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Abstract— This paper presents a discrete time turn-based 

scheduling model for the game Reincarnation Journey: Fantasy 

Fate, utilizing a priority queue implemented with a min heap. 

Each character's turn is dynamically determined based on their 

speed, which influences their action time. The simulation 

incorporates game mechanics such as buffs, debuffs, and speed 

modifiers that adjust scheduling in real time. By applying 

discrete event simulation principles and efficient heap operations, 

the system ensures fair, responsive, and scalable turn 

management. The proposed model demonstrates how 

mathematical structures like functions, recurrence relations, and 

trees, specifically heaps, can be applied to build practical and 

computationally efficient systems in interactive simulations.  

Keywords— Reincarnation Journey: Fantasy Fate; turn-based 

scheduling; priority queue; min heap; simulation modeling 

I.  INTRODUCTION  

In the realm of interactive digital entertainment, turn-based 
game systems have long been valued for their strategic depth 
and clarity. Unlike real time systems that rely on continuous 
input and reaction, turn-based systems process player and 
enemy actions in discrete intervals, allowing thoughtful 
decision making and controlled pacing. However, 
implementing an efficient and fair turn order mechanism 
becomes increasingly complex when multiple entities with 
varying attributes, such as speed, delay, and temporary effects, 
are involved. 

Reincarnation Journey: Fantasy Fate is a turn-based 
fantasy battle simulation where characters take turns to act 
according to their speed and various in game modifiers. To 
manage turn order dynamically and fairly, the simulation 
employs a priority queue, implemented using a min heap, to 
schedule each character’s next action based on a time value 
called t_next. This approach ensures that characters with 

higher speed (and thus lower t_next values) act sooner, 

while also allowing real time updates based on buffs, debuffs, 
and other temporary effects. 

This paper explores the theoretical foundation, algorithmic 
implementation, and practical advantages of using a heap based 
priority queue in discrete time simulation. It applies 
fundamental concepts from discrete mathematics, such as 
functions, recurrence relations, and tree structures. to design a 
system that is both computationally efficient and faithful to 

gameplay mechanics. The simulation is intended not only as a 
game logic prototype, but also as a demonstration of how 
abstract mathematical structures can be effectively applied in 
real world programming contexts. 

II. THEORETICAL FOUNDATION 

A. Reincarnation Journey: Fantasy Fate 

 

Fig. 1. Screen Lobby Reincarnation Journey: Fantasy Fate. 

The simulation developed in Reincarnation Journey: 
Fantasy Fate serves as a case study in how fundamental 
concepts from discrete mathematics can be applied to a turn-
based scheduling system. This fantasy themed battle simulator 
models a combat scenario where multiple characters, each with 
unique attributes like speed and status effects, must take turns 
in a fair and efficient order. To achieve this, the system utilizes 
several core principles from discrete mathematics, including 
functions, recurrence relations, tree structures (especially 
binary heaps), and algorithmic complexity. These concepts 
form the backbone of the simulation’s turn scheduler, which 
ensures that gameplay remains responsive, balanced, and 
scalable. 
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Fig. 2. Battle in Reincarnation Journey: Fantasy Fate. 

Look at Fig. 2 and you will see twelve fighters in the arena, 
six lined up on the left and six on the right, clearly marked as 
the players crew and the foes squad. Each fighter gets a turn set 
by her speed stat, and that stat assigns a t_next value the 

exact moment she can move again. The fighter with the lowest 
t_next, who acts next, sits at the bottom right, just left of the 

skill icons, while the one with the highest t_next, who will 

go last this cycle, hangs on the far left of the action list. This 
layout mirrors the internal timetable, because the engine uses a 
min heap to order moves by their t_next numbers and 

display them in the same tidy row you see on screen. 

 

Fig. 3. Action Queue, the further to the right the smaller the t_next value. 

B. Function and Relation 

In discrete mathematics, a function is a relation that maps 
each element from a domain to one or zero element in the 
codomain. 

For example: 

A = {Hasan, Tanti, Rommi, Yusuf, Aditya} 

This domain represent a person, and 

 B = {Toyota, Daihatsu, Mercedes, BMW} 

This domain represent a car. 

Let R be a relation that represents a person and the car he 
drives. 

 R = {(Hasan, Daihatsu), (Rommi, Toyota), (Yusuf, 
Mercedes), (Aditya, Toyota)} 

 This means that Hasan drives a Daihatsu, Rommi drives a 
Toyota, Yusuf drives a Mercedes, and Aditya drives a Toyota. 
Tanti does not drive any car. The BMW car is not driven by 
anyone in the relationship. 

 In the context of this project, the simulation uses a function 
to calculate how soon a character can act again based on their 
speed. For example: 

 

Fig. 4. t_next Function {f(pid)}. 

This function assigns each player ID (pid) a value t_next, 

which determines the time until their next action. 

 A relation in discrete mathematics is a set of ordered pairs 
that shows how elements from one set are related to elements 
from another. For example, the turn order in the simulation can 
be seen as a relation between player ID and scheduled time. 

C. Recurrence Relation 

Called as a recursive, is a recurrence relation defines a 
sequence where each term is a function of its predecessors. 

Recursive function divided by 2 part: 

1) Base 
This part contains the explicitly defined function 
value. This part also stop the recursion (and gives the 
defined value to the recursive function) 

2) Requence 
This section defines the function in its own terms. 
Also contains rules for finding the value of a function 
at one input from its values at smaller inputs. 

For Example: f is divided as recursively as follow 

 

Fig. 5. Recursive Example. source : Rekursi dan Relasi Rekurens 

determine f(4) value! 

The solution is :  

 

Fig. 6. Recursive Solution. source : Rekursi dan Relasi Rekurens 

In this scheduling simulations, time evolution can be described 
using recurrence. For example, if t₀ is the initial time for a 
player, then their next action time t₁ might be determined by: 

 

Fig. 7. Recursive Pattern in This Scheduling Simulation. 

This recursive pattern is essential for modeling ongoing 
processes in a turn-based system. 

D. Trees in Discrete Structure 

A trees in Discrete Structure is a connected, acyclic graph 
in which any two nodes are connected by exactly one path. 
Trees are useful for representing data that has a hierarchical 
structure, such as file systems, organizational charts, and 
decision processes. 
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Fig. 8. Tree Picture Example. source : Rekursi dan Relasi Rekurens 

One special form of a tree is the binary tree, a tree in which 
each node has at most two children. These children are 
typically referred to as the left child and right child. Binary 
trees are the foundational structure for various efficient 
algorithms and data structures such as binary search trees, 
heaps, and expression trees. 

 

Fig. 9. Binary Tree Picture Example. source : Rekursi dan Relasi Rekurens 

From the Fig. 9., we can see that the root of the tree is node A. 

Node A has two children: B (left child) and C (right child). 

Node B has children D (left child) and E (right child), while C 

has children F and G. And node E, in turn, has two children: H 

(left child) and I (right child). This tree is a complete binary 

tree up to level 2 (every node has two children where 

possible), and illustrates a clear hierarchy from top to bottom. 

1) Heap as a Binary Tree 
A heap is a special kind of binary tree that satisfies the 

heap property. In a min heap, each parent node has a value 
less than or equal to its children. The smallest element is 
always at the root. This structure supports efficient retrieval 
and deletion of the minimum (or maximum) element. 

In our simulation, we use a min heap to maintain and 
sort player actions based on their next available time 
(t_next). This ensures that the player who should act 

first is always at the top of the priority queue. 

In this simulation, each heap entry has the form 
(t_next, pid, speed). Here, t_next is the time 

when the player is scheduled to act, and it determines the 
priority. Python’s heapq module uses an array to represent 

this binary heap, maintaining the heap property such that 
the smallest t_next is always accessible at index 0. 

This is directly related to the tree structure: although 
implemented via array, the logical relationship between 
parent and children (at indices i, 2i+1, 2i+2) forms a 
conceptual binary tree. 

A heap is chosen in this simulation primarily because of 
its computational efficiency and practicality in 
implementation. The most significant advantage of using a 

heap is that both insertion and deletion operations can be 
performed in O(log n) time. This is particularly valuable in 
a turn-based scheduling system, where players’ actions are 
frequently updated and reordered based on timing. 

In addition to its time efficiency, a heap is also memory 
efficient. It can be represented as a simple array or list 
rather than as a full fledged tree structure. In this flat 
representation, the relationships between parent and child 
nodes are easily determined using index calculations, 
making the structure not only efficient but also simple to 
implement. 

By using a min heap to manage the action order based 
on t_next values (the time at which a player can act 

next), the simulation maintains the performance. The player 
with the lowest t_next is always at the top of the heap, 

allowing the system to determine the next action. This 
design choice ensures that the system remains fast, fair, and 
scalable, even as the number of characters or turns 
increases, making it ideal for real time turn-based 
simulations. 

E. Priority Queue 

A priority queue is an abstract data type where each 
element is associated with a priority, and elements are served 
based on their priority order. In a min priority queue, elements 
with the lowest priority value are accessed first. 

While a heap provides the underlying structure, the priority 
queue ensuring that character actions are scheduled and 
processed in the correct order based on urgency, in this case, 
their t_next values. This behavior is crucial in simulations 

where time sensitive decisions (like turn order) must be 
resolved efficiently and fairly. 

By implementing the priority queue via a min heap, the 
system benefits from a execution order based on  parameters 
such as t_next, as well as dynamic adjustability where 

insertion, removal, and updating of elements can be performed 
efficiently. Furthermore, this structure is in line with the 
principles of discrete event simulation (DES), in which actions 
are driven by events rather than progressing in a continuous 
timeline. Thus, in this simulation, the priority queue functions 
not merely as a data structure, but as a scheduling policy that is 
effectively and efficiently realized through the use of a heap. 

F. Algorithmic Complexity 

Algorithmic complexity basically captures how much time 
and memory an algorithm needs to finish when you feed it data 
of a certain size. By looking at these numbers, we can tell if an 
approach will slow down or crash when the input grows, and 
we can line up several methods side by side to pick the best 
one. Time complexity, one popular measure, tracks how 
running time itself stretches as the input grows, and we usually 
write that using Big O symbols. So, a routine tagged O(n) gets 
one additional step for every extra item you add, whereas one 
marked O(log n) hardly budges, making it much quicker on 
huge lists. Knowing these labels helps programmers guess how 
an idea scales and choose the least greedy option before the 
data pile up kicks in. 
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G. Discrete Scheduling and Simulation Modeling 

The nature of turn-based games is inherently discrete. The 
system does not rely on continuous timelines but instead 
processes one event at a time. This aligns with discrete event 
simulation (DES), a technique where time advances in steps 
based on the occurrence of events rather than in fixed intervals. 
In our simulation, time is represented using floating point 
milliseconds, but actual "progress" only occurs when a player's 
action is processed. 

The simulation thus mimics discrete time evolution, with 
the scheduler determining the next actor, applying buffs or 
debuffs, adjusting their speed or delay, and rescheduling the 
queue accordingly. 

III. IMPLEMENTATION 

In this section, the writer presents a concrete 
implementation of the proposed turn-based batch scheduling 
model using Python. The goal is to simulate how multiple 
characters in Reincarnation Journey: Fantasy Fate take turns 
based on speed, action point buffs or debuffs, and timed speed 
modifiers. The core of the implementation is a priority queue 
(min heap), which ensures the next character to act is always 
the one with the smallest upcoming turn time (t_next). This 

mirrors established practices in game development, such as 
those described in software like Rogue Basin’s  turn scheduler. 

A. Priority Queue 

In this scheduling model, each character’s upcoming action 
is determined by a value called t_next, which represents the 

virtual time at which the character is next allowed to act. This 
value is dynamically computed based on the character’s current 
speed and a constant called BASE_DELAY. 

BASE_DELAY is a predefined fixed delay constant used as 

the baseline reference for turn progression. It simulates the 
standard time interval required before a character can act again, 
assuming a neutral or average speed. 

The character’s speed represents how quickly they can 
perform actions relative to others. A higher speed means the 
character will be able to act more frequently. To calculate when 
a character should next take a turn, we divide BASE_DELAY 

by the character’s speed: 

    t_next = BASE_DELAY / speed 

This inverse relationship ensures that faster characters (with 
higher speed values) generate smaller t_next values, causing 

them to act sooner in the simulation cycle. By organizing all 
characters in a min heap (priority queue) based on their 
t_next, the system always selects the character with the 

lowest t_next, the one whose next action is due the earliest, 

to take the next turn. 

 

Fig. 10. Initialize Priority Queue Based on Character Speed 

By invoking heapq.heappush(), these tuples are inserted 

into a binary min heap, a complete binary tree structure where 
the parent node’s value is always less or equal to its children’s 
values. This value represent t_next. This structure is crucial 

because it guarantees that pq[0], the heap’s root, always 

contains the character scheduled to act next based on the 
smallest t_next. 

B. Executing a Turn: Priority Extraction 

 

Fig. 11. Extracting the Next Active Player from the Priority Queue 

 During each simulation turn, heapq.heappop() 

removes the tuple with the smallest t_next from the heap and 

returns it. This operation both identifies the next character to 
act and rebalances the heap in “O(log n)” time through a 
process knows as bubble down, where the tree structure is 
restored after removing the root. This ensures that extracting 
the next turn remains efficient even as multiple turns are 
processed. 

C. Resetting and Requeuing Turn Times 

 

Fig. 12. Recalculating and Rebuilding the Turn Queue After a Characterr's 

Action 

In this block, we normalize the event schedule so that after 
the active character acts, their remaining time is reset to zero 
and other characters times are adjusted relative to this 
references. First, we iterate over the existing heap pq, which 

holds (t_next, character_id, speed) tuples, and 

subtract the smallest elapsed time t_min (from active 

character’s turn) from every other character’s t_next. This 

effectively shift the timeline, ensuring that the active turn reset 
the time baseline for the next cycle. 

Next, we insert the active character back into the queue 
with a newly computed t_next, derived from their current 

speed: BASE_DELAY/speed[active_pid]. This models 

the character’s subsequent turn interval after completing an 
action. The combination of relative time adjustment and 
reinsertion ensures that each turn’s scheduling remains accurate 
and avoids cumulative inflation of time values. 

Finally, we rebuild the min heap by calling 
heapq.heapify(pq), which reorganized the updated list 

into a valid heap in 0(n) time. This rebuild is essential for 
maintaining correct priority ordering after multiple adjustment 
to t_next. 
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D. Action Point Buffs and Debuffs 

Within Reincarnation Journey: Fantasy Fate, characters 
can receive temporary buffs (boosts) or debuffs (penalties) that 
influence how soon they can act again, these are represented by 
Action Point (AP). In our implementation (simulate), these 
effects are triggered at the start of a turn when the turn index 
matches a predefined entry in AP_BUFF_schedule. Each 

entry consists of (character_id, delta_b), where 

delta_b is a positive value for a buff (accelerating the turn) 

or a negative value for a debuff (delaying the turn). 

Rather than always rebuilding the entire heap, the code 
optimizes performance by first checking whether the affected 
character is at the root of the min heap (pq[0]). If they are, 

the code employs heapq.heapreplace(), which 

atomically removes the smallest element (root) and inserts the 
updated tuple in its place. This operation executes in “O(log 
n)” time since it adjusts only a single path in the tree  

If the affected character is not at the root, a simple loop is used 
to locate their entry in the heap. Once found, their t_next is 

updated in place using max(t - delta_b, 0) to avoid 

negative values, and the heap is rebalanced with 
heapq.heapify(). While this takes “O(n)” time to 

rebuild, it remains more efficient than reconstructing the entire 
heap from scratch for every update . 

 

Fig. 13. Adjusting Action Point Through AP Buffs and Debuffs 

Mechanically, this design faithfully mirrors how AP effects 
work in the actual game: a positive AP buff grants character an 
immediate “rush”, an earlier turn within the same cycle, while 
a negative AP effect simulates conditions such as being 
stunned or slowed, pushing the character’s turn into further into 
the future. This dynamic adjustment ensures that each AP buff 
or debuff has an instant and tangible impact on the turn order, 
just like in gameplay.  

This design also balances correctness with performance 
efficiency. It ensures that an AP buff or debuff takes effect 
immediately, just as it does in actual gameplay, without 
causing unnecessary computation. Using heapreplace() 

when the affected character is next to act is both efficient and 
succinct, while the fallback minimizes disruption for nonroot 
changes. This approach ensures that the scheduler remains 
responsive and accurate, even when multiple AP changes occur 
during a simulation. 

From a performance perspective, scanning the queue to find 
the affected character takes “O(n)” time (with n representing 

the number of characters), while re-heapifying requires 

“O(n)” time as well making each application of an AP effect an 
“O(n)” operation in the worst case. Although this is efficient 
for a small number of characters, this cost becomes more 
significant with larger queues. Regardless, it reliably enforces 
the instantaneous timing effects central to the gameplay 
experience. Fortunately, Reincarnation Journey: Fantasy Fate 
only have 6 characters most in each fight. 

By integrating this inplace update and heap rebalancing, the 
system cleanly efficiently enforces both beneficial and 
detrimental AP modifiers. This approach preserves overall turn 
order fairness while accurately reflecting the intended game 
mechanics of Reincarnation Journey: Fantasy Fate. 

E. Speed Buffs and Debuffs with Timed Duration 

 In Reincarnation Journey: Fantasy Fate, characters may 
receive temporary Speed Up or Speed Down effects that alter 
their movement or action rate over a fixed number of turns. 
Our implementation handles these effects using two main 
mechanisms: adjusting the character's speed value and 
automatically expiring the effect after its duration elapses. 

1. Applying Speed Modifier 

When the simulation reaches a turn index listed in 
SPEED_BUFF_schedule, it extracts 

(character_id, delta_s, duration) from the 

schedule. A positive delta_s value increases the 

character's speed (Speed Up), while a negative value slows 
them down (Speed Down). The algorithm then updates the 
character's base speed and appends the active effect to 
active_speed_buffs. 

 

Fig. 14. Applying and Registering Timed Speed Buffs in the Turn Scheduler 

Because every character's t_next time depends on their 

current speed (BASE_DELAY / speed), it becomes 

necessary to rebuild the entire priority queue (pq = 

init_queue()) whenever a speed change occurs. This 

ensures all entries correctly reflect the updated speeds. 
Rebuilding the heap via heapify() takes “O(n)” time. 

2. Expiring Buffs and Restoring Speed 

After each turn, the system checks 
active_speed_buffs to decrement the remaining 

duration of any active speed modifiers. If a character's 
duration reaches zero after their turn, the effect is removed 
and their speed is restored to its prior value. 

 

Fig. 15. Managing Expiration of Temporary Speed Buffs 
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This ensures the buff or debuff remains in effect exactly 
for the intended number of turns, gracefully reversing once 
expired. Each update is handled in “O(b)” time per turn, 
where b is the number of active buffs (typically small). 

Overall, the application of speed effects and the subsequent 
rebuild of the priority queue demonstrate both algorithmic 
correctness and performance efficiency, as they balance the 
need to keep the turn order accurate with the constraints of a 
small scale simulation. This mechanism faithfully captures 
multiturn speed alterations while maintaining computational 
quality in alignment with discrete mathematics and game 
simulation principles. 

IV. RESULT 

A. Simulation Overview 

 

Fig. 16. Simulation of Turn-Based Scheduling System in Reincarnation 

Journey: Fantasy Fate 

In this simulation, a turn-based action scheduling system is 
implemented using a priority queue to determine the order in 
which characters take turns. The simulation models 12 
characters, each with a predefined base speed. At the beginning 
of the simulation, the initial turn time for each character is 
calculated by dividing a fixed base delay (1000 milliseconds) 
by their speed, producing a t_next value that indicates how 

soon each character can act. These values are stored in a min 

heap priority queue, ensuring that the character with the 
smallest t_next is always selected to act next. 

Over 50 simulation turns, the system dynamically adjusts 
each character’s turn timing based on scheduled action point 
(AP) buffs or debuffs and speed modifications. AP effects 
directly shift a character's t_next value forward or backward, 

simulating abilities like haste or stun. These changes are 
applied either with heapreplace for efficient root updates 

or heapify for internal heap restructuring. Meanwhile, speed 

buffs or debuffs temporarily modify a character’s speed value 
for a given number of turns. Unlike AP effects, these do not 
immediately change the character’s current position in the 
queue; instead, they influence the delay before their next turn, 
after their current turn is executed. 

Each time a character acts, their elapsed time (t_min) is 

subtracted from every other character's t_next, effectively 

resetting the relative timeline. The active character is then 
reinserted into the queue with a new turn time based on their 
updated speed. Temporary speed effects are tracked in a 
dictionary and expire after a certain number of turns, at which 
point the character’s speed is reverted, and this event is logged. 

The simulation prints the scheduled characters before each 
turn, shows which character acts, and provides detailed logs 
whenever a buff or debuff is applied or expires. At the end, a 
summary reports how many times each character acted, 
illustrating the impact of speed and timing on turn frequency. 
The behavior of the scheduler confirms the correctness of the 
min heap implementation and the responsiveness of the system 
to time based modifications. 

B. Simulation Output 

To validate the effectiveness of the proposed turn-based 
batch scheduling model, a simulation was conducted using a 
Python implementation. This simulation aims to demonstrate 
how character turns are dynamically managed based on their 
speed, applied buffs or debuffs, and the priority scheduling 
mechanism. In this chapter, we present the output of the 
simulation over multiple turns and analyze how the system 
behaves under different conditions, including the application of 
speed and action point (AP) modifiers. 

1) Start Games 

 

Fig. 17. Start Game Output 

 At the start of the program, all characters are displayed 
along with their corresponding turn time (t_next) and speed. 
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The list is sorted in ascending order of t_next, from the 

earliest turn at the top to the latest at the bottom. This list 
shows which character will act next and in what order. Each 
entry includes the character’s ID, their current t_next value 

(indicating how soon they will act), and their current speed. 

2) Next Turns 

 

Fig. 18. Next Turn Output 

The next action will occur when the user presses Enter, 
executing the turn of the character at the top of the list. After 
each character takes their turn, the program displays the 
upcoming turn schedule.For example, after character 2 finishes 
their action at t = 0.00 ms with a speed of 167, the program 
outputs a sorted list of the next characters based on their 
upcoming turn times 

3) Attack Point (AP) buffs 

 

Fig. 19. Attack Point (AP) Buffs Output 

When an Attack Point (AP) buff or debuff is triggered, the 
t_next value of a specific character is directly modified, 

simulating an immediate acceleration or delay in their turn. 

For instance, on Turn 5, Character 3 receives an AP buff of 
+3 ms, which significantly reduces their t_next from 5.89 

ms to 2.89 ms. Despite this buff, Character 8 remains the one 
with the smallest t_next value and is therefore selected to 

act during this turn. 

Despite this buff, Character 8 remains the one with the 
smallest t_next value and is therefore selected to act during 

this turn: 

4) Speed buffs 

 

Fig. 20. Speed Buffs Output 

When a speed buff or debuff is triggered, the speed of a 
specific character is directly modified, simulating an adding or 
subtracting  the speed of that character. 

For example, On Turn 10, a Speed Buff is applied to 
Character 2, increasing their speed by 30 for a duration of 3 
turns. 

This results in Character 2’s speed rising from 167 to 197, 
which will influence how soon they act in future turns. 
However, the application of this speed buff does not alter their 
current t_next value immediately, preserving the fairness of 

the turn order.  

After the turn is executed, the simulation updates the queue. 
Now, although Character 2’s speed has been increased, their 
t_next remains at 4.10 ms, placing them closer to the front 

of the queue than before. We can expect that in subsequent 
turns, Character 2 will take actions more frequently due to their 
higher speed, and this effect will last for the next three turns, 
after which the buff will expire and their speed will return to 
normal. 

5) Summary 

 

Fig. 21. Summary Output 

After executing 100 turns in the simulation, the system 
prints a final summary displaying the total number of turns 
taken by each character throughout the battle timeline. This 
output reflects how often each character was able to act, which 
is primarily influenced by their base speed and any temporary 
buffs or debuffs applied during the simulation. 

For example, Character 2 and Character 3, both with 
relatively high base speeds and occasional speed 
enhancements, ended up acting the most, each with 10 total 
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turns. In contrast, characters with lower speeds, such as 
Character 1 and Character 5, only managed to act 7 times. 

C. Complexity Analysis 

The simulation was executed for 100 turns involving 12 
characters, similar to Reincarnation Journey: Fantasy Fate,  
each with varying speed values. The turn scheduler 
successfully maintained accurate ordering of character actions, 
including the application and expiration of action point (AP) 
buffs and speed buffs/debuffs with fixed durations. 

At the end of the simulation, a turn count was computed for 
each character, showing how speed and AP modifiers 
influenced the number of actions per character. The results 
demonstrate the scheduler's ability to prioritize high speed 
characters while dynamically adjusting for temporary effects. 

In terms of computational complexity, the program uses a 
min heap to manage turn order, where each insertion or 
extraction operation (heapq.heappush, 

heapq.heappop) takes O(log n) time, with n being the 

number of characters. 

The main loop runs for T turns, so the base complexity is 
O(T log n). Occasional AP buffs may trigger heapify, which 

has a worst case time of O(n). Speed buffs also involve a 
bounded scan of the heap (O(n)) and minor list updates. 

Therefore, the overall complexity of the simulation is O(T 
log n + Bn), where B is the number of buff/debuff events. 
Given that both n and B are small in this simulation, the 
implementation is efficient for real time or turn-based game 
scenarios. 

D. Conclusion 

This paper describes a turn-based scheduling engine added 
to the game Reincarnation Journey: Fantasy Fate, relying on a 
priority queue with a min heap design so that character orders 
shift according to live speed numbers and timing changes. By 
drawing on core ideas from discrete math functions, 
recurrences, binary trees, and big-O analysis the scheduler 
handles each action in a way that feels fair, runs fast, and scales 
up as more units enter battle.  

The system tracks t_next values to pinpoint the exact 

virtual moment when a hero can act again, and it rewrites the 
timetable on the fly whenever buffs, debuffs, or action point 
costs move that clock. Because the underlying heap allows 
quick insert, extract, and update operations, those real time 
adjustments take little CPU time even in long fights.  

Overall, the simulation imitates a discrete event system in 
that game time jumps forward only when a scheduled action 
occurs, not at fixed ticks. This design keeps the engine light yet 
nimble, faithfully reproducing tense combat situations where 
the order of moves and the fleeting impact of tactics can 
change the outcome.  

In short, the priority queue technique shown here connects 
classroom discrete mathematics to living gameplay, proving 
that theory can bear concrete, player facing results. The 

finished scheduler is fast, responsive, and mathematically 
robust, giving players richer strategic choices and deeper 
satisfaction during every battle. 

APPENDIX 

The full source code of the navigation compass puzzle 
solver can be found on this github repository: 

 https://github.com/llennmaha/DiscreteMath 

ACKNOWLEDGMENT  

The author first gives all credit to God, whose endless 
grace, wisdom, and quiet guidance made both the simulations 
and this paper possible. The author is also genuinely thankful 
to the lecturers of the IF1220 course, especially Dr. Ir. Rinaldi 
Munir, M.T.; their enthusiastic teaching and careful reading 
material have sparked his interest and shaped his studies. 
Finally, the author offers warm gratitude to his family, whose 
steady encouragement, prayers, and everyday support have 
carried him through each step of the academic journey. 

REFERENCES 

[1] R. Munir, “Pohon (Bag. 1),” Homepage Rinaldi Munir, 2025. 
Availlable:  23-Pohon-Bag1-2024 [Accessed: June 19th 2025] 

[2] R. Munir, “Relasi dan Fungsi Bagian 1,” Homepage Rinaldi Munir, 
2025. Availlable: 05-Relasi-dan-Fungsi-Bagian1-(2024) [Accessed: June 
19th 2025] 

[3] R. Munir, “Rekursi dan Relasi Rekuens (Bagian 1),” Homepage Rinaldi 
Munir, 2025. Availlable: Rekursi dan Relasi Rekurens [Accessed: June 
19th 2025] 

[4] Chizaruu, “A priority queue based turn scheduling system,” Github. 
Available: A priority queue based turn scheduling system | RogueBasin 
[Accessed: June 18th 2025] 

[5] “Priority Queue using Binary Heap,” GeeksforGeeks, March 28th 2025. 
Available: Priority Queue using Binary Heap - GeeksforGeeks 
[Accessed: June 18th 2025] 

[6] David Ang, “Turn Based Battle System using Phaser,” 
programmingmind, January 23th 2018. Available: Turn Based Battle 
System using Phaser · by David Ang [Accessed: June 18th 2025] 

[7] “Journey Renewed Fate fantasy,” myth-inmedia.fandom. Available: 
Journey Renewed Fate fantasy | Myths in Media Wiki | 
Fandom[Accessed: June 18th 2025] 

[8] R.Munir, “Kompleksitas Algoritma Bagian1,” Homepage Rinaldi 
Munir, 2025. Available: 25-Kompleksitas Algoritma Bagian 1 - 
2024[Accessed: June 19th 2025] 

 

 

STATEMENT 

I hereby declare that this paper that I wrote is my own work, 

not an adaptation or translation of someone else's work, and 

not plagiarized. 

Bandung, 20 Juni 2025 

 
Mahatma Brahmana (13524015) 

 

 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/23-Pohon-Bag1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/05-Relasi-dan-Fungsi-Bagian1-(2024).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/10-Deretan,%20rekursi-dan-relasi-rekurens-(Bagian1)-2024.pdf
https://chizaruu.github.io/roguebasin/a_priority_queue_based_turn_scheduling_system?
https://www.geeksforgeeks.org/priority-queue-using-binary-heap/
https://programmingmind.net/phaser/turn-based-battle
https://programmingmind.net/phaser/turn-based-battle
https://myths-in-media.fandom.com/wiki/Journey_Renewed_Fate_fantasy
https://myths-in-media.fandom.com/wiki/Journey_Renewed_Fate_fantasy
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/25-Kompleksitas-Algoritma-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/25-Kompleksitas-Algoritma-Bagian1-2024.pdf

