
Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Analyzing Hash Collision Probability in Password

Storage using the Birthday Paradox

Daniel Putra Rywandi S - 13524143

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: Danielputrarywandisa@gmail.com , 13524143@std.stei.itb.ac.id

Abstract— As modern systems increasingly rely on digital

authentication, passwords continue to serve as a primary method

for securing access and user identities. To mitigate the risk of data

breaches, computer systems do not store passwords in plain text,

but rather as the output of cryptographic hash functions, which

are designed to be one-way and computationally irreversible. Hash

functions are constructed to be computationally infeasible to

reverse and resistant to collisions—situations where two different

inputs produce the same hash output. However, according to the

Birthday Paradox in probability theory, such collisions can occur

much earlier than commonly expected, especially as the number of

hashed inputs increases.

Keywords—combinatorics, hash function, password, birthday

paradox, probability

I. INTRODUCTION

A hash function is an algorithm that takes an input message
of arbitrary length and produces a fixed-length output, known as
the hash value or digest, which uniquely represents the original
input. Ideally, a secure hash function should satisfy the
following four requirements:

1. It should be infeasible to generate a specific digest from
an input.

2. It should be impossible to reconstruct the original
message from its hash.

3. Slight changes in the input should produce drastically
different outputs.

4. The resulting digest must have a fixed length,
regardless of the input size.

 In practice, hash functions are expected to be collision-
resistant, meaning that it should be computationally infeasible to
find two different inputs that produce the same hash value.
However, this resistance has a probabilistic limitation. The
likelihood of collisions can be analyzed using the Birthday
Paradox, a principle in probability theory. The paradox states
that in a group of just 23 people, the probability of at least two
sharing the same birthday exceeds 50%. Although there are 365
possible birthdays, the number of possible unique pairs grows
quadratically with the number of individuals, making a match
surprisingly likely.

Among the most commonly used cryptographic hash
functions are MD5, SHA-1, and SHA-256, each differing in
output size and level of security.

II. THEORY

A. Combinatorics

Combinatorics is a branch of discrete mathematics
concerned with counting, arrangement, and selection of
elements in finite sets.

Gambar 1: Combinatorics,
(sumber : [1])

One of its fundamental concepts is the binomial coefficient,
which expresses the number of ways to choose 𝑘 elements from
a set of 𝑛 elements, disregarding the order of selection. It is
defined as:

(
𝑛

𝑘
) =

𝑛!

𝑘! (𝑛 − 𝑘)!

 In the context of hash collisions, combinatorics allows us to
estimate how many unique pairs can be formed from a group of
hashed inputs. Specifically, the number of possible pairs among

𝑛 items is given by (𝑛
𝑘

) =
𝑛!

𝑘!(𝑛−𝑘)!
 which counts the number of

ways to choose two distinct inputs without considering their
order. The factor of 2 in the denominator eliminates duplicate
pairings. This quadratic growth in the number of input pairs
means that the probability of a collision increases rapidly as

mailto:Danielputrarywandisa@gmail.com
mailto:13524143@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

more inputs are introduced, even when the number of possible
hash outputs is extremely large.

B. The Pigeonhole Principle

The Pigeonhole Principle states that if more items are
distributed into fewer containers, then at least one container
must contain more than one item. Formally, if 𝑛 items are placed
into 𝑚 containers and 𝑛 > 𝑚, then at least one container must
hold at least two items.

Gambar 2: The Pigeon princeple,
(sumber : [2])

In password hashing, the set of possible inputs such as all
potential passwords—is virtually infinite, while the set of
possible hash outputs is finite and fixed in size. For example,
2128 for MD5 or 2256 for SHA-256). As a result, the Pigeonhole
Principle guarantees that some distinct inputs must produce the
same output hash, known as a collision.

In practice, this principle forms the theoretical foundation for
understanding why perfect collision resistance in hash functions
is impossible. Regardless of how strong the hash algorithm is, as
long as the number of possible inputs exceeds the number of
unique outputs, collisions are not just possible—they are
inevitable. Therefore, the Pigeonhole Principle is critical for
justifying the need for strong hash designs that delay or make
collisions computationally infeasible to find, even though they
are mathematically guaranteed to exist.

C. Cryptographic Hash Functions

A hash function is an algorithm that processes an input of
arbitrary length and converts it into a fixed-length output known
as a hash value or digest. In security applications, cryptographic
hash functions are used. They are designed to be one-way
functions, meaning it is computationally infeasible to
reconstruct the original input from its hash. The evolution of
these functions has been driven by an ongoing effort to resist
increasingly sophisticated computational attacks. Among the
most historically significant are MD5, SHA-1, and SHA-256.

Gambar 3: The Pigeon princeple,
(sumber :

https://en.wikipedia.org/wiki/Cryptographic_hash_function)

• Message Digest 5 (MD5) was designed by Ronald
Rivest in 1991 and published in 1992 as a replacement
for the earlier MD4 algorithm. It processes input data
in 512-bit blocks and produces a 128-bit hash value.
The core of the algorithm involves processing each
block through four rounds of complex transformations.
These rounds use non-linear logical functions, modular
additions, and bitwise left shifts to thoroughly mix the
input data. Despite its widespread initial adoption for
data integrity verification, MD5 is now considered
cryptographically broken and wholly insecure for any
security-sensitive application. By 2004, researchers
had demonstrated practical techniques for finding
collisions, where two different inputs could be
deliberately crafted to produce the same 128-bit hash.
Because of this demonstrated susceptibility to collision
attacks, MD5 is no longer recommended for uses such
as digital signatures or password storage.

• Secure Hash Algorithm 1 (SHA-1) was developed by
the United States National Security Agency (NSA) and
published by NIST in 1995, SHA-1 was designed to
improve upon the security of MD5. Like MD5, it
processes 512-bit input blocks, but it produces a longer
160-bit hash output. Its internal structure is more
complex, involving 80 rounds of processing that apply
logical functions, constant additions, and bitwise
operations to the data. The longer hash length was
intended to offer greater resistance to brute-force and
collision attacks. However, over time, theoretical
weaknesses in SHA-1 were discovered, and it is now
also considered insecure. The pivotal moment came in
2017 when researchers from CWI Amsterdam and
Google announced the first practical collision attack,
codenamed "SHAttered". They successfully created
two different PDF files that produced the exact same
SHA-1 hash, proving that the algorithm could no
longer be trusted for applications requiring collision
resistance. As a result, NIST has officially deprecated

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

SHA-1, and it is no longer recommended for use in
secure cryptographic applications.

• Secure Hash Algorithm 256 (SHA-256) also designed
by the NSA and published by NIST in 2001. It operates
on 512-bit input blocks and generates a robust 256-bit
hash value, offering a significantly larger output space
to resist attacks. The algorithm processes each block
through 64 rounds of operations, including bitwise
rotations, logical functions, and modular additions with
predefined constants. It is built upon the Merkle–
Damgård construction, a design principle that allows it
to securely process variable-length inputs. An essential
property of its internal structure is a strong avalanche
effect, where even a single-bit change in the input leads
to a drastically different hash output. Currently, SHA-
256 offers strong collision resistance and is regarded as
a secure and reliable standard. While theoretical
collisions must exist due to the finite output size, no
practical collision attacks have been discovered to date.
Consequently, SHA-256 is widely used in many
critical security applications, including TLS for web
security, digital signatures, and securing transactions in
blockchain systems like Bitcoin.

D. The Birthday Paradox

The Birthday Paradox is a concept in probability theory that
explains how surprisingly few elements are required in a set
before a collision becomes likely. The classic version of the
paradox states that in a group of just 23 people, there is over a
50% chance that two people share the same birthday, even
though there are 365 possible birthdays. This paradox illustrates
that the probability of a shared value increases with the number
of elements compared to the total number of possible outcomes
a principle directly applicable to cryptographic hash functions.

Gambar 4: The Birthday paradox,
(sumber : https://en.wikipedia.org/wiki/Birthday_problem)

Mathematically, the probability that no two people share the
same birthday in a group of 𝑛 people is approximately

𝑃(𝑛𝑜 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛) ≈ 𝑒−𝑛2/2(𝑘)

Where 𝑘 is the total number of possible outcomes. As 𝑛
increases, this probability rapidly decreases, and the probability
of at least one collision increases accordingly.

 This phenomenon has a direct parallel in the analysis of
cryptographic hash functions. In the context of hashing, the
“birthdays” are hash values, and each "person" represents a
distinct input being hashed. Even though a hash function like
SHA-256 has 2256 possible outputs, the Birthday Paradox
implies that after hashing about 2128 inputs, there is a 50%
chance of at least one collision occurring. This is known as the
birthday bound, and it sets a theoretical limit on the collision
resistance of hash functions.

E. The Birthday Attack

The Birthday Attack is a cryptographic technique that takes
advantage of the counter-intuitive probability theory known as
the Birthday Paradox. Rather than attempting to reverse a hash
(as in a pre-image attack), the goal of a birthday attack is to find
two different inputs that produce the same hash output, resulting
in what is known as a collision.

 This type of attack exploits the mathematical fact that
collisions become significantly more likely as the number of
inputs increases, even if the output space of the hash function is
very large. The logic behind this is similar to the birthday
paradox, which shows that in a group of just 23 people, there is
a greater than 50% chance that at least two individuals share the
same birthday. Likewise, with hash functions, it is much easier
to find any two inputs that hash to the same value than to find a
specific input that matches a given hash.

 In practice, a birthday attack involves generating a large
number of inputs, computing their hashes, and comparing the
outputs to detect any matches. This process is often automated
using hash tables or dictionaries to efficiently store and check
for collisions. While such attacks can be computationally
expensive, they are feasible against hash functions with
insufficient output size or known weaknesses.

III. IMPLEMENTATION

A. Objective

The purpose of this implementation is to compare the
behavior of two well-known cryptographic hash algorithms,
MD5 and SHA-1, by simulating and detecting hash collisions
using a birthday paradox–based approach. The simulation works
by generating random input strings and checking if any two of
them produce the same hash output.

To make collisions practically observable within a
reasonable amount of time and computational resources, the
simulation applies hash truncation, where only the first few bits
of the hash output (e.g., 16 or 24 bits) are considered. This
effectively reduces the output space and increases the
probability of collisions, making the results more measurable in
small-scale experiments. Although full-length hashes like MD5
and SHA-1 offer extremely large output spaces, such high
entropy makes it computationally infeasible to detect natural
collisions without excessive input trials.

B. Simulation

The simulation was developed using the Python

programming language, utilizing the built-in hashlib library to

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

perform cryptographic hash operations. The core objective of

the implementation is to simulate a collision scenario for both

MD5 and SHA-1 algorithms by hashing randomly generated

input strings and checking for repeated outputs.

To make the experiment computationally feasible,

especially considering the enormous size of the full output

space of MD5 (2¹²⁸) and SHA-1 (2¹⁶⁰), the simulation uses hash

truncation. This means that only the first few hexadecimal

characters of each hash output are compared. Truncation

reduces the effective hash space from billions of possibilities to

a few thousand, which significantly increases the chance of

collisions within a limited number of attempts, making the

experiment both observable and practical.

C. Result

To evaluate the effectiveness of the hash collision
simulation, the program was executed separately for both MD5
and SHA-1 using a truncated 48-bit hash output. For each
execution, random alphanumeric strings were continuously
generated and hashed until a duplicate truncated hash value was
found, indicating a collision.

In the case of MD5, a collision was observed after
approximately 25,471,795 attempts, which is consistent with the
birthday bound prediction for a 48-bit output. The time required
to reach this collision was approximately 52.82 seconds. This
demonstrates how reducing the hash space significantly
increases the likelihood of collisions, even when using
cryptographic hash functions that are otherwise secure under full
output conditions.

On the other hand, testing with SHA-1 also produced a
collision after approximately 30,867,722 attempts, with a total
execution time of 62.72 seconds. While SHA-1 offers a larger
native output size of 160 bits, truncating its output to 48 bits
made it equally susceptible to birthday collisions, as expected
from theoretical calculations.

Hash Output
Length

Collision
Found

Attempts
Until
Collision

Time Digest

MD5 48 bits Yes 25,471,7
95

52.82
S

704ae
0b3f2c
2

SHA-
1

48 bits Yes 30,867,7
22

62.72
S

77ee6
8ccc5d
1

 These results clearly demonstrate the mathematical principle
behind the Birthday Paradox, where collisions become
increasingly likely as more inputs are hashed, and especially
when the size of the hash output is reduced.

D. Analysis

The results obtained from the simulation align closely with
the theoretical expectations described in the Birthday Paradox.
When the hash output is truncated to 48 bits, the birthday bound
suggests that a collision is likely to occur after approximately:

𝑛 ≈ 1.17 ⋅ √248 ≈ 19.4 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑖𝑛𝑝𝑢𝑡𝑠

While slightly above the theoretical bound, these values are
within a reasonable margin due to the randomness involved in
the simulation. The results illustrate how the number of unique
input pairs grows quadratically with each additional input,
following the formula:

𝑛(𝑛 − 1)

2

This aligns with the pigeonhole principle, which ensures that
collisions must eventually occur when more items (inputs) are
mapped into fewer containers (hash values).

Ultimately, the implications of this study highlight a vital
truth: security in digital systems is not only a function of
algorithm design, but also of mathematical understanding. Even
though hash functions are designed to be collision-resistant, the
finite nature of their output space means collisions are not only
possible they are inevitable given enough inputs. This is
guaranteed by the pigeonhole principle, which states that if more
items are mapped into fewer containers, at least one container
will hold more than one item. As demonstrated by the birthday
paradox, the number of input pairs grows quadratically, meaning
that even with a seemingly large output space, such as 2⁴⁸ for
truncated hashes, the probability of collision increases rapidly.
In practice, while a full 128-bit or 160-bit hash space might
make collisions computationally infeasible, truncating the
output dramatically reduces this security margin. The simulation
results, where collisions occurred after around 25 to 30 million
inputs, closely follow the theoretical birthday bound of
approximately 19 million for a 48-bit space, confirming the
mathematical predictions. This analysis reinforces the

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

importance of discrete mathematical reasoning in understanding
and evaluating the real-world reliability of cryptographic
functions.

This further emphasizes that cryptographic design must not
rely solely on algorithmic complexity, but also account for
statistical behavior over large-scale input usage. In modern
applications such as password storage, blockchain, and digital
signatures, the number of hashed values can grow rapidly over
time. Without considering the mathematical inevitability of
collisions, systems may appear secure while being statistically
vulnerable. By integrating discrete mathematics into both
theoretical and empirical analysis, this study not only validates
the predictions of combinatorics and probability theory, but also
demonstrates their practical consequences. As data volume
continues to increase in today's digital landscape, understanding
these mathematical foundations becomes not just beneficial—
but essential—for building secure and reliable cryptographic
systems.

IV. CONCLUSION

In order to understand how hash collisions occur and why
their probability increases as more inputs are added, it is
essential to first examine the mathematical foundations that
govern such behavior. This study explored the discrete
mathematical principles underpinning collision probability,
particularly through the lens of combinatorics, cryptographic
hash functions, and the birthday paradox. These theories provide
a structured way to estimate, model, and explain how seemingly
secure systems can yield unexpected outcomes due to the
inherent limits of finite hash spaces.

Even though cryptographic hash functions are meticulously
designed to resist collisions, mathematics reveals that such
resistance has practical and probabilistic limits. In theory, a
perfectly collision free hash function would require an infinite
output space something unattainable in real world computing.
Because every hash function maps a large, potentially infinite
set of inputs to a finite set of outputs, the pigeonhole principle
guarantees that collisions are not just possible—they are
inevitable when enough inputs are processed.

This fact is often unintuitive to system designers, who may
assume that a large bit length (such as 128-bit or 160-bit outputs)
ensures complete uniqueness. However, as demonstrated
through the birthday paradox and confirmed by empirical
simulation in this paper, the number of required inputs to achieve
a high probability of collision is far lower than the total number
of possible hash outputs. This gap between theoretical capacity
and practical collision likelihood is at the core of why
probabilistic analysis is essential in cryptography.

Ultimately, the implications of this study highlight a vital
truth: security in digital systems is not only a function of
algorithm design, but also of mathematical understanding. By
embracing the predictive power of discrete mathematics, system
architects can more accurately assess the limitations of hashing
mechanisms, and ensure that safeguards such as salting, longer
hash outputs, and modern algorithms (e.g., SHA-256 or SHA-3)

are employed appropriately to minimize real-world
vulnerabilities.

V. ACKNOWLEDGMENT

With sincere gratitude, the author would like to thank God

Almighty, whose blessings and guidance enabled the successful
completion of this paper entitled “Analyzing Hash Collision
Probability in Password Storage using the Birthday Paradox.”

The author extends heartfelt appreciation to Dr. Ir. Rinaldi,
M.T., as the lecturer of IF2120 Discrete Mathematics. His
teaching, insights, and the learning materials he has shared
publicly have greatly supported the author's understanding of the
theoretical concepts explored in this paper.

The author would also like to express sincere thanks to
family and friends for their constant support, encouragement,
and motivation throughout the writing process. Their presence
has provided invaluable emotional strength during the
completion of this academic task.

Finally, the author wishes to thank all individuals—whether
mentioned or not—who have contributed directly or indirectly
to the completion of this work.

REFERENCES

[1] Rinaldi Munir, “Kombinatorika (Bagian 1)”,

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/20
24-2025/18-Kombinatorika-Bagian1-2024.pdf, Accessed
Jun. 18, 2025, at 20:00.

[2] Rinaldi Munir, “Kombinatorika (Bagian 2)”,

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/20
24-2025/19-Kombinatorika-Bagian2-2024.pdf, Accessed
Jun. 18, 2025, at 22:00.

[3] S. Mehta, “Birthday attack in cryptography,”
GeeksforGeeks,[Online],
https://www.geeksforgeeks.org/ethical-hacking/birthday-
attack-in-cryptography/, Accessed Jun. 18, 2025, at 22:00.

[4] Computerphile, “Birthday Paradox - Numberphile,”
YouTube, May 2, 2013. [Online].
https://www.youtube.com/watch?v=jsraR-el8_o,
Accessed Jun. 19, 2026, at 19:00

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/18-Kombinatorika-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/18-Kombinatorika-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/19-Kombinatorika-Bagian2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/19-Kombinatorika-Bagian2-2024.pdf
https://www.geeksforgeeks.org/ethical-hacking/birthday-attack-in-cryptography/
https://www.geeksforgeeks.org/ethical-hacking/birthday-attack-in-cryptography/
https://www.youtube.com/watch?v=jsraR-el8_o

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini

adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari

makalah orang lain, dan bukan plagiasi.

Bandung, 1 Juni 2025

Daniel Putra Rywandi S 13524143

