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Abstract—In this modern era, urban traffic congestion remains
a challenge in rapidly developing cities. Conventional approaches
such as constructing new roads often overlook the counterintu-
itive phenomena described by Braess’s Paradox, where adding
new infrastructure can worsen overall traffic conditions. This
paper investigates the application of Braess’s Paradox within the
context of urban traffic network. By modeling selected traffic
scenarios through simplified graph-based networks, we will be
able to analyze the effects of proposed urban road modifications
on traffic flow and equilibrium. Using discrete mathematical
modeling, identifying conditions under which network enhance-
ments may degrade traffic efficiency is prominent. The study
contributes a novel perspective on urban traffic strategy, offering
insights into sustainable urban mobility solutions.

Keywords—Braess’s Paradox, urban traffic, graph theory,
network optimization

I. INTRODUCTION

Urban transportation systems are complex networks where
individual decisions can collectively produce unexpected and
suboptimal outcomes for the entire system. In densely pop-
ulated and rapidly growing cities, traffic congestion has es-
calated into a critical concern. This situation can be further
exacerbated by the city’s geographical constraints, a high
number of private vehicles, and a flourishing population, all
putting immense strain on the existing road infrastructure.

The escalating congestion in cities lead the author to in-
corporate mathematical and informatics approach in solving
this issue. After further research and literature reviews, I have
decided to take Braess’s Paradox as main focus. Moreover,
since I am an undergraduate in Informatics Engineering who
takes Discrete Mathematics course in this semester, I will try to
implement my knowledge regarding graph theory in modeling
this problem so that it can provide clear visualization and
thorough explanation.

Braess’s Paradox exemplifies how the rational behavior of
individual drivers, aiming to minimize their own travel time,
can lead to a state of User Equilibrium (UE) that is less
efficient than the system’s potential optimum. This paradox
is deeply rooted in graph theory, where roads are modeled as
edges and intersections as nodes. Through the lens of graph
analysis, we can identify structural properties of road networks
that influence traffic equilibrium and efficiency.

This study applies graph-theoretical methods to urban traffic
network to explore the implications of Braess’s Paradox. By

modeling real-world traffic scenarios in some circumstances
and modifying them, I aim to uncover whether certain pro-
posed changes might alleviate overall traffic performance. The
goal is to provide insights that inform urban transportation
planning, ensuring that infrastructure investments are guided
by systematic understanding rather than intuition alone.

II. THEORETICAL FRAMEWORK

A. Graph Theory Fundamentals

Fig. 1. Directed and Weighted Graph
(Source: https://study.com/academy/lesson/weighted-graphs-

implementation-dijkstra-algorithm.html)

Graph theory is a branch of mathematics related to networks
of points connected by lines. A graph can be defined as
G(V,E). V and E stand for the set of vertices and edges
respectively. A graph cannot contain no vertices, but it might
contain no edges. In this paper, vertices represent intersections
while edges represent roads. Graphs can be classified in many
ways. Two of them are directed graph and weighted graph.

• A directed graph is a graph which edges are direction-
oriented, usually its edges are represented as arrows.

• A weighted graph is a graph which edges are assigned
numerical values.

A graph might contain either paths or cycles. A path in
a graph is a sequence of distinct vertices such that each
consecutive pair of vertices in the sequence is connected by
an edge. More formally, a path is a sequence of vertices
v0, v1, . . . , vk such that for every i from 0 to k − 1, the edge
(vi, vi+1) is in E. In a directed graph, edges have a direction.
A path must follow the direction of the arrows. If you have
an edge from A to B (A→ B), you have to traverse it in that
direction.
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A cycle (or circuit) in a graph is a path that starts and
ends at the same vertex and does not repeat any other vertices
or edges. More formally, a cycle is a sequence of vertices
v0, v1, . . . , vk such that these vertices make a path plus the
edge (vk, v0) is also in E. The cycle of a graph must follow
the same rules as the aforementioned rules for a path.

Fig. 2. Walk, Trail, Cycle and Path
(Source: https://www.freecodecamp.org/news/the-value-of-graph-

theory-within-sustainability/)

Graph can be represented in many ways. One of them is by
using adjacency matrix. In weighted and directed graph, for
a directed graph G = (V,E) with n vertices and m edges,
where each edge (u, v) has an associated weight w(u, v), we
can represent the graph using a weighted adjacency matrix A
of size n × n. Each entry Aij represents the weight of the
edge from vertex i to vertex j.

There are some rules for this representation
• Matrix Dimensions: If there are n vertices, the matrix

will be of size n×n. Each row and column corresponds
to a vertex.

• Matrix Entries (Aij):
– If there is a directed edge from vertex i to vertex j:

then Aij = w(i, j), the weight of that edge.
– If there is no edge from vertex i to vertex j then Aij

is typically represented as∞ (infinity), indicating the
absence of a direct connection.

– If there is a loop, then Aii is the weight of that loop.
Here is an example to help you have a clear understanding

about the weighted adjacency matrix representation. Suppose
there are 4 vertices: A, B, C, D. The weighted edges are

• A → B = 4
• A → D = 2
• A → E = 6
• B → C = 2
• C → A = 5

• C → D = 0
• D → C = 1
• E → B = 3

Then the weighted adjacency matrix A is:

TABLE I
WEIGHTED ADJACENCY MATRIX FOR A DIRECTED GRAPH WITH

VERTICES A, B, C, AND D

A B C D E
A 0 4 ∞ 2 6
B ∞ 0 2 ∞ ∞
C 5 ∞ 0 0 ∞
D ∞ ∞ 1 0 ∞
E ∞ 3 ∞ ∞ 0

B. Traffic Assignment Theory (Wardrop’s Principles)

Traffic Assignment Theory is a crucial theory in transporta-
tion engineering that models the traffic distribution across a
road network, given a set of travel demands. It seeks to predict
the equilibrium state that arises from individual driver choices.
The foundational concepts were developed by J.G. Wardrop.
There are two main Wardrop’s Principles.

1) Wardrop’s First Principle (Wardrop or User Equilibrium)
This principle describes a state where every driver,
acting individually and rationally, chooses the route that
minimizes their own travel time. At equilibrium, no
single driver can unilaterally switch to a different route
and achieve a shorter travel time. This means all routes
actually used between an origin and a destination will
have equal and minimum travel times, while any unused
routes will have travel times equal to or greater than
those used.

2) Wardrop’s Second Principle (Optimal Flow)
This principle describes an ideal state where traffic is
assigned to routes in a way that minimizes the total
travel time for all vehicles in the entire network. This
represents a socially optimal outcome, prioritizing the
collective efficiency over individual travel time mini-
mization.

Next, another important term related to Wardrop’s Principle
is The Price of Anarchy (PoA). It was first defined by Kout-
soupias and Papadimitriou. PoA quantifies the inefficiency
of User Equilibrium compared to System Optimal network.
It is defined as the ratio of the total travel time in a User
Equilibrium state to the total travel time in a System Optimal
state. If a selfish routing network is given by a triple of the
form (G, r, c) where G is a multi commodity flow network, r
is a vector of traffic rates and c is a vector of cost functions,
indexed by the edges of G. A flow f feasible for (G, r, c) is
a Wardrop Equilibrium if and only if∑

e∈E
ce(fe)fe ≤

∑
e∈E

ce(fe)f
∗
e (1)
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Before jumping to PoA itself, let us define the objective
function from min-cost network flow and define the cost C(f)
of a flow f in (G, r, c) as

C(f) =
∑
P∈P

cP (f)fp =
∑
e∈E

ce(fe)fe (2)

for every flow f feasible for (G, r, c). The overall cost cP (f)
here incurred by the traffic on the path P in the flow f is
defined as the sum of the costs of the edges.

FInally, the PoA can be defined as the ratio of the cost of
a user equilibrium and of a system optimal flow.

P (G, r, c) =
C(f)

C(f∗)
(3)

where f is a Wardrop or User Equilibrium and f∗ is the system
optimal for (G, r, c). A PoA greater than 1 signifies that selfish
routing leads to a worse outcome than cooperative routing.

C. Braess’s Paradox

There exists a four-node network shown in Figure 3. There
are two vertices s and t, each with combined cost 1 + x,
where x is the amount of traffic that uses the route. The
routes are identical. If all drivers are selfish, they should split
evenly between them. Assuming that there is one unit of traffic,
all network users experience 3/2 units of cost in the selfish
routing outcome. In this case, cost is more or less their travel
time.

Now suppose that, edge v → w exists with a constant cost
function c(x) = 0. We therefore expect all network users to
go to the new route. Nonetheless, the heavy congestion on the
edges (s, v) and (w, t), as the consequence of a new edge
built make all of the traffic now experiences two units of
cost. Braess’s Paradox thus shows that the seemingly helpful
action of adding a new zero-cost edge can increase the cost
experienced by all of the traffic!

Fig. 3. Braess’s Paradox: Adding an edge ̸= best solution!
(Source: https://timroughgarden.org/papers/optima.pdf)

D. Shortest Path Algorithm - Djikstra’s Algorithm

There are a plenty of shortest-path finding algorithms out
there. However, Djikstra’s algorithm suits this work the best
since it has been widespreadly used in analyzing weighed
graphs nowadays. Dijkstra’s Algorithm first was developed by
Edsger W. Dijkstra in 1956. It stands as a cornerstone in graph
theory for solving the shortest path problem. In the context of
urban traffic optimization, it serves as a critical computational

tool for simulating individual route choices within a network.
Here is the pseudo-code for Djikstra’s Algorithm.

Algorithm 1 Dijkstra’s Algorithm
Require: Graph G = (V,E), source node s
Ensure: Shortest distances from s to all other nodes

1: for each vertex v ∈ V do
2: dist[v]←∞
3: prev[v]← undefined
4: end for
5: dist[s]← 0
6: Q← V {Initialize priority queue (or min-heap)}
7: while Q is not empty do
8: u← vertex in Q with smallest dist[u]
9: Remove u from Q

10: for each neighbor v of u do
11: alt← dist[u] + weight(u, v)
12: if alt < dist[v] then
13: dist[v]← alt
14: prev[v]← u
15: end if
16: end for
17: end while
18: return dist, prev

III. METHODOLOGY

A. Research Model

This work models urban transportation systems as directed
and weighted graphs. In this representation, each intersection
within the network is treated as a vertex. The connections
between these intersections, representing road segments, will
be illustrated as directed edges. Each edge will be assigned
with a cost function, which defines the travel time required
to traverse that specific road segment. Crucially, these travel
times are dynamic, increasing as the traffic volume (demand)
on the link due to congestion. This cost function can be
perceived as the dynamic weight of an edge. Next, the entire
network, including its connectivity and current travel times,
is formally represented through a weighted adjacency matrix,
where entries Aij denote whether there exists an edge from
a vertex to another. If no direct link exists, the entry is set
to -1 (for ease, as ∞ is hard to be represented), indicating
the absence of a connection. The primary goal of this model
is to simulate traffic flow patterns under different conditions,
particularly focusing on how individual routing decisions
impact the overall system.

B. Case-Based Network Construction

Due to the restricted official urban traffic datasets, the
study employs representative case graphs inspired by urban
road configurations and well-known paradox scenarios. These
graphs, described textually and simulated computationally,
serve as projections of real-world networks to investigate the
emergence of optimal routing.
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To simulate the manifestation of Braess’s Paradox, the
author provides three hypothetical traffic network examples
which were constructed based on realistic urban configura-
tions. These graphs serve as synthetic datasets used to analyze
equilibrium, system-optimal behaviors, and Braess-Paradox-
related behaviors under different changes.

Example 1: Network with Braess’s Paradox: Here is an
example of network with Braess Link. It is a modification from
the classical Braess’s Paradox (using 1 + x). Linear functions
are implemented here to show the changes after.

s

v1

v2

t

F1(x) = 15x1

F2(x) = 5x2 + 40

F3(x) = x3 + 5

F4(x) = 20x4 + 10

F5(x) = 12x5

Fig. 4. Network with Braess Link (Source: Author)

Example 2: Network without Braaess’s Paradox: Here is
an example of network without Braess Link. It is identified
that not all isomorphic networks will ensure the existence of
Braess’s Paradox. Linear functions are implemented here to
show the changes after.

s

v1

v2

t

F1(x) = 12x1

F2(x) = 12x2 + 24

F3(x) = 2x3 + 6

F4(x) = 12x4 + 24

F5(x) = 12x5

Fig. 5. Network without Braess Link (Source: Author)

Example 3: Complex Network: As classical Braess’s Para-
dox can be modified, there is the second Braess graph. In
Figure 6, we defined A(x) = x, B(x) = 10, and C(x) = 10x
for simplicity.

C. Data Processing

Once the network is represented as weighted adjacency
matrix and all of the components, e.g. demand, nodes, source
node, have been defined, it will be transformed into a graph
using computational libraries such as NetworkX in Python.
This allows for checking all possible paths from a defined
origin-destination pair. Dijkstra’s algorithm here is employed

s v2

v1

w2

w1 t
C

A
C

B

C

B

A B

C

Fig. 6. Complex Network with Braess Link (Source:
https://timroughgarden.org/papers/optima.pdf)

inside the libraries used in the program to compute shortest
paths between intersections, supporting the individual route
choice analysis. Each path is analyzed to compute its total cost
based on the weights of its edges. This step is essential for
identifying and comparing possible route choices that drivers
may take.

To simulate routing behavior, the study applies Wardrop’s
Principles. Under the first principle (User Equilibrium) and the
second principle (System Optimal), both equilibrium states are
simulated using iterative adjustment techniques, allowing us to
validate its efficiency. This processing framework enables the
investigation of Braess’s Paradox. By modifying the adjacency
matrix to include or exclude specific edges and recomputing
the equilibrium flows, the paradox can be observed and
analyzed.

IV. IMPLEMENTATION

A. Imports and Graph Setup

Fig. 7. Imports and Graph Setup
(Source: Author)

This script starts by importing a few important Python
libraries. NumPy is used for handling numerical operations.
NetworkX helps model the road network as a directed graph,
allowing us to simulate different routing scenarios. The mini-
mize function from SciPy is used to solve optimization prob-
lems to find the most efficient flow of traffic that minimizes
overall system cost. Pandas is included to neatly present the
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results in tables. At first, the program will set an empty
directed graph as the network at. Additional edges will be
initialized as users give inputs to the program.

B. Calculation Helpers

Fig. 8. Calculation Helpers
(Source: Author)

This part of the program handles the core computations for
analyzing traffic behavior in the network. It first identifies
all possible routes between the origin and destination, then
calculates the cost of each segment and full path based on
traffic flow. In this process, it takes care of invalid paths, for
example, those affected by removed links, are excluded from
consideration by assigning them infinite cost. For analyzing
User Equilibrium, it determines the most expensive among
the highest used route cost since UE assumes all used paths
have equal minimal cost. Additionally, it can compute the total
system cost by summing the cost contributions from every road
segment, which is essential for optimizing the efficiency of the
overall traffic network.

C. User Equilibrium and System Optimal Algorithms

Fig. 9. User Equilibrium and System Optimal Algorithms
(Source: Author)

The code is designed to model and analyze traffic flow
behavior under two distinct routing strategies, User Equi-
librium (UE) and System Optimal (SO). On one’s hand,

The former method simulates how individual drivers selfishly
choose the shortest route using the Method of Successive Av-
erages (MSA). On the other hand, the latter method computes
the most efficient overall traffic distribution by minimizing
the total system cost through numerical optimization. Both
approaches support the condition where of a Braess link is
inserted or not to explore how network changes affect urban
traffic.

D. Network Analysis and Output

Fig. 10. Network Analysis and Output
(Source: Author)

This part is responsible for displaying the results of different
traffic flow scenarios in an organized format. It begins by
printing headers to indicate which code is being executed first,
such as User Equilibrium and System Optimal, both with and
without the Braess link. After performing all computation, it
resets the network to its original state. Once completed, it
compiles the data into a structured results. Finally, the method
prints a conclusion that checks for the presence of the classic
Braess’s Paradox.

E. Input Collector and Main Runner

This part is where the user can provide network configu-
ration so that the program can analyze the Braess’s Paradox
inside the traffic network. The program will receive inputs of
demand, nodes, adjacency matrix, cost functions, source and
target node, and braess link. After the input has been received,
the runner will do the work from the beginning part of the
source code.



Fig. 11. Input Collector and Main Runner
(Source: Author)

V. CASE ANALYSIS

A. Example 1: Network with Braess’s Paradox

In Figure 13, the analysis of the traffic network with the
modified cost functions and a demand of 3.6 units reveals
the occurrence of the Classic Braess’s Paradox. The User
Equilibrium (UE) calculation for the network with the Braess
link showed the highest used route cost of 73.5 and a total
system cost of 264.4. Nevertheless, when the Braess link was
excluded, the User Equilibrium resulted in a lower highest
used route cost of 71.4 and a total system cost of 257.0.
These numbers can be compared and as a result, they confirm
the Classic Braess’s Paradox that adding the link increased
the highest used route cost (UE travel time) by 2.07 units,
from 71.4 to 73.5. It shows that individual selfish routing
decisions can lead to a worse overall outcome for all users. At
quick glance, this statement can be strengthened by the PoA
calculation (the ratio of UE and SO cost) that is greater than
one.

B. Example 2: Network without Braess’s Paradox

In Figure 15, the analysis of the traffic network with the
specified cost functions and a demand of 6.0 units reveals that
the Classic Braess’s Paradox does not occur in this scenario.
The User Equilibrium (UE) with the Braess link resulted in
a highest used route cost of 96.0 and a total system cost of
576.0. When the Braess link (v1 → v2) was removed, the
User Equilibrium still yielded the same highest used route
with no improvement in system cost. This indicates that the
presence of the Braess link had no impact on the efficiency in
this configuration. The absence of any improvement confirms
that the Classic Braess’s Paradox is not observed here.

Fig. 12. Input for Network with Braess’s Paradox
(Source: Author)

Fig. 13. Result for Network with Braess’s Paradox
(Source: Author)

Fig. 14. Input for Network without Braess’s Paradox
(Source: Author)

Fig. 15. Result for Network without Braess’s Paradox
(Source: Author)



C. Example 3: Complex Network

In Figure 17, it is given a complex Braess network config-
uration with nodes s, v1, v2, w1, w2, and t, and a total travel
demand of 4.0 units. It reveals that the Classic Braess’s Para-
dox does not occur. In the User Equilibrium (UE) scenario, the
highest used route cost was 28.7 and the total system cost was
114.7. However, when the Braess link was removed, the UE
resulted in a higher highest used route cost of 30.0 and a total
system cost of 120.0. This indicates that removing the Braess
link did not improve the overall traffic conditions. In fact, it
implies that if we remove the Braess link, it will deteriorate
the traffic condition since the highest used route cost is when
the Braess link is not introduced.

Fig. 16. Input for Complex Network
(Source: Author)

Fig. 17. Result for Complex Network
(Source: Author)

VI. CONCLUSION

Through the use of adjacency matrices and algorithmic
modeling, this work can simulate how individual route choices
influence broader system behaviors. Moreover, adding new
links unconsciously worsen the traffic conditions. By looking
at overall network in a structured mathematical format, graph
theory provides a comprehensive way to evaluate the effects of
proposed infrastructure changes before they are implemented.

The computational tools enabled by graph theory allow
for precise calculation of key traffic states such as User
Equilibrium and System Optimal flow. This level of analysis
is critical in large, complex urban environments where small
changes can have far-reaching effects. It enables governments
to model multiple scenarios, consider the trade-offs of different
projects, and prioritize improvements that results in system-
wide benefits rather than only shifting congestion.

In a broader context, graph theory assists policymakers
with a data-driven consideration for future planning rather
than relying solely on engineering intuition. Their decisions
can be guided by insights into network behavior. This is not
only reducing the cost of planning errors, but also enhancing
accountability in public infrastructure investment. Therefore,
cities can design transportation networks that are not just
larger, but smarter for the public.

ATTACHMENT

Github: Source Code of ”Graph Theory Application in Mod-
eling Braess’s Paradox for Urban Traffic Optimization”
Here
Youtube Video: Demonstration on The Source Code ”Graph
Theory Application in Modeling Braess’s Paradox for Urban
Traffic Optimization” using Python
Here
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