
Image Compression Technique Using Huffman
Algorithm and Number of Color Bins for

Grayscale Images

Dzakwan Muhammad Khairan Putra Purnama - 13524145
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: dzakwan.mkpp@gmail.com, 13524145@std.stei.itb.ac.id

Abstract — In this study, we propose a grayscale image
compression technique that integrates intensity quantization
(color binning) with Huffman coding to achieve efficient lossless
compression. The method begins by converting a color image to
grayscale, followed by mapping pixel intensities to a reduced
number of levels using a specified bin count. These quantized
values are then encoded using Huffman coding, which assigns
shorter binary codes to more frequent values. The experimental
results demonstrate a clear trade-off between compression
efficiency and image quality, as measured by the Structural
Similarity Index (SSIM). With fewer bins (e.g., 2–4), the
compression efficiency reaches over 85%, but at the cost of image
quality. As bin counts increase, visual fidelity improves—SSIM
values exceed 0.90 at 8 bins and above—yet the compression
benefits decrease. The findings suggest that using 8 to 16 bins
offers a practical balance, producing compressed images with
excellent visual quality while maintaining relatively high
compression efficiency. This approach is well-suited for
applications requiring both storage optimization and image
integrity, such as medical imaging and digital archiving.

Keywords — Image compression, Huffman coding, intensity
quantization, SSIM.

I. INTRODUCTION
 Digital image compression is an essential process in
modern multimedia applications, enabling efficient storage
and transmission of image data without significant loss of
quality. For grayscale images, which contain only intensity
information, compression techniques aim to reduce data
redundancy while preserving visual details.

 One of the most widely used lossless compression
techniques is Huffman coding, with this encoding algorithm
will assign shorter codes to more frequent symbols and longer
codes to less frequent ones [1]. This method is particularly
effective when combined with preprocessing steps that reduce
the diversity of pixel values. On the other hand in grayscale
images, the number of unique pixel intensity values (ranging
from 0 to 255) can be too large and not efficient. Color
binning or intensity quantization is a technique used to reduce

the number of distinct gray levels by grouping some look like
intensities into bins. This not only reduces the entropy of the
image but also enhances the performance of the Huffman
encoding stage by minimizing the number of symbols to
encode [2]. By integrating color binning with Huffman coding,
a more compact representation of grayscale images can be
achieved. This approach is especially useful in applications
requiring lossless compression such as medical imaging,
document archiving, and satellite image processing.

 Previous studies have successfully implemented the
Huffman algorithm as a lossless compression technique for
grayscale image data [3]. These implementations primarily
focused on utilizing pixel intensity frequency distributions to
generate efficient encoding schemes. However, they have not
yet explored the integration of bin size as an additional factor
in the compression process. In this research, we aim to
enhance the existing approach by incorporating intensity
binning, which groups similar pixel values into defined ranges
(bins) before applying Huffman coding. This modification is
expected to reduce the number of distinct symbols, potentially
improving compression efficiency, especially for images with
high intensity variability.

II. LITERATURE REVIEW

A. Digital Image

Fig. 1. Example 2D matrix representation of an image.

An image is a two-dimensional representation that can be
mathematically modeled as a function 𝑓(𝑥, 𝑦) (Fig. 1), where x
and y represent spatial coordinates, and 𝑓(𝑥, 𝑦) indicates the
intensity of light at a particular point. Each element in the
matrix is referred to as a pixel, which holds a specific intensity

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

mailto:author@gmail.com
mailto:author@std.stei.itb.ac.id

value. This value, known as the intensity level, determines the
brightness of the pixel. A pixel with a higher intensity value
appears brighter than one with a lower value [4].

Fig. 2. RGB to grayscale with its matrix representation.

A color digital image is generally in RGB mode. An RGB
image is a digital image composed of three primary color
channels: Red, Green, and Blue, which together form the RGB
color model. Each color channel has a bit depth of 8 bits,
allowing each channel to represent 256 levels of color
intensity, ranging from 0 to 255. The combination of
intensities from the three channels produces a wide range of
colors that make up a colored image.In each channel, a value
of 255 represents the full intensity of that color, while a value
of 0 indicates black. The blending of various intensity values
across the three channels enables the creation of more
complex colors in an RGB image. On the other hand a
grayscale image is a digital image that represents pixel
intensity values based on shades of gray without involving any
other color information. In an 8-bit grayscale image, there are
256 levels of gray ranging from 0 (pure black) to 255 (pure
white). Grayscale images are commonly used in digital image
analysis because they simplify visual information into a single
intensity value, making them easier to process and analyze in
various image processing applications. They can be opened
across different devices and operating systems. An RGB
image can be converted into a grayscale (Fig.2) using Eq. 1. R,
G, and B on Eq.1 represent the red, green, and blue color
channel intensity values of each pixel, which is ranging from 0
to 255 and y is the resulting grayscale intensity value.

 𝑦 = 0. 22989 × 𝑅 + 0. 5870 × 𝐺 + 0. 1140 × 𝐵
(Equation 1)

B. Huffman Algorithm
Huffman coding is a lossless data compression technique

developed by David A. Huffman in 1952. It is designed to
create efficient binary codes based on the frequency of symbol

occurrences in a dataset. The main idea is to reduce the size of
data representation without compromising its integrity, making
this method widely used in compressing text, images, and
other multimedia files. The process begins with the
construction of a Huffman tree, which serves as the foundation
of the algorithm. This tree is built by repeatedly merging the
two least frequent symbols into a new node, and this merging
process continues until a single tree is formed. Each symbol in
the tree is represented as a branch, with the binary code length
inversely proportional to its frequency—more frequent
symbols receive shorter codes, while less frequent symbols are
assigned longer ones. This characteristic allows Huffman
coding to achieve efficient compression.

Step-by-step procedures for constructing a Huffman Tree are
as follows:
1. Count the frequency of each symbol in the data.
2. Sort the symbols in ascending order based on their

frequencies.
3. Combine the two symbols with the lowest frequencies

into a new node and reinsert it into the list.
4. Repeat the merging process until only one tree remains.
5. Assign binary labels to the tree's edges consistently: 0

for the left branch and 1 for the right.
6. The path from the root to each leaf node forms the

unique Huffman code for that symbol.

The resulting binary codes are prefix-free, meaning no code is
a prefix of another, ensuring unambiguous encoding and
decoding. By using this approach, Huffman coding allows for
effective data compression without any loss of information,
which is why it remains one of the most popular techniques in
various domains, especially in digital image compression.

C. Quantization Technique
 Quantization is a technique used to simplify continuous or
high-resolution values into a limited set of discrete levels. On
grayscale images, each pixel typically has an intensity value
ranging from 0 to 255. The goal of quantization is to reduce
the number of gray levels by grouping pixel intensities into
several bins. The main purpose for our technique, this step is
to reduce the number of unique grayscale levels before
applying the Huffman coding algorithm. Procedures for
quantization are as follows:
1. Choose the number of bins (bin_count).
2. Calculate bin-width boundary using Eq. 2.

 𝑏𝑖𝑛_𝑤𝑖𝑑𝑡ℎ = 𝑚𝑎𝑥_𝑣𝑎𝑙 − 𝑚𝑖𝑛_𝑣𝑎𝑙
𝑏𝑖𝑛_𝑐𝑜𝑢𝑛𝑡 − 1

(Equation 2)
3. Determine each bin-boundary using Eq.3.

 𝑏𝑖𝑛𝑠 = [𝑟𝑜𝑢𝑛𝑑(𝑚𝑖𝑛_𝑣𝑎𝑙 + 𝑖 × 𝑏𝑖𝑛_𝑤𝑖𝑑𝑡ℎ) 𝑓𝑜𝑟 𝑖 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑏𝑖𝑛_𝑐𝑜𝑢𝑛𝑡)]
(Equation 3)

4. Assign pixel values to the nearest bin. On this approach
each pixel intensity is mapped to the closest
representative value of a bin.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

D. Structural Similarity Index (SSIM)
 SSIM is a perceptual metric that measures the similarity
between two images. Unlike traditional methods like Mean
Squared Error (MSE) or Peak Signal-to-Noise Ratio (PSNR),
which only consider pixel-wise differences, SSIM aims to
model how humans perceive visual similarity by evaluating
structural information, luminance, and contrast. SSIM
compares local patterns of pixel intensities that have been
normalized for luminance and contrast. The SSIM value
ranges between -1 and 1, where 1 indicates perfect structural
similarity, 0 means no structural correlation, and Values less
than 0 are rare and usually indicate very strong dissimilarity.
SSIM is a continuous value, and commonly interpreted within
certain qualitative categories [5] as shown as on Table 1.

TABLE I. SSIM QUALITATIVE CATEGORIES

SSIM
Range

Quality Interpretation

0.90 – 1.00 Excellent (Almost identical images)

0.70 – 0.89 Good (Visually similar with slight changes)

0.50 – 0.69 Fair (Noticeable differences)

0.00 – 0.49 Poor (Significant structural differences)

The SSIM index between two image patches x and y is
calculated as Eq. 4.

 𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2µ

𝑥
µ

𝑦
 + 𝐶

1
)×(2σ

𝑥𝑦
 + 𝐶

2
)

(µ
𝑥
2 + µ

𝑦
2 + 𝐶

1
)×(σ

𝑥
2+ σ

𝑦
2 + 𝐶

2
)

(Equation 4)
Where:
● : the average of and , µ

𝑥
 , µ

𝑦
𝑥 𝑦

● : the variance of and , σ
𝑥
2, σ

𝑦
2

𝑥 𝑦

● : the covariance between and , σ
𝑥𝑦

𝑥 𝑦

● , : constants to stabilize the division when the denominator is 𝐶
1

 𝐶
2

small.

III. METHODOLOGY

The proposed image compression technique involves a
sequence of preprocessing and encoding steps designed to
reduce the storage size of a grayscale image using intensity
quantization and Huffman coding as shown on Figure 3. The
process begins with reading the input image and the desired
number of quantization bins (bin_count). If the input image is
in color, it is first converted to a grayscale image to simplify
the data and reduce complexity. Once the grayscale image is
obtained, the pixel intensities are quantized according to the
specified number of bins. This step reduces the number of
distinct intensity levels by grouping similar values, which in
turn lowers the entropy of the data and prepares it for more
efficient compression. Next, Huffman coding is applied to the

quantized image. This algorithm assigns shorter binary codes
to more frequent intensity values and longer codes to less
frequent ones, producing a compressed bitstream with no
information loss (lossless compression). Finally, the results are
saved in two formats: the Huffman code dictionary is stored in
a .json file (bit_code.json), while the encoded image data is
stored as binary in a .bin file (bitdata.bin).

Fig. 3. Image compression procedure.

A. Environment Experiment
The primary development machine used in this research

have following specifications:

● Operating System: Windows 11 Pro 64-bit
● Processor: 11th Gen Intel Core i7-1185G7 @

3.00GHz (8 logical CPUs)
● Memory: 32 GB RAM

This study was developed on a Windows 11 machine using the
Anaconda platform to manage packages and dependencies
efficiently. The implementation was carried out using Python
version 3.8.5, with Jupyter Notebook as the interactive
environment for coding, visualization, and result analysis.
This setup provides flexibility, ease of debugging, and
seamless integration with data science libraries.

B. Image Data
 The image data used in this study is a color image with a
resolution of 500 × 502 pixels, representing the logo of the
School of Electrical Engineering and Informatics,
Computational Division (STEI-K), Class of 2024 (Figure 4).

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Furthermore, eight different values of bin_count were tested:
2, 4, 8, 16, 32, 64, 128, and 256.

Fig. 4. Image as data.

C. Convert Image to Grayscale

Preprocessing step in our procedures is standard
conversion of the color image to grayscale (if necessary when
the input is a color image). With this step we guarantee the
data for the next step is grayscale image. To calculate gray
scale intensity (y) value we used Equation 1. For example if
we have a pixel with red intensity (R) = 50, green (G)=75, and
blue (B)=100 we will obtain y as 67.

 𝑦 = 0. 22989 × 50 + 0. 5870 × 75 + 0. 1140 × 100
 𝑦 = 66. 91 ≈ 67

D. Quantization Grayscale Levels

This procedure transforms grayscale intensity quantization
by mapping each pixel value in the image to its nearest bin
representative value. This is useful for reducing the number of
gray levels in an image, which simplifies data and prepares it
for efficient compression. For example if we have bit_count =
4 then we want to calculate the value representation for
grayscale level 100, so the calculation would be:

● Calculate bin-width boundary using Eq. 2.
 = 85 𝑏𝑖𝑛_𝑤𝑖𝑑𝑡ℎ = 255 − 0

4 − 1
● Determine each bin-boundary using Eq.3 and we obtained

four values as bin points.
 𝑏𝑖𝑛𝑠 = [0, 85, 170, 255]

● Assign pixel values to the nearest bin point. In this

example we have 100 as grayscale level, so the nearest
bin point is 85.

Fig. 5. Python implementation for quantization procedure.

E. Huffman Coding Application

As mentioned earlier, in our experiment we used eight
different values of bin_count, but for the sake of simplicity, we
will use bin_count = 4 for the construction of the Huffman tree
illustration. When bin_count = 4, the pixel values are
represented only by one of the four values: 0, 85, 170, or 255.
In the image data we used, out of a total of 251,000 pixels, the
frequency of each bin shown on Table 2.

TABLE II. FREQUENCY FOR EACH BIN

Bin 0 85 170 255

Freq. 68,041 99,985 20,212 62,762

Step by step construction of huffman tree as follow:

Step 1:

Step 2:

Step 3:

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Step 4:

Fig. 6. Huffman tree construction step by step (bit_count=4).

As shown on Figure 6, the Huffman tree construction
begins by initializing each grayscale bin value as a separate
node, sorted by frequency (Step 1). In Step 2, the two
lowest-frequency nodes (170 and 255) are merged into a new
node with a combined frequency. Step 3 continues by merging
this new node with the next lowest node (0), forming a larger
subtree. Finally, in Step 4, the remaining two nodes bin 85 and
the subtree are merged to form the root node. This process
results in a binary tree where shorter codes are assigned to
more frequent values, enabling efficient and lossless data
compression.

To evaluate the performance of the Huffman coding
process, we calculated both the compression ratio and
compression efficiency. Initially, the original grayscale image
consisted of 251,000 pixels, each stored using 8 bits, resulting
in a total uncompressed size of 2,008,000 bits. After applying
Huffman coding based on the quantized bin frequencies, the
total number of bits required for the compressed image was
484,989 bits.

 𝑏𝑖𝑡𝑠_𝑐𝑜𝑚𝑝 = (99, 985×1) + (68, 041×2) + (20, 212×3) + (62, 762×3) 𝑏𝑖𝑡𝑠
 𝑏𝑖𝑡𝑠_𝑐𝑜𝑚𝑝 = 99, 985 + 136, 082 + 60, 636 + 188, 286 𝑏𝑖𝑡𝑠

 = 484, 989 𝑏𝑖𝑡𝑠

The compression ratio is calculated by dividing the original
size by the compressed size, yielding a ratio of approximately
4.14:1. Meanwhile, the compression efficiency, which
represents the percentage of data reduction, is obtained using
the formula:

 𝑒𝑓𝑓 = (1 − 𝑏𝑖𝑡_𝑐𝑜𝑚𝑝
𝑏𝑖𝑡_𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙) × 100% = (1 − 484,989

2,008,000) × 100%

 = 75. 85%

As a result we obtained an efficiency of about 75.85%.
These results indicate that Huffman coding provides
significant reduction in data size while preserving the original
information. Three main functions used for constructing the
Huffman Tree are implemented in Python, as shown in Figure
7.

Fig. 7. Huffman coding implementation on Python.

F. Save The Compression Result

Fig. 8. Huffman code on .json.

Fig. 9. .bin contents as bit stream data of encoding result

The final result of the compression procedure is stored in
two separate output files: a .json file and a .bin file. The .json
file contains the Huffman codes assigned to each quantized
bin value, serving as a reference or lookup table during the
decoding process (Figure 8). Meanwhile, the .bin file stores
the encoded bitstream generated from the quantized grayscale
array using the Huffman codes (Figure 9). This separation
allows for efficient data storage and easy reconstruction of the
original image during decompression.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

IV. RESULT AND DISCUSSION
The compression evaluation was conducted using an image

with an original size of 2,008,000 bits and varying the number
of bins from 2 to 256. The experiment aimed to assess how
quantization levels (via bin counts) affect compression
performance and image quality, measured by Compression
Efficiency and SSIM (Structural Similarity Index).

TABLE III. EXPERIMENT RESULTS

Fig. 10. File Compression Eff. and SSIM Values for each number of bins.

Fig. 11. Image visualization for original image and various bin count.

Table III and Figure 10 present the evaluation results of
compression performance using various bin counts ranging
from 2 to 256. As the number of bins increases, the Structural
Similarity Index (SSIM) also improves, indicating better
visual fidelity to the original grayscale image. For example,
with only 2 bins, the SSIM score is 0.341—classified as
Poor—while increasing the bin count to 4 and 8 raises the
SSIM to 0.656 (Fair) and 0.904 (Good), respectively. At 16
bins and beyond, the SSIM enters the Excellent range,
reaching 0.969 at 16, and plateauing near perfection (1.000) at
256 bins, showing almost no visible difference compared to

the original. This quality improvement, however, comes at the
expense of compression efficiency. At 2 bins, the system
achieves the highest compression efficiency of 87.49%,
compressing the 2,008,000-bit image down to only 251,000
bits. As the bin count increases, the compressed size also
grows, reducing efficiency. At 256 bins, the compression ratio
drops to 1.38, and the efficiency falls to 25.22%.

Figure 10 clearly illustrates this trade-off with two
opposing curves: SSIM (green) increases rapidly and then
stabilizes, while compression efficiency (blue) steadily
declines. The most notable SSIM gain occurs between 2 and
16 bins, after which additional bins yield diminishing
perceptual returns. Meanwhile, efficiency continues to decline
with each increase in bin count due to the rising number of
unique intensity levels, which limits the effectiveness of
Huffman coding.

Figure 11 provides a visual comparison of the quantized
images at each bin level. At lower bin counts (e.g., 2 and 4),
images appear heavily posterized, with significant loss of
detail and tonal variation, matching their low SSIM scores. As
the bin count increases, the visual quality improves, and by
128 or 256 bins, the images become nearly indistinguishable
from the original. In conclusion, the results highlight a
fundamental trade-off in grayscale image compression using
quantization and Huffman coding. Low bin counts yield
smaller file sizes but degrade visual quality, while high bin
counts preserve detail but reduce compression benefits. For
applications requiring a balance between size and quality,
using 8 to 16 bins is recommended, offering SSIM values
above 0.90 (excellent) while maintaining relatively good
compression ratios.

V. CONCLUSION AND SUGGESTIONS

This paper demonstrates the effectiveness of combining
intensity quantization with Huffman coding for grayscale
image compression. The experimental results highlight a
significant trade-off between compression efficiency and
image quality. Lower bin counts drastically reduce the file size
with compression efficiencies reaching up to 87.49%, but at
the expense of visual quality, indicated by lower SSIM values.
Conversely, higher bin counts preserve more image details but
result in reduced compression efficiency. Based on the
analysis, the optimal range for balancing quality and
compression lies between 8 to 16 bins, where SSIM values
remain above 0.90 while maintaining acceptable compression
rates. This range is ideal for applications that demand both
compact storage and high image fidelity.

Suggestions for future research include exploring adaptive
binning techniques that dynamically adjust bin ranges based
on local image characteristics, as well as combining this
approach with other lossless or near-lossless algorithms such
as Run-Length Encoding or Arithmetic Coding for even better
performance. Additionally, testing the technique on a broader
set of images from various domains—such as medical scans,

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

satellite photos, and handwritten documents—can further
validate its general applicability and robustness.

VI. APPENDIX
The complete source code for this paper can be accessed

through the following GitHub repository link:
https://github.com/dzakwanmkpp/matematikaDikrit.git

VII. ACKNOWLEDGMENT OR GRATITUDE
 The author expresses gratitude to God Almighty for His
abundant blessings and grace throughout the process of
writing this paper, enabling its timely completion.
Appreciation is also extended to Mr. Dr. Ir. Rinaldi Munir,
M.T., lecturer of the IF1220 Discrete Mathematics course for
class K01, for his guidance and valuable knowledge. He also
provided a website as a learning resource for this course,
which greatly facilitated a deeper understanding of the
material. Furthermore, heartfelt thanks are conveyed to the
author’s parents for their unwavering support, encouragement,
and prayers, which have been a source of motivation and
strength in every step of the journey.

REFERENCES

[1] Huffman, D. A. (1952). A method for the construction of
minimum-redundancy codes. Proceedings of the IRE,
40(9), 1098–1101. doi:10.1109/JRPROC.1952.273898

[2] Gonzalez, R. C., & Woods, R. E. (2018). Digital Image
Processing (4th ed.). Pearson. (See Chapter 8: Image
Compression)

[3] Angkisan, C. (2024). Implementasi Algoritma Huffman
untuk Optimasi Kompresi Data pada Penyimpanan Citra
Digital. Makalah-IF1220-Matdis-2024(70). Source:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/20
24-2025/Makalah/Makalah-IF1220-Matdis-2024%20(70).
pdf [accessed: 12 June 2025]

[4] Jain, A. K. (1989). Fundamentals of Digital Image
Processing. Prentice-Hall.

[5] Hore, A., & Ziou, D. (2010). Image quality metrics:
PSNR vs. SSIM. 20th International Conference on Pattern
Recognition (ICPR), pp. 2366–2369.
DOI:10.1109/ICPR.2010.579

STATEMENT
I hereby declare that the paper I have written is entirely my

own work. It is not an adaptation, translation, or copy of
someone else's paper, and it does not contain any elements of
plagiarism.

Bandung, 20 June 2025

Dzakwan Muhammad Khairan P. P. - 13524145

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

https://github.com/dzakwanmkpp/matematikaDikrit.git
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/Makalah/Makalah-IF1220-Matdis-2024%20(70).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/Makalah/Makalah-IF1220-Matdis-2024%20(70).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/Makalah/Makalah-IF1220-Matdis-2024%20(70).pdf

	Image Compression Technique Using Huffman Algorithm and Number of Color Bins for Grayscale Images
	I. INTRODUCTION
	II.LITERATURE REVIEW
	A.Digital Image
	B.Huffman Algorithm
	C.Quantization Technique
	D.Structural Similarity Index (SSIM)

	III.METHODOLOGY
	A.Environment Experiment
	B.Image Data
	C.Convert Image to Grayscale
	D.Quantization Grayscale Levels
	E.Huffman Coding Application
	F.Save The Compression Result

	IV.RESULT AND DISCUSSION
	V.CONCLUSION AND SUGGESTIONS
	VI.APPENDIX
	VII.ACKNOWLEDGMENT OR GRATITUDE
	REFERENCES

