
Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Turn-Based Batch Scheduling in ‘Reincarnation

Journey: Fantasy Fate’ using Priority Queues

Mahatma Brahmana - 13524015

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

mahatma.brahmana1@gmail.com , 13524015@std.stei.itb.ac.id

Abstract— This paper presents a discrete time turn-based

scheduling model for the game Reincarnation Journey: Fantasy

Fate, utilizing a priority queue implemented with a min heap.

Each character's turn is dynamically determined based on their

speed, which influences their action time. The simulation

incorporates game mechanics such as buffs, debuffs, and speed

modifiers that adjust scheduling in real time. By applying

discrete event simulation principles and efficient heap operations,

the system ensures fair, responsive, and scalable turn

management. The proposed model demonstrates how

mathematical structures like functions, recurrence relations, and

trees, specifically heaps, can be applied to build practical and

computationally efficient systems in interactive simulations.

Keywords— Reincarnation Journey: Fantasy Fate; turn-based

scheduling; priority queue; min heap; simulation modeling

I. INTRODUCTION

In the realm of interactive digital entertainment, turn-based
game systems have long been valued for their strategic depth
and clarity. Unlike real time systems that rely on continuous
input and reaction, turn-based systems process player and
enemy actions in discrete intervals, allowing thoughtful
decision making and controlled pacing. However,
implementing an efficient and fair turn order mechanism
becomes increasingly complex when multiple entities with
varying attributes, such as speed, delay, and temporary effects,
are involved.

Reincarnation Journey: Fantasy Fate is a turn-based
fantasy battle simulation where characters take turns to act
according to their speed and various in game modifiers. To
manage turn order dynamically and fairly, the simulation
employs a priority queue, implemented using a min heap, to
schedule each character’s next action based on a time value
called t_next. This approach ensures that characters with

higher speed (and thus lower t_next values) act sooner,

while also allowing real time updates based on buffs, debuffs,
and other temporary effects.

This paper explores the theoretical foundation, algorithmic
implementation, and practical advantages of using a heap based
priority queue in discrete time simulation. It applies
fundamental concepts from discrete mathematics, such as
functions, recurrence relations, and tree structures. to design a
system that is both computationally efficient and faithful to

gameplay mechanics. The simulation is intended not only as a
game logic prototype, but also as a demonstration of how
abstract mathematical structures can be effectively applied in
real world programming contexts.

II. THEORETICAL FOUNDATION

A. Reincarnation Journey: Fantasy Fate

Fig. 1. Screen Lobby Reincarnation Journey: Fantasy Fate.

The simulation developed in Reincarnation Journey:
Fantasy Fate serves as a case study in how fundamental
concepts from discrete mathematics can be applied to a turn-
based scheduling system. This fantasy themed battle simulator
models a combat scenario where multiple characters, each with
unique attributes like speed and status effects, must take turns
in a fair and efficient order. To achieve this, the system utilizes
several core principles from discrete mathematics, including
functions, recurrence relations, tree structures (especially
binary heaps), and algorithmic complexity. These concepts
form the backbone of the simulation’s turn scheduler, which
ensures that gameplay remains responsive, balanced, and
scalable.

mailto:mahatma.brahmana1@gmail.com
mailto:13524015@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig. 2. Battle in Reincarnation Journey: Fantasy Fate.

Look at Fig. 2 and you will see twelve fighters in the arena,
six lined up on the left and six on the right, clearly marked as
the players crew and the foes squad. Each fighter gets a turn set
by her speed stat, and that stat assigns a t_next value the

exact moment she can move again. The fighter with the lowest
t_next, who acts next, sits at the bottom right, just left of the

skill icons, while the one with the highest t_next, who will

go last this cycle, hangs on the far left of the action list. This
layout mirrors the internal timetable, because the engine uses a
min heap to order moves by their t_next numbers and

display them in the same tidy row you see on screen.

Fig. 3. Action Queue, the further to the right the smaller the t_next value.

B. Function and Relation

In discrete mathematics, a function is a relation that maps
each element from a domain to one or zero element in the
codomain.

For example:

A = {Hasan, Tanti, Rommi, Yusuf, Aditya}

This domain represent a person, and

 B = {Toyota, Daihatsu, Mercedes, BMW}

This domain represent a car.

Let R be a relation that represents a person and the car he
drives.

 R = {(Hasan, Daihatsu), (Rommi, Toyota), (Yusuf,
Mercedes), (Aditya, Toyota)}

 This means that Hasan drives a Daihatsu, Rommi drives a
Toyota, Yusuf drives a Mercedes, and Aditya drives a Toyota.
Tanti does not drive any car. The BMW car is not driven by
anyone in the relationship.

 In the context of this project, the simulation uses a function
to calculate how soon a character can act again based on their
speed. For example:

Fig. 4. t_next Function {f(pid)}.

This function assigns each player ID (pid) a value t_next,

which determines the time until their next action.

 A relation in discrete mathematics is a set of ordered pairs
that shows how elements from one set are related to elements
from another. For example, the turn order in the simulation can
be seen as a relation between player ID and scheduled time.

C. Recurrence Relation

Called as a recursive, is a recurrence relation defines a
sequence where each term is a function of its predecessors.

Recursive function divided by 2 part:

1) Base
This part contains the explicitly defined function
value. This part also stop the recursion (and gives the
defined value to the recursive function)

2) Requence
This section defines the function in its own terms.
Also contains rules for finding the value of a function
at one input from its values at smaller inputs.

For Example: f is divided as recursively as follow

Fig. 5. Recursive Example. source : Rekursi dan Relasi Rekurens

determine f(4) value!

The solution is :

Fig. 6. Recursive Solution. source : Rekursi dan Relasi Rekurens

In this scheduling simulations, time evolution can be described
using recurrence. For example, if t₀ is the initial time for a
player, then their next action time t₁ might be determined by:

Fig. 7. Recursive Pattern in This Scheduling Simulation.

This recursive pattern is essential for modeling ongoing
processes in a turn-based system.

D. Trees in Discrete Structure

A trees in Discrete Structure is a connected, acyclic graph
in which any two nodes are connected by exactly one path.
Trees are useful for representing data that has a hierarchical
structure, such as file systems, organizational charts, and
decision processes.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/10-Deretan,%20rekursi-dan-relasi-rekurens-(Bagian1)-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/10-Deretan,%20rekursi-dan-relasi-rekurens-(Bagian1)-2024.pdf

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig. 8. Tree Picture Example. source : Rekursi dan Relasi Rekurens

One special form of a tree is the binary tree, a tree in which
each node has at most two children. These children are
typically referred to as the left child and right child. Binary
trees are the foundational structure for various efficient
algorithms and data structures such as binary search trees,
heaps, and expression trees.

Fig. 9. Binary Tree Picture Example. source : Rekursi dan Relasi Rekurens

From the Fig. 9., we can see that the root of the tree is node A.

Node A has two children: B (left child) and C (right child).

Node B has children D (left child) and E (right child), while C

has children F and G. And node E, in turn, has two children: H

(left child) and I (right child). This tree is a complete binary

tree up to level 2 (every node has two children where

possible), and illustrates a clear hierarchy from top to bottom.

1) Heap as a Binary Tree
A heap is a special kind of binary tree that satisfies the

heap property. In a min heap, each parent node has a value
less than or equal to its children. The smallest element is
always at the root. This structure supports efficient retrieval
and deletion of the minimum (or maximum) element.

In our simulation, we use a min heap to maintain and
sort player actions based on their next available time
(t_next). This ensures that the player who should act

first is always at the top of the priority queue.

In this simulation, each heap entry has the form
(t_next, pid, speed). Here, t_next is the time

when the player is scheduled to act, and it determines the
priority. Python’s heapq module uses an array to represent

this binary heap, maintaining the heap property such that
the smallest t_next is always accessible at index 0.

This is directly related to the tree structure: although
implemented via array, the logical relationship between
parent and children (at indices i, 2i+1, 2i+2) forms a
conceptual binary tree.

A heap is chosen in this simulation primarily because of
its computational efficiency and practicality in
implementation. The most significant advantage of using a

heap is that both insertion and deletion operations can be
performed in O(log n) time. This is particularly valuable in
a turn-based scheduling system, where players’ actions are
frequently updated and reordered based on timing.

In addition to its time efficiency, a heap is also memory
efficient. It can be represented as a simple array or list
rather than as a full fledged tree structure. In this flat
representation, the relationships between parent and child
nodes are easily determined using index calculations,
making the structure not only efficient but also simple to
implement.

By using a min heap to manage the action order based
on t_next values (the time at which a player can act

next), the simulation maintains the performance. The player
with the lowest t_next is always at the top of the heap,

allowing the system to determine the next action. This
design choice ensures that the system remains fast, fair, and
scalable, even as the number of characters or turns
increases, making it ideal for real time turn-based
simulations.

E. Priority Queue

A priority queue is an abstract data type where each
element is associated with a priority, and elements are served
based on their priority order. In a min priority queue, elements
with the lowest priority value are accessed first.

While a heap provides the underlying structure, the priority
queue ensuring that character actions are scheduled and
processed in the correct order based on urgency, in this case,
their t_next values. This behavior is crucial in simulations

where time sensitive decisions (like turn order) must be
resolved efficiently and fairly.

By implementing the priority queue via a min heap, the
system benefits from a execution order based on parameters
such as t_next, as well as dynamic adjustability where

insertion, removal, and updating of elements can be performed
efficiently. Furthermore, this structure is in line with the
principles of discrete event simulation (DES), in which actions
are driven by events rather than progressing in a continuous
timeline. Thus, in this simulation, the priority queue functions
not merely as a data structure, but as a scheduling policy that is
effectively and efficiently realized through the use of a heap.

F. Algorithmic Complexity

Algorithmic complexity basically captures how much time
and memory an algorithm needs to finish when you feed it data
of a certain size. By looking at these numbers, we can tell if an
approach will slow down or crash when the input grows, and
we can line up several methods side by side to pick the best
one. Time complexity, one popular measure, tracks how
running time itself stretches as the input grows, and we usually
write that using Big O symbols. So, a routine tagged O(n) gets
one additional step for every extra item you add, whereas one
marked O(log n) hardly budges, making it much quicker on
huge lists. Knowing these labels helps programmers guess how
an idea scales and choose the least greedy option before the
data pile up kicks in.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/10-Deretan,%20rekursi-dan-relasi-rekurens-(Bagian1)-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/10-Deretan,%20rekursi-dan-relasi-rekurens-(Bagian1)-2024.pdf

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

G. Discrete Scheduling and Simulation Modeling

The nature of turn-based games is inherently discrete. The
system does not rely on continuous timelines but instead
processes one event at a time. This aligns with discrete event
simulation (DES), a technique where time advances in steps
based on the occurrence of events rather than in fixed intervals.
In our simulation, time is represented using floating point
milliseconds, but actual "progress" only occurs when a player's
action is processed.

The simulation thus mimics discrete time evolution, with
the scheduler determining the next actor, applying buffs or
debuffs, adjusting their speed or delay, and rescheduling the
queue accordingly.

III. IMPLEMENTATION

In this section, the writer presents a concrete
implementation of the proposed turn-based batch scheduling
model using Python. The goal is to simulate how multiple
characters in Reincarnation Journey: Fantasy Fate take turns
based on speed, action point buffs or debuffs, and timed speed
modifiers. The core of the implementation is a priority queue
(min heap), which ensures the next character to act is always
the one with the smallest upcoming turn time (t_next). This

mirrors established practices in game development, such as
those described in software like Rogue Basin’s turn scheduler.

A. Priority Queue

In this scheduling model, each character’s upcoming action
is determined by a value called t_next, which represents the

virtual time at which the character is next allowed to act. This
value is dynamically computed based on the character’s current
speed and a constant called BASE_DELAY.

BASE_DELAY is a predefined fixed delay constant used as

the baseline reference for turn progression. It simulates the
standard time interval required before a character can act again,
assuming a neutral or average speed.

The character’s speed represents how quickly they can
perform actions relative to others. A higher speed means the
character will be able to act more frequently. To calculate when
a character should next take a turn, we divide BASE_DELAY

by the character’s speed:

 t_next = BASE_DELAY / speed

This inverse relationship ensures that faster characters (with
higher speed values) generate smaller t_next values, causing

them to act sooner in the simulation cycle. By organizing all
characters in a min heap (priority queue) based on their
t_next, the system always selects the character with the

lowest t_next, the one whose next action is due the earliest,

to take the next turn.

Fig. 10. Initialize Priority Queue Based on Character Speed

By invoking heapq.heappush(), these tuples are inserted

into a binary min heap, a complete binary tree structure where
the parent node’s value is always less or equal to its children’s
values. This value represent t_next. This structure is crucial

because it guarantees that pq[0], the heap’s root, always

contains the character scheduled to act next based on the
smallest t_next.

B. Executing a Turn: Priority Extraction

Fig. 11. Extracting the Next Active Player from the Priority Queue

 During each simulation turn, heapq.heappop()

removes the tuple with the smallest t_next from the heap and

returns it. This operation both identifies the next character to
act and rebalances the heap in “O(log n)” time through a
process knows as bubble down, where the tree structure is
restored after removing the root. This ensures that extracting
the next turn remains efficient even as multiple turns are
processed.

C. Resetting and Requeuing Turn Times

Fig. 12. Recalculating and Rebuilding the Turn Queue After a Characterr's

Action

In this block, we normalize the event schedule so that after
the active character acts, their remaining time is reset to zero
and other characters times are adjusted relative to this
references. First, we iterate over the existing heap pq, which

holds (t_next, character_id, speed) tuples, and

subtract the smallest elapsed time t_min (from active

character’s turn) from every other character’s t_next. This

effectively shift the timeline, ensuring that the active turn reset
the time baseline for the next cycle.

Next, we insert the active character back into the queue
with a newly computed t_next, derived from their current

speed: BASE_DELAY/speed[active_pid]. This models

the character’s subsequent turn interval after completing an
action. The combination of relative time adjustment and
reinsertion ensures that each turn’s scheduling remains accurate
and avoids cumulative inflation of time values.

Finally, we rebuild the min heap by calling
heapq.heapify(pq), which reorganized the updated list

into a valid heap in 0(n) time. This rebuild is essential for
maintaining correct priority ordering after multiple adjustment
to t_next.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

D. Action Point Buffs and Debuffs

Within Reincarnation Journey: Fantasy Fate, characters
can receive temporary buffs (boosts) or debuffs (penalties) that
influence how soon they can act again, these are represented by
Action Point (AP). In our implementation (simulate), these
effects are triggered at the start of a turn when the turn index
matches a predefined entry in AP_BUFF_schedule. Each

entry consists of (character_id, delta_b), where

delta_b is a positive value for a buff (accelerating the turn)

or a negative value for a debuff (delaying the turn).

Rather than always rebuilding the entire heap, the code
optimizes performance by first checking whether the affected
character is at the root of the min heap (pq[0]). If they are,

the code employs heapq.heapreplace(), which

atomically removes the smallest element (root) and inserts the
updated tuple in its place. This operation executes in “O(log
n)” time since it adjusts only a single path in the tree

If the affected character is not at the root, a simple loop is used
to locate their entry in the heap. Once found, their t_next is

updated in place using max(t - delta_b, 0) to avoid

negative values, and the heap is rebalanced with
heapq.heapify(). While this takes “O(n)” time to

rebuild, it remains more efficient than reconstructing the entire
heap from scratch for every update .

Fig. 13. Adjusting Action Point Through AP Buffs and Debuffs

Mechanically, this design faithfully mirrors how AP effects
work in the actual game: a positive AP buff grants character an
immediate “rush”, an earlier turn within the same cycle, while
a negative AP effect simulates conditions such as being
stunned or slowed, pushing the character’s turn into further into
the future. This dynamic adjustment ensures that each AP buff
or debuff has an instant and tangible impact on the turn order,
just like in gameplay.

This design also balances correctness with performance
efficiency. It ensures that an AP buff or debuff takes effect
immediately, just as it does in actual gameplay, without
causing unnecessary computation. Using heapreplace()

when the affected character is next to act is both efficient and
succinct, while the fallback minimizes disruption for nonroot
changes. This approach ensures that the scheduler remains
responsive and accurate, even when multiple AP changes occur
during a simulation.

From a performance perspective, scanning the queue to find
the affected character takes “O(n)” time (with n representing

the number of characters), while re-heapifying requires

“O(n)” time as well making each application of an AP effect an
“O(n)” operation in the worst case. Although this is efficient
for a small number of characters, this cost becomes more
significant with larger queues. Regardless, it reliably enforces
the instantaneous timing effects central to the gameplay
experience. Fortunately, Reincarnation Journey: Fantasy Fate
only have 6 characters most in each fight.

By integrating this inplace update and heap rebalancing, the
system cleanly efficiently enforces both beneficial and
detrimental AP modifiers. This approach preserves overall turn
order fairness while accurately reflecting the intended game
mechanics of Reincarnation Journey: Fantasy Fate.

E. Speed Buffs and Debuffs with Timed Duration

 In Reincarnation Journey: Fantasy Fate, characters may
receive temporary Speed Up or Speed Down effects that alter
their movement or action rate over a fixed number of turns.
Our implementation handles these effects using two main
mechanisms: adjusting the character's speed value and
automatically expiring the effect after its duration elapses.

1. Applying Speed Modifier

When the simulation reaches a turn index listed in
SPEED_BUFF_schedule, it extracts

(character_id, delta_s, duration) from the

schedule. A positive delta_s value increases the

character's speed (Speed Up), while a negative value slows
them down (Speed Down). The algorithm then updates the
character's base speed and appends the active effect to
active_speed_buffs.

Fig. 14. Applying and Registering Timed Speed Buffs in the Turn Scheduler

Because every character's t_next time depends on their

current speed (BASE_DELAY / speed), it becomes

necessary to rebuild the entire priority queue (pq =

init_queue()) whenever a speed change occurs. This

ensures all entries correctly reflect the updated speeds.
Rebuilding the heap via heapify() takes “O(n)” time.

2. Expiring Buffs and Restoring Speed

After each turn, the system checks
active_speed_buffs to decrement the remaining

duration of any active speed modifiers. If a character's
duration reaches zero after their turn, the effect is removed
and their speed is restored to its prior value.

Fig. 15. Managing Expiration of Temporary Speed Buffs

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

This ensures the buff or debuff remains in effect exactly
for the intended number of turns, gracefully reversing once
expired. Each update is handled in “O(b)” time per turn,
where b is the number of active buffs (typically small).

Overall, the application of speed effects and the subsequent
rebuild of the priority queue demonstrate both algorithmic
correctness and performance efficiency, as they balance the
need to keep the turn order accurate with the constraints of a
small scale simulation. This mechanism faithfully captures
multiturn speed alterations while maintaining computational
quality in alignment with discrete mathematics and game
simulation principles.

IV. RESULT

A. Simulation Overview

Fig. 16. Simulation of Turn-Based Scheduling System in Reincarnation

Journey: Fantasy Fate

In this simulation, a turn-based action scheduling system is
implemented using a priority queue to determine the order in
which characters take turns. The simulation models 12
characters, each with a predefined base speed. At the beginning
of the simulation, the initial turn time for each character is
calculated by dividing a fixed base delay (1000 milliseconds)
by their speed, producing a t_next value that indicates how

soon each character can act. These values are stored in a min

heap priority queue, ensuring that the character with the
smallest t_next is always selected to act next.

Over 50 simulation turns, the system dynamically adjusts
each character’s turn timing based on scheduled action point
(AP) buffs or debuffs and speed modifications. AP effects
directly shift a character's t_next value forward or backward,

simulating abilities like haste or stun. These changes are
applied either with heapreplace for efficient root updates

or heapify for internal heap restructuring. Meanwhile, speed

buffs or debuffs temporarily modify a character’s speed value
for a given number of turns. Unlike AP effects, these do not
immediately change the character’s current position in the
queue; instead, they influence the delay before their next turn,
after their current turn is executed.

Each time a character acts, their elapsed time (t_min) is

subtracted from every other character's t_next, effectively

resetting the relative timeline. The active character is then
reinserted into the queue with a new turn time based on their
updated speed. Temporary speed effects are tracked in a
dictionary and expire after a certain number of turns, at which
point the character’s speed is reverted, and this event is logged.

The simulation prints the scheduled characters before each
turn, shows which character acts, and provides detailed logs
whenever a buff or debuff is applied or expires. At the end, a
summary reports how many times each character acted,
illustrating the impact of speed and timing on turn frequency.
The behavior of the scheduler confirms the correctness of the
min heap implementation and the responsiveness of the system
to time based modifications.

B. Simulation Output

To validate the effectiveness of the proposed turn-based
batch scheduling model, a simulation was conducted using a
Python implementation. This simulation aims to demonstrate
how character turns are dynamically managed based on their
speed, applied buffs or debuffs, and the priority scheduling
mechanism. In this chapter, we present the output of the
simulation over multiple turns and analyze how the system
behaves under different conditions, including the application of
speed and action point (AP) modifiers.

1) Start Games

Fig. 17. Start Game Output

 At the start of the program, all characters are displayed
along with their corresponding turn time (t_next) and speed.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

The list is sorted in ascending order of t_next, from the

earliest turn at the top to the latest at the bottom. This list
shows which character will act next and in what order. Each
entry includes the character’s ID, their current t_next value

(indicating how soon they will act), and their current speed.

2) Next Turns

Fig. 18. Next Turn Output

The next action will occur when the user presses Enter,
executing the turn of the character at the top of the list. After
each character takes their turn, the program displays the
upcoming turn schedule.For example, after character 2 finishes
their action at t = 0.00 ms with a speed of 167, the program
outputs a sorted list of the next characters based on their
upcoming turn times

3) Attack Point (AP) buffs

Fig. 19. Attack Point (AP) Buffs Output

When an Attack Point (AP) buff or debuff is triggered, the
t_next value of a specific character is directly modified,

simulating an immediate acceleration or delay in their turn.

For instance, on Turn 5, Character 3 receives an AP buff of
+3 ms, which significantly reduces their t_next from 5.89

ms to 2.89 ms. Despite this buff, Character 8 remains the one
with the smallest t_next value and is therefore selected to

act during this turn.

Despite this buff, Character 8 remains the one with the
smallest t_next value and is therefore selected to act during

this turn:

4) Speed buffs

Fig. 20. Speed Buffs Output

When a speed buff or debuff is triggered, the speed of a
specific character is directly modified, simulating an adding or
subtracting the speed of that character.

For example, On Turn 10, a Speed Buff is applied to
Character 2, increasing their speed by 30 for a duration of 3
turns.

This results in Character 2’s speed rising from 167 to 197,
which will influence how soon they act in future turns.
However, the application of this speed buff does not alter their
current t_next value immediately, preserving the fairness of

the turn order.

After the turn is executed, the simulation updates the queue.
Now, although Character 2’s speed has been increased, their
t_next remains at 4.10 ms, placing them closer to the front

of the queue than before. We can expect that in subsequent
turns, Character 2 will take actions more frequently due to their
higher speed, and this effect will last for the next three turns,
after which the buff will expire and their speed will return to
normal.

5) Summary

Fig. 21. Summary Output

After executing 100 turns in the simulation, the system
prints a final summary displaying the total number of turns
taken by each character throughout the battle timeline. This
output reflects how often each character was able to act, which
is primarily influenced by their base speed and any temporary
buffs or debuffs applied during the simulation.

For example, Character 2 and Character 3, both with
relatively high base speeds and occasional speed
enhancements, ended up acting the most, each with 10 total

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

turns. In contrast, characters with lower speeds, such as
Character 1 and Character 5, only managed to act 7 times.

C. Complexity Analysis

The simulation was executed for 100 turns involving 12
characters, similar to Reincarnation Journey: Fantasy Fate,
each with varying speed values. The turn scheduler
successfully maintained accurate ordering of character actions,
including the application and expiration of action point (AP)
buffs and speed buffs/debuffs with fixed durations.

At the end of the simulation, a turn count was computed for
each character, showing how speed and AP modifiers
influenced the number of actions per character. The results
demonstrate the scheduler's ability to prioritize high speed
characters while dynamically adjusting for temporary effects.

In terms of computational complexity, the program uses a
min heap to manage turn order, where each insertion or
extraction operation (heapq.heappush,

heapq.heappop) takes O(log n) time, with n being the

number of characters.

The main loop runs for T turns, so the base complexity is
O(T log n). Occasional AP buffs may trigger heapify, which

has a worst case time of O(n). Speed buffs also involve a
bounded scan of the heap (O(n)) and minor list updates.

Therefore, the overall complexity of the simulation is O(T
log n + Bn), where B is the number of buff/debuff events.
Given that both n and B are small in this simulation, the
implementation is efficient for real time or turn-based game
scenarios.

D. Conclusion

This paper describes a turn-based scheduling engine added
to the game Reincarnation Journey: Fantasy Fate, relying on a
priority queue with a min heap design so that character orders
shift according to live speed numbers and timing changes. By
drawing on core ideas from discrete math functions,
recurrences, binary trees, and big-O analysis the scheduler
handles each action in a way that feels fair, runs fast, and scales
up as more units enter battle.

The system tracks t_next values to pinpoint the exact

virtual moment when a hero can act again, and it rewrites the
timetable on the fly whenever buffs, debuffs, or action point
costs move that clock. Because the underlying heap allows
quick insert, extract, and update operations, those real time
adjustments take little CPU time even in long fights.

Overall, the simulation imitates a discrete event system in
that game time jumps forward only when a scheduled action
occurs, not at fixed ticks. This design keeps the engine light yet
nimble, faithfully reproducing tense combat situations where
the order of moves and the fleeting impact of tactics can
change the outcome.

In short, the priority queue technique shown here connects
classroom discrete mathematics to living gameplay, proving
that theory can bear concrete, player facing results. The

finished scheduler is fast, responsive, and mathematically
robust, giving players richer strategic choices and deeper
satisfaction during every battle.

APPENDIX

The full source code of the navigation compass puzzle
solver can be found on this github repository:

 https://github.com/llennmaha/DiscreteMath

ACKNOWLEDGMENT

The author first gives all credit to God, whose endless
grace, wisdom, and quiet guidance made both the simulations
and this paper possible. The author is also genuinely thankful
to the lecturers of the IF1220 course, especially Dr. Ir. Rinaldi
Munir, M.T.; their enthusiastic teaching and careful reading
material have sparked his interest and shaped his studies.
Finally, the author offers warm gratitude to his family, whose
steady encouragement, prayers, and everyday support have
carried him through each step of the academic journey.

REFERENCES

[1] R. Munir, “Pohon (Bag. 1),” Homepage Rinaldi Munir, 2025.
Availlable: 23-Pohon-Bag1-2024 [Accessed: June 19th 2025]

[2] R. Munir, “Relasi dan Fungsi Bagian 1,” Homepage Rinaldi Munir,
2025. Availlable: 05-Relasi-dan-Fungsi-Bagian1-(2024) [Accessed: June
19th 2025]

[3] R. Munir, “Rekursi dan Relasi Rekuens (Bagian 1),” Homepage Rinaldi
Munir, 2025. Availlable: Rekursi dan Relasi Rekurens [Accessed: June
19th 2025]

[4] Chizaruu, “A priority queue based turn scheduling system,” Github.
Available: A priority queue based turn scheduling system | RogueBasin
[Accessed: June 18th 2025]

[5] “Priority Queue using Binary Heap,” GeeksforGeeks, March 28th 2025.
Available: Priority Queue using Binary Heap - GeeksforGeeks
[Accessed: June 18th 2025]

[6] David Ang, “Turn Based Battle System using Phaser,”
programmingmind, January 23th 2018. Available: Turn Based Battle
System using Phaser · by David Ang [Accessed: June 18th 2025]

[7] “Journey Renewed Fate fantasy,” myth-inmedia.fandom. Available:
Journey Renewed Fate fantasy | Myths in Media Wiki |
Fandom[Accessed: June 18th 2025]

[8] R.Munir, “Kompleksitas Algoritma Bagian1,” Homepage Rinaldi
Munir, 2025. Available: 25-Kompleksitas Algoritma Bagian 1 -
2024[Accessed: June 19th 2025]

STATEMENT

I hereby declare that this paper that I wrote is my own work,

not an adaptation or translation of someone else's work, and

not plagiarized.

Bandung, 20 Juni 2025

Mahatma Brahmana (13524015)

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/23-Pohon-Bag1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/05-Relasi-dan-Fungsi-Bagian1-(2024).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/10-Deretan,%20rekursi-dan-relasi-rekurens-(Bagian1)-2024.pdf
https://chizaruu.github.io/roguebasin/a_priority_queue_based_turn_scheduling_system?
https://www.geeksforgeeks.org/priority-queue-using-binary-heap/
https://programmingmind.net/phaser/turn-based-battle
https://programmingmind.net/phaser/turn-based-battle
https://myths-in-media.fandom.com/wiki/Journey_Renewed_Fate_fantasy
https://myths-in-media.fandom.com/wiki/Journey_Renewed_Fate_fantasy
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/25-Kompleksitas-Algoritma-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/25-Kompleksitas-Algoritma-Bagian1-2024.pdf

