view the problem as a partitioning
problem, the resulting solution class S remains the same (in
this case, S = {{1, 3}, {2, 4}}). Thus, we can reduce the
complexity of our problem by observing that the problem
is equivalent to finding the number of ways to partition the
set of vertices V into non-empty, pairwise disjoint subsets in
which their unions should be V . Recall that this is just the Bell
Number, Bn, where n is the number of vertices. Remember
that the Bell numbers are related to the Stirling numbers of
the second kind

{n
k

}
by

Bn =
m∑

k=1

{
n

k

}

=
n∑

k=1

1

k!

k∑

i=0

(⇑1)i
(
k

i

)
(k ⇑ i)n.

We can therefore employ the following algorithm: for each
color starting from k = 1, we can check for all possible

{n
k

}

colorings and check if they are proper. If a proper coloring is
found, then we can halt the process immediately since this is
obviously the minimum k. Unfortunately, such an algorithm
is still at worst O(nn). Therefore, trying all of them quickly
becomes infeasible for larger graphs.

To simplify our problem, we may consider the decision
version of graph coloring: given a graph G and an integer
k, does there exist a proper coloring of G using at most k
colors? While this version sounds simple, it turns out to be
very difficult to solve in general.

In computer science, this problem is known to be NP-
complete, meaning that no efficient (polynomial-time) algo-
rithm is known, and it is widely believed that none exists. In
other words, even powerful computers cannot solve arbitrary
instances of the coloring problem quickly. This makes graph
coloring one of the fundamental problems in the theory of
computational complexity.

B. Approximation and Heuristics

Because finding the chromatic number is so difficult, re-
searchers often focus on algorithms that give good enough
colorings rather than optimal ones. These are known as
heuristic algorithms. While they do not always produce the
smallest possible number of colors, they can often find a proper
coloring efficiently in practice.

In the next section, we will explore two well-known heuris-
tic algorithms for graph coloring, which are the Basic Greedy
Algorithm and DSatur. After that, we will do a comparative
study for each algorithm on a set of graph instances. This will
help us find out which algorithm we should use on specific
graph instances.

IV. GRAPH COLORING ALGORITHMS

A. Backtracking Approach

Backtracking is a classic brute-force paradigm in which
we try every possible configuration in a solution space using
a decision tree. This algorithm is suitable for problems that
require us to look at all possible solutions (exhaustive search).
For example, generating the powerset of a set, finding all
possible permutations of a set of objects, solving sudoku
puzzles, and many more. Although backtracking belongs to
brute-force strategies, we don’t refer to it as a brute-force
algorithm in the context of graph coloring, since it behaves
quite differently. A classic brute-force approach will take us
O((V + E)kV), but a backtracking approach will give a
slightly better complexity of O(V kV), where V is the number
of vertices in the graph, E is the number of edges in the graph,
and k is the number of available colors [6]. This is because
there are O(kV) possible combinations of coloring and at
worst ISSAFE will be O(V). The pseudocode for backtracking
approach in graph coloring problem is provided in algorithm 1.

Algorithm 1 Graph Coloring via Backtracking
1: procedure GRAPH-COLORING(G = (V,E), k)
2: for all v ↑ V do

3: color[v] ⇓ 0 ε 0 means uncolored
4: end for

5: if COLOR-VERTEX(1, G, color, k) then

6: return color
7: else

8: return “No valid coloring”
9: end if

10: end procedure

11: procedure COLOR-VERTEX(v, G, color, k)
12: if v > |V | then

13: return true
14: end if

15: for c ⇓ 1 to k do

16: if ISSAFE(v, c, G, color) then

17: color[v] ⇓ c
18: if COLOR-VERTEX(v + 1, G, color, k) then

19: return true
20: end if

21: color[v] ⇓ 0 ε Backtrack
22: end if

23: end for

24: return false
25: end procedure

26: procedure ISSAFE(v, c, G, color)
27: for all u ↑ Adj[v] do

28: if color[u] = c then

29: return false
30: end if

31: end for

32: return true
33: end procedure

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Here is an implementation of algorithm 1: (Note. For clarity
and consistency with the pseudocode, this implementation uses
1-based indexing, where vertices are labeled from 1 to n.)

1 #include <iostream>

2 #include <vector>

3

4 using namespace std;

5

6 // This implementation uses adjacency list

representation

7 using Graph = vector<vector<int>>;
8

9 bool isSafe(int v, int c, const Graph &G, const
vector<int> &color) {

10 for (int u : G[v]) {

11 if (color[u] == c)

12 return false;
13 }

14 return true;
15 }

16

17 bool colorVertex(int v, const Graph &G, vector<int>
&color, int k, int n) {

18 if (v > n)

19 return true;
20

21 for (int c = 1; c <= k; ++c) {

22 if (isSafe(v, c, G, color)) {

23 color[v] = c;

24 if (colorVertex(v + 1, G, color, k, n)) {

25 return true;
26 }

27 color[v] = 0; // Backtrack

28 }

29 }

30 return false;
31 }

32

33 vector<int> backtrackGraphColoring(const Graph &G,

int k, int n) {

34 vector<int> color(n + 1, 0); // 1-based indexing

35

36 if (colorVertex(1, G, color, k, n)) {

37 return color;

38 } else {

39 return {}; // No valid coloring

40 }

41 }

Let us analyze this backtracking approach and show why
this algorithm is guaranteed to find a proper coloring with k
colors if one exists, and how it can be used to search for the
chromatic number by incrementally increasing k. First note
that the GRAPH-COLORING procedure takes a graph G and
a number k as its parameter to check whether we can color
G using at most k colors. We then must initialize the color
array of G’s vertices with 0 as a mark that these vertices are
not colored yet. Next, we call the COLOR-VERTEX starting
from vertex 1 which will then return a boolean value. If it’s
colorable using at most k colors, then we will return such
coloring which is the color array. Else, we will return a
message that no valid coloring is available.

Now, inside the COLOR-VERTEX procedure is where our
main algorithms lie. First, we will take 4 parameter which is
v (the vertex we are interested in), G, color (the array of colors
for each vertex), and k. Next, we see that if the vertex v is
already out of bounds, then we can safely return true—which

means that we have successfully colored every vertex in our
graph. If that is not the case, we still have some more vertices
to color. We will then try to color our current v with color
starting from 1 up to k. If a color c is safe (there are no
neighbors of v that are colored with c), we can then try to
color it using c and then move on to the next vertex by calling
COLOR-VERTEX upon v + 1. If we get a true value, we can
then return true; else, we try another color for the current
vertex v (backtracking).

This algorithm gives us a valid coloring of G since we are
trying recursively to find a valid coloring starting from vertex
1. We can also be sure that this coloring is the minimum
coloring since we try to color every vertex starting from color
c = 1. Hence, we have a correct algorithm for coloring a
graph. But by our argument from the previous section, this
algorithm is too slow in practice. Therefore, we consider
heuristic greedy algorithms, which may not always give us the
chromatic number of a graph but still produce valid colorings.
In many practical scenarios, such approximations are more
useful than exact but computationally expensive solutions like
backtracking.

B. Basic Greedy Algorithm

We begin our discussion on greedy coloring heuristics with
the Basic Greedy algorithm. Although simple, it serves as a
fundamental approximation method for graph coloring.

The idea is straightforward: traverse the vertices one by
one (in any fixed order), and for each vertex v, assign the
smallest color label j that has not been assigned to any of its
adjacent vertices. That is, color[v] ⇓ j, where j is the smallest
available color among v’s neighbors. If all previously used
colors are already taken by neighbors, a new color is assigned.
The pseudocode for Basic Greedy algorithm is provided in
algorithm 2 below.

Algorithm 2 Basic Greedy Graph Coloring
1: procedure GREEDY-COLORING(G = (V,E))
2: for all v ↑ V do

3: color[v] ⇓ 0
4: end for

5: for all v ↑ V do

6: used ⇓ ⇒

7: for all u ↑ Adj[v] do

8: if color[u] ↓= 0 then

9: used ⇓ used ↗ color[u]
10: end if

11: end for

12: c ⇓ 1
13: while c ↑ used do

14: c ⇓ c+ 1
15: end while

16: color[v] ⇓ c
17: end for

18: return color
19: end procedure

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Here is the implementation of algorithm 2:
1 #include <iostream>

2 #include <vector>

3 #include <set>

4

5 using namespace std;

6

7 // This implementation uses adjacency list

representation

8 using Graph = vector<vector<int>>;
9

10 vector<int> greedyColoring(const Graph &G, int n) {

11 vector<int> color(n + 1, 0); // 1-based indexing

12

13 for (int v = 1; v <= n; ++v) {

14 set<int> used;

15 for (int u : G[v]) {

16 if (color[u] != 0)

17 used.insert(color[u]);

18 }

19

20 int c = 1;

21 while (used.count(c))

22 ++c;

23

24 color[v] = c;

25 }

26

27 return color;

28 }

Let us analyze this algorithm, starting with its time com-
plexity. Since we attempt to color each vertex exactly once,
the outer loop runs in O(V). Within this loop, we examine
the colors of adjacent vertices to determine the smallest
available color. Assuming the graph is represented using an
adjacency list, the total number of iterations over neighbors
across all vertices is proportional to the sum of degrees of
all vertices, which is 2E in total. This is because each edge
e = (v1, v2) will be inspected twice—once when v = v1 and
once when v = v2. Therefore, the overall time complexity of
the algorithm is O(V + E).

Now, why is this algorithm not always going to produce the
chromatic number of a graph? The answer lies in the fact that
the greedy algorithm makes coloring decisions based solely
on local information—that is, the colors of already-colored
adjacent vertices. It does not look ahead or consider global
structure. As a result, the final coloring heavily depends on
the order in which the vertices are processed.

For instance, a poor ordering of vertices can lead to a
coloring that uses far more colors than the chromatic number.
In some cases, even graphs with a small chromatic number
can be assigned significantly more colors simply due to an
unfortunate ordering. In other words, the greedy algorithm is
order-dependent.

To illustrate, consider a crown graph with even n vertices
(also known as a bipartite graph with matching edges re-
moved). The chromatic number of such a graph is 2, yet a bad
ordering in greedy coloring can lead to using up to n/2 colors.
Thus, while the greedy algorithm is efficient and guarantees a
valid coloring, it cannot guarantee optimality in terms of the
number of colors used. A figure of a crown graph with n = 6
vertices is shown in fig. 3 (non-optimal) and fig. 4 (optimal).

a

b

c

d

e

f

Fig. 3. Non-optimal greedy coloring on crown graph.

a

b

c

d

e

f

Fig. 4. Optimal 2-coloring on crown graph.

As we can see above, fig. 3 is not optimal since we can
actually color the graph using only 2 colors. Such a result
occurs due to a bad vertex ordering during the greedy coloring
process. For instance, fig. 3 can be achieved if the vertices are
visited in the following order:

b, e, d, f, a, c.

The Basic Greedy algorithm will then assign colors as follows:

• b gets color 1 (red)
• e gets color 1 (red)
• d is adjacent to b ⇔ gets color 2 (green)
• f is adjacent to b ⇔ gets color 2 (green)
• a is adjacent to both e and f ⇔ needs color 3 (blue)
• c is adjacent to both c and e ⇔ needs color 3 (blue)

Thus, the greedy algorithm ends up using 3 colors even
though the chromatic number of the graph is only 2.

C. Degree of Saturation (DSatur) Algorithm

As we can see from the previous algorithm, the Basic
Greedy algorithm heavily depends on the ordering of the
vertices. This dependency can lead to unnecessarily high
color usage on certain graphs, such as the crown graph we
examined. To overcome this drawback, the DSatur algorithm
introduces a more adaptive strategy: instead of following a
fixed order, it selects vertices dynamically based on how
"saturated" they are—that is, how many different colors appear
in their neighborhood. By always choosing the vertex with
the highest saturation degree, DSatur often produces colorings
much closer to the chromatic number, even in challenging
cases. The pseudocode for DSatur algorithm is provided in
algorithm 3.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Algorithm 3 DSatur Graph Coloring
1: procedure DSATUR(G = (V,E))
2: for all v ↑ V do

3: color[v] ⇓ 0
4: sat[v] ⇓ 0
5: deg[v] ⇓ |Adj[v]|
6: end for

7: while UNCOLORED(color) do

8: v ⇓ PICK(color, sat, deg)
9: color[v] ⇓ FIRSTFIT(v, color)

10: for all u ↑ Adj[v] do

11: if color[u] = 0 then

12: sat[u] ⇓ SATDEG(u, color)
13: end if

14: end for

15: end while

16: return color
17: end procedure

18: procedure UNCOLORED(color)
19: for all v ↑ V do

20: if color[v] = 0 then

21: return true
22: end if

23: end for

24: return false
25: end procedure

26: procedure PICK(color, sat, deg)
27: u ⇓ any vertex with color[u] = 0
28: for all v with color[v] = 0 do

29: if (sat[v] > sat[u]) or

30: (sat[v] = sat[u] and deg[v] > deg[u]) then

31: u ⇓ v
32: end if

33: end for

34: return u
35: end procedure

36: procedure FIRSTFIT(v, color)
37: used ⇓ ⇒

38: for all u ↑ Adj[v] do

39: if color[u] ↓= 0 then

40: used ⇓ used ↗ {color[u]}
41: end if

42: end for

43: c ⇓ 1
44: while c ↑ used do

45: c ⇓ c+ 1
46: end while

47: return c
48: end procedure

49: procedure SATDEG(v, color)
50: s ⇓ ⇒

51: for all u ↑ Adj[v] do

52: if color[u] ↓= 0 then

53: s ⇓ s ↗ {color[u]}
54: end if

55: end for

56: return |s|
57: end procedure

Here is the implementation of algorithm 3:

1 #include <iostream>

2 #include <vector>

3 #include <set>

4

5 using namespace std;

6

7 // This implementation uses adjacency list

representation

8 using Graph = vector<vector<int>>;
9

10 bool uncolored(const vector<int> &color, int n) {

11 for (int v = 1; v <= n; ++v)

12 if (color[v] == 0)

13 return true;
14 return false;
15 }

16

17 int satDeg(int v, const Graph &G, const vector<int>
&color) {

18 set<int> s;

19 for (int u : G[v])

20 if (color[u] != 0)

21 s.insert(color[u]);

22 return (int)s.size();
23 }

24

25 int pick(const vector<int> &color, const
vector<int> &sat, const vector<int> °, int
n) {

26 int u = -1;

27 for (int v = 1; v <= n; ++v) {

28 if (color[v] != 0) continue;
29 if (u == -1 ||

30 sat[v] > sat[u] ||

31 (sat[v] == sat[u] && deg[v] > deg[u]))

32 u = v;

33 }

34 return u;

35 }

36

37 int firstFit(int v, const Graph &G, const
vector<int> &color) {

38 set<int> used;

39 for (int u : G[v])

40 if (color[u] != 0)

41 used.insert(color[u]);

42

43 int c = 1;

44 while (used.count(c))

45 ++c;

46 return c;

47 }

48

49 vector<int> dsaturColoring(const Graph &G, int n) {

50 vector<int> color(n + 1, 0);

51 vector<int> sat(n + 1, 0);

52 vector<int> deg(n + 1, 0);

53

54 for (int v = 1; v <= n; ++v)

55 deg[v] = G[v].size();

56

57 while (uncolored(color, n)) {

58 int v = pick(color, sat, deg, n);

59 color[v] = firstFit(v, G, color);

60

61 for (int u : G[v])

62 if (color[u] == 0)

63 sat[u] = satDeg(u, G, color);

64 }

65

66 return color;

67 }

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Now, let us analyze the time complexity of the DSatur algo-
rithm. The DSatur algorithm processes the graph one vertex at
a time, assigning colors based on the saturation degree—the
number of different colors used by neighboring vertices. In
each iteration of the main loop, the algorithm first checks
whether any vertex remains uncolored using UNCOLORED,
which takes linear time O(V) (this is negligible from what
we are going to do inside the main loop). Next, the algorithm
selects the next vertex to color using PICK, which scans
all uncolored vertices and chooses the one with the highest
saturation degree, breaking ties using the ordinary degree. This
also requires O(V) time per iteration. Since we are iterating
over V vertices, we already have O(V 2).

Once a vertex is chosen, FIRSTFIT determines the smallest
color that is not used by its neighbors. It does this by collecting
the colors of all adjacent vertices into a set and then scanning
for the first unused color. For a vertex v with degree dv , this
takes O(dv log dv) time due to the cost of inserting dv items
into a set data structure (from C++ STL). Thus, if we are
iterating over V vertices, we would have

∑

v↑V

O(dv log dv) = O(E log V)

After the vertex is colored, the algorithm updates the satu-
ration degree of each uncolored neighbor using SATDEG. For
each such neighbor u, SATDEG scans all of u’s neighbors and
inserts their colors into a set to count the number of distinct
ones. This operation takes O(du log du) time for each neighbor
u. Since this update is done for every uncolored neighbor of
every vertex during the main loop, we have

∑

u↑Adj[v]

O(du log du) = O(E log V)

Thus, the time complexity of the DSatur algorithm can be
up to

O(V 2 + E log V + E log V) = O(V 2 + E log V).

Note that this estimation reflects the behavior of the current
implementation. Other implementations, particularly those that
use a priority queue or heap to maintain the most satu-
rated vertex, may reduce this overhead and achieve better
performance. Although not the most efficient in terms of
runtime, DSatur offers a good balance between performance
and coloring quality, making it a popular heuristic for practical
graph coloring tasks.

V. METHODOLOGY

To evaluate the practical performance of the backtrack-
ing, Basic Greedy, and DSatur algorithms, we designed and
conducted a series of controlled experiments on a variety
of synthetic graph instances. The goal is to assess both the
efficiency and effectiveness of each algorithm under differing
graph structures and sizes. This section details the experimen-
tal setup, including the computing environment used, the spe-
cific types of graph instances generated, and the performance
metrics used to evaluate and compare the algorithms.

A. Environment

All programs were written in C++20 and compiled using the
GNU Compiler Collection (g++) with the -O2 optimization
flag to enhance performance. Experiments were run on a
MacBook Pro equipped with an Apple Silicon M4 chip and
16GB of RAM. The source code used in this paper, including
the implementations of each algorithm and the benchmarking
drivers, can be accessed here.

B. Graph Instances

To evaluate algorithm performance under different structural
conditions, several types of graphs were generated:

• Random Graphs (Erdős–Rényi Model): Graphs generated
using the G(n, p) model, where n is the number of
vertices and p is the probability of edge creation between
each pair of vertices.

• Square Grid Graphs: 2D grid graphs of size n↖n, which
are sparse and structurally regular.

• Bipartite Graphs: Graphs known to be 2-colorable, useful
to test algorithm correctness on low-chromatic cases.

• Complete Graphs: Graphs where each vertex is connected
to every other vertex, requiring exactly n colors for Kn.

• Crown Graphs: Structurally sparse yet challenging graphs
for greedy approaches.

Graphs were tested across multiple sizes and each config-
uration was repeated 1001 times for each algorithm with the
first iteration ignored since it’s a warm-up for the cache.

C. Metrics

The algorithms were evaluated using the following metrics:

• Execution time: Measured in milliseconds using C++’s
chrono library, representing the duration of the coloring
process.

• Number of colors used: The total number of distinct
colors assigned in the final solution.

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

This section presents and analyzes the experimental re-
sults obtained by running the backtracking, Basic Greedy,
and DSatur algorithms on various types of synthetic graph
instances. The goal is to provide a comprehensive comparison
of their performance in terms of both execution time and
the number of colors used. By assessing each algorithm
under varying structural complexities and graph sizes, we gain
insight into their scalability, practical efficiency, and suitability
for different scenarios.

To ensure statistical reliability, each experiment was re-
peated 1001 times for every graph instance. The first run
was discarded to eliminate cache warm-up effects, and the
remaining results were averaged. The following subsections
break down the findings by graph type.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

A. Performance on Random Graphs (Erdős–Rényi)
Random graphs, generated using the Erdős–Rényi model

G(n, p) with p = 0.2, present an environment with moderate
edge density and unpredictable structure. For this study, graphs
of size n = 5, 25, and 100 were created using the Boost

Graph Library [9], which offers a reliable and efficient random
graph generator.

The performance metrics for each algorithm are summa-
rized in Table I. We measure the average execution time in
nanoseconds, as well as the average number of colors required
to produce a valid coloring.

TABLE I
PERFORMANCE ON RANDOM GRAPHS (G(n, 0.2))

Algorithm Time (ns) Colors Used n
Backtracking 163.359 2 5
Basic Greedy 212.503 2 5

DSatur 465.822 2 5
Backtracking 833934 4 25
Basic Greedy 1647.36 4 25

DSatur 7583.13 4 25
Backtracking ↙ - 100
Basic Greedy 25264.7 10 100

DSatur 226542 8 100

At n = 5, all algorithms perform efficiently, using only two
colors and negligible time. As n increases to 25, we begin
to observe a divergence in performance. While the number of
colors remains constant, execution time increases across the
board—most dramatically for Backtracking, which is known
to exhibit exponential growth due to its exhaustive nature.

For the largest graph size (n = 100), Backtracking fails to
terminate within a reasonable time, confirming its impractical-
ity for large instances. In contrast, the Basic Greedy algorithm
offers superior speed, though it tends to use more colors
than DSatur. DSatur, while slower, consistently produces more
color-efficient solutions. This highlights the classic trade-off
between speed and coloring optimality in heuristic approaches.

The results on random graphs reinforce theoretical expecta-
tions: greedy-based methods scale better than exact algorithms
like Backtracking, and DSatur provides a middle ground with
improved coloring quality at a moderate computational cost.

B. Performance on Square Grid Graphs
Square grid graphs represent a class of sparse and highly

structured graphs, where each internal vertex has a degree
of at most four. These graphs resemble two-dimensional
lattices and are commonly used in applications such as finite
element meshes and image processing. Due to their predictable
topology and regularity, they offer an interesting contrast to the
randomness of Erdős–Rényi graphs.

Table II summarizes the performance of each algorithm
on square grids of size 5 ↖ 5, 25 ↖ 25, and 100 ↖ 100.
A notable theoretical property of such grids is their low
chromatic number, which is known to be 2 for sufficiently

large grids with even dimensions. This property significantly
affects how the algorithms behave in practice.

TABLE II
PERFORMANCE ON SQUARE GRID GRAPHS

Algorithm Time (ns) Colors Used n↖ n
Backtracking 174.746 2 5x5
Basic Greedy 308.19 3 5x5

DSatur 994.873 4 5x5
Backtracking 331.496 2 25x25
Basic Greedy 1392.64 3 25x25

DSatur 5174.51 4 25x25
Backtracking 1291.04 2 100x100
Basic Greedy 4536.63 3 100x100

DSatur 24017.1 4 100x100

From the results, we observe that Backtracking is remark-
ably efficient on grid graphs compared to its performance on
random graphs. This is largely due to the low chromatic num-
ber of grid graphs, which narrows the search space for valid
colorings. In fact, Backtracking consistently finds optimal 2-
colorings, even for large grids, with execution time increasing
only modestly as n grows.

Basic Greedy, while significantly faster than DSatur, tends
to overcolor the grid, consistently using 3 colors. This indi-
cates that despite the regularity of the input, greedy coloring
based purely on vertex order may still yield suboptimal results.
DSatur, on the other hand, surprisingly uses 4 colors across
all grid sizes—likely a consequence of its degree-saturation
heuristic reacting unnecessarily to symmetric structures.

Overall, this experiment highlights how structural properties
of the graph, such as planarity and low-degree regularity,
can mitigate the exponential weakness of Backtracking while
exposing limitations in heuristic methods that rely on local
decisions without global context.

C. Performance on Bipartite Graphs

Bipartite graphs form an important class of graphs in
graph theory and computer science due to their guaranteed
2-colorability. By definition, a graph is bipartite if its vertices
can be divided into two disjoint sets such that no two vertices
within the same set are adjacent. This structural property
ensures that the chromatic number is exactly 2, regardless of
the graph’s size or density.

Table III shows the performance of all three algorithms on
randomly generated bipartite graphs of increasing size. As
expected, all algorithms correctly assigned only 2 colors, thus
confirming their correctness on this specific class of graphs.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

TABLE III
PERFORMANCE ON BIPARTITE GRAPHS

Algorithm Time (ns) Colors Used n
Backtracking 227.135 2 10
Basic Greedy 278.801 2 10

DSatur 1074.8 2 10
Backtracking 1241.31 2 50
Basic Greedy 1845.71 2 50

DSatur 14918.2 2 50
Backtracking 10289.6 2 200
Basic Greedy 9751.56 2 200

DSatur 244424 2 200

From the data, we observe that while all algorithms produce
the correct number of colors, their execution time trends vary
significantly. The Backtracking algorithm, although guaranteed
to find an optimal solution in this case, still incurs growing
computational cost as the number of vertices increases. This
is because Backtracking explores the solution space through
recursive depth-first search, even when the problem has a
trivially small chromatic number.

Basic Greedy performs efficiently and remains close in
speed to Backtracking for larger graphs. Interestingly, DSatur
becomes the slowest of the three for larger instances, taking
nearly 25 times longer than Basic Greedy at n = 200. This
overhead stems from the need to maintain and update degree
saturation information dynamically, which becomes increas-
ingly expensive on large graphs—even when the coloring
decision is straightforward.

This experiment highlights that even when all algorithms
yield equally optimal solutions, their internal mechanisms
can lead to vastly different performance profiles. It further
reinforces the idea that algorithm selection should consider
not only output quality but also computational efficiency under
structural constraints.

D. Performance on Complete Graphs

Complete graphs Kn represent the worst-case scenario for
coloring algorithms in terms of chromatic number. Since
every vertex is adjacent to every other vertex, the chromatic
number of a complete graph is exactly n. Consequently, no
coloring algorithm can avoid using n colors in this setting,
making optimality trivial but emphasizing raw computational
performance instead.

Table IV summarizes the performance results of the three
algorithms on complete graphs of varying sizes. As shown,
both Greedy and DSatur color these graphs correctly by
assigning a unique color to each vertex. However, the real
challenge lies in the scalability of the algorithms when dealing
with dense edge connectivity.

TABLE IV
PERFORMANCE ON COMPLETE GRAPHS

Algorithm Time (ns) Colors Used n
Backtracking 1545.16 5 5
Basic Greedy 556.467 5 5

DSatur 1295.66 5 5
Backtracking ↙ - 25
Basic Greedy 16912.4 25 25

DSatur 116233 25 25
Backtracking ↙ - 100
Basic Greedy 249516 100 100

DSatur 7204860 100 100

The Backtracking algorithm completely breaks down for
n ↔ 25, as the factorial growth of the solution space renders
brute-force exploration infeasible. Even for smaller values, its
performance is significantly slower compared to the greedy
methods due to its exhaustive nature.

On the other hand, both Greedy and DSatur successfully
complete the coloring process across all tested sizes. Basic
Greedy remains consistently faster, owing to its minimal
overhead and simple implementation. DSatur, while more
computationally intensive due to its saturation degree tracking,
does not gain any advantage in terms of color reduction for
complete graphs—since there is no room for optimization in
terms of color count.

This experiment clearly illustrates that for dense graphs
with high chromatic number, the overhead of sophisticated
heuristics like DSatur may not be justified. Simpler greedy
strategies perform just as well in terms of solution quality, but
with significantly lower execution times.

E. Performance on Crown Graphs

Crown graphs form a unique class of bipartite graphs
derived from complete bipartite graphs by removing a per-
fect matching. While they are 2-colorable, their symmetrical
and non-trivial structure makes them notoriously difficult for
simple greedy heuristics, particularly those that rely on vertex
ordering.

Table V presents the performance results for all three algo-
rithms. Despite the underlying simplicity in terms of chromatic
number, we observe that greedy algorithms—especially Basic
Greedy—unexpectedly perform well even on larger instances.
All methods consistently achieve the optimal coloring, sug-
gesting that the vertex ordering used during experimentation
happened to align favorably with the structure of the crown
graphs.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

TABLE V
PERFORMANCE ON CROWN GRAPHS

Algorithm Time (ns) Colors Used n
Backtracking 226.209 2 10
Basic Greedy 679.08 2 10

DSatur 2248.99 2 10
Backtracking 2214.72 2 50
Basic Greedy 4360.94 2 50

DSatur 54265 2 50
Backtracking 19600.2 2 200
Basic Greedy 46114.2 2 200

DSatur 1663870 2 200

Interestingly, all three algorithms successfully achieve the
optimal color count across all tested sizes. This suggests that
although crown graphs are typically challenging for greedy
strategies, the specific vertex ordering used in this experiment
was favorable. Nevertheless, the execution time tells a different
story.

DSatur, while consistent in producing optimal colorings,
incurs substantial computational cost—especially evident as
n increases. At n = 200, DSatur is nearly 40 times slower
than Basic Greedy, despite producing the same result. This
highlights the trade-off between robustness and efficiency:
DSatur is reliable but computationally expensive, whereas
Basic Greedy is fast but sensitive to vertex ordering, although
this is not shown in the table.

Backtracking also demonstrates surprisingly good perfor-
mance on crown graphs, likely due to the constrained solution
space and low chromatic number. However, its scalability
remains limited compared to greedy heuristics.

These results reinforce the notion that graph structure—not
just size—plays a crucial role in determining algorithm per-
formance. While crown graphs are theoretically simple, their
deceptive topology can sometimes mislead greedy strategies
unless vertex ordering is carefully considered.

F. Summary of Observations

DSatur consistently offers a good balance between color
quality and runtime, especially on non-trivial graphs like
random structures, though it incurs higher costs on large
dense graphs. Backtracking provides optimal results but scales
poorly beyond small or sparse instances. Basic Greedy is
the fastest, but its color efficiency varies greatly with vertex
ordering and performs poorly on complex graphs. Overall, the
best algorithm depends on the graph’s structure and the trade-
off between speed and optimality.

VII. CONCLUSION

This paper presents a comparative study of three graph col-
oring algorithms across various graph structures. Backtracking
delivers optimal results but suffers from poor scalability.
Basic Greedy is fast but often yields suboptimal colorings,
especially on complex graphs. DSatur offers a balanced trade-
off, producing near-optimal solutions with acceptable runtime.

The choice of algorithm should depend on the graph’s structure
and the application’s priorities between speed and coloring
quality.

APPENDIX
The complete source code used for the experiments in

this paper is available on GitHub: https://github.com/Joji0/
graph-coloring-comparison. The repository contains the C++
implementations of the Backtracking, Basic Greedy, and
DSatur algorithms, as well as the benchmarking framework
and graph generators used in the evaluation process. Further-
more, the link to the video explaining this paper is provided
here: https://youtu.be/Xrqsx7Mgddg.

ACKNOWLEDGMENT
The author would like to express sincere gratitude to God

Almighty for His guidance and blessings throughout the
preparation of this paper. Special thanks are extended to Dr.
Ir. Rinaldi Munir, M.T. and Mr. Arrival Dwi Sentosa, S.Kom.,
M.T., lecturers of the IF1220 Discrete Mathematics course, for
their valuable teachings and support. The author also wishes
to thank their family for their unwavering support during the
course of these studies.

REFERENCES

[1] R. M. R. Lewis, Guide to Graph Colouring: Algorithms and Applica-
tions, 2nd ed., Springer, 2021.

[2] P. E. Black and P. J. Tanenbaum, “Graph,” NIST Dictionary of Algo-
rithms and Data Structures. [Online]. Available: https://www.nist.gov/
dads/HTML/graph.html. [Accessed: May 26, 2025].

[3] R. Diestel, Graph Theory, 6th ed., Springer, 2024.
[4] Department of Mathematics, Princeton University, “Lecture Notes 2:

Graph Coloring.” [Online]. Available: https://web.math.princeton.edu/
math_alive/5/Notes2.pdf. [Accessed: May 27, 2025].

[5] GCol Developers, “GCol: Graph Coloring Algorithms Library Doc-
umentation.” [Online]. Available: https://gcol.readthedocs.io/en/latest/.
[Accessed: May 27, 2025].

[6] GeeksforGeeks, “M Coloring Problem.” [Online]. Available: https://
www.geeksforgeeks.org/m-coloring-problem/. [Accessed: Jun. 9, 2025].

[7] GeeksforGeeks, “Graph Coloring Using Greedy Algorithm.”
[Online]. Available: https://www.geeksforgeeks.org/dsa/
graph-coloring-set-2-greedy-algorithm/. [Accessed: Jun. 14, 2025].

[8] GeeksforGeeks, “DSatur Algorithm for Graph Color-
ing.” [Online]. Available: https://www.geeksforgeeks.org/
dsatur-algorithm-for-graph-coloring/. [Accessed: Jun. 17, 2025].

[9] D. Gregor and A. Lumsdaine, “Erdős–Rényi Generator,” Boost C++ Li-
braries Documentation. [Online]. Available: https://www.boost.org/doc/
libs/1_44_0/libs/graph/doc/erdos_renyi_generator.html. [Accessed: Jun.
19, 2025].

STATEMENT
Hereby, I declare that this paper I have written is my own
work, not an adaptation or translation of someone else’s

paper, and not a product of plagiarism.

Bandung, 20 June 2025

Jonathan Kris Wicaksono
13524023

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Pol

