
Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Dicretization Techniques and State Partitioning

Strategies in Contemporary Dynamic Programming

Azri Arzaq Pohan - 13524139

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

azri.pohan@gmail.com , 13524139@std.stei.itb.ac.id

Abstract— This paper explores two advanced techniques that

alleviate this issue: discretization and state partitioning.

Discretization compresses large or continuous domains into

compact, tractable representations, enabling efficient indexing

and memory use. State partitioning, on the other hand, exploits the

structure of the solution space to reduce redundant computations

through mathematical properties like convexity or monotonicity.

Through theoretical exposition and two practical competitive

programming case studies group segmentation minimization and

source inference in trees. This paper demonstrates how these

strategies significantly enhance the performance and scalability of

DP algorithms.

Keywords—dynamic programming; optimization; discretization;

state partitioning; coordinate compression; divide and conquer DP;

tree rerooting; computational complexity

I. INTRODUCTION

In the domain of competitive programming, temporal
complexity assumes a critical role, often serving as the decisive
criterion between an "Accepted" solution and a "Time Limit
Exceeded" outcome. The strict limitations imposed by limited
computing resources, particularly in terms of memory allocation
and execution time, necessitate a profound understanding of
algorithm efficiency that extends beyond the concept of
superiority alone and has evolved into an essential requirement
for effective computing practices. Such comprehension is very
critical for optimizing performance and ensuring computational
viability in complex problem-solving scenarios. Within this
paradigm, dynamic programming emerges as one of the most
widely adopted and theoretically grounded methodologies for
addressing complex optimization problems, offering a
systematic framework for breaking down intricate problems into
overlapping subproblems while leveraging memoization or
tabulation to ensure polynomial-time solutions where naive
approaches would succumb to exponential complexity.

As problem complexity escalates, the implementation of
techniques such as problem discretization and state partitioning
becomes crucial for developing efficient solutions.
Discretization serves to transform substantial or continuous
value domains into more manageable discrete representations
while preserving the core characteristics of the original problem.
Conversely, state partitioning is focused on probing the specific
structure of the solution space, thereby reducing computational
complexity.

A solid foundation in discrete mathematics is essential for
the practical application of optimization strategies. Basic
concepts such as set theory, functions, relations, and discrete
structures play a crucial role in the process of state construction,
compression, and processing in dynamic programming.

II. THEORETICAL BASIS

A. Set Theory

A set is a collection of objects that are unordered and distinct
from one another but whose values can still be defined and
undefined about one another. Objects within a set can also be
referred to as elements. Sets are usually denoted in curly braces,
followed by their elements. One of the examples is S = {1, 2, 3,
4, 5, 6}, which represents a set with six elements, namely 1, 2,
3, 4, 5, and 6.

Within a set, there are several basic operations that can be
used to form a new set.

1. Intersection

 The intersection of two sets 𝐴 and 𝐵, denoted as
𝐴 ∩ 𝐵, produces a set that containing elements that in both
sets
Formally:

𝐴 ∩ 𝐵 = {𝑥 | 𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∈ 𝐵}.

2. Union

 The union of two sets 𝐴 and 𝐵, denoted as 𝐴 ∪ 𝐵, produces
a set that containing all elements that are in either 𝐴, or 𝐵, or
both.

Formally:

𝐴 ∪ 𝐵 = {𝑥 | 𝑥 ∈ 𝐴 𝑜𝑟 𝑥 ∈ 𝐵}.

3. Complement

 The complement of a set 𝐴, denoted 𝐴𝑐 or 𝐴, is the set of all
elements in the universal set 𝑈 that are not in 𝐴. The universal
set must be defined for all complements to be meaningful.

Formally:

𝐴 = {𝑥 | 𝑥 ∈ 𝑈, 𝑥 ∉ 𝐴}.

4. Difference

The difference between two sets 𝐴 and 𝐵, denoted as 𝐴 − 𝐵,
is the set of elements that belong to 𝐴 but not to 𝐵.
Formally:

𝐴 − 𝐵 = {𝑥 | 𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∉ 𝐵 = 𝐴 ∩ 𝐵}.

5. Symmetric Difference

mailto:azri.pohan@gmail.com
mailto:13524139@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

The symmetric difference of two sets 𝐴 and 𝐵, denoted 𝐴 ⊕
𝐵, is the set of elements that are in either of the sets but not in
both.

Formally:

𝐴 ⊕ 𝐵 = (𝐴 ∪ 𝐵) − (𝐴 ∩ 𝐵) = (𝐴 − 𝐵) ∪ (𝐵 − 𝐴)

B. Relations and Functions Theory

1. Properties of Relations

Relations that defined on a set can have properties such as
reflexive, transitive, symmetric, antisymmetric.

- Reflexive

A relation 𝑅 is reflexive if every element in 𝐴 is related to
itself (𝑎, 𝑎) ∈ 𝑅 for all 𝑎 ∈ 𝐴. Reflexive relations have
matrices whose main diagonal elements are all equal to 1, or
𝑚𝑖𝑖 for 𝑖 = 1, 2, … , 𝑛,

Fig. 1. Reflexive Matrix.
[Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/05-

Relasi-dan-Fungsi-Bagian1-(2024).pdf]

A directed graph of reflexive relation is characterized by the
presence of a ring at each node.

Fig. 2. Reflexive Directed Graph.

[Source: https://www.geeksforgeeks.org/relation-and-their-representations/]

- Transitive

A relation 𝑅 is transitive if whenever (𝑎, 𝑏) ∈ 𝑅 and (𝑏, 𝑐) ∈
𝑅 for all 𝑎, 𝑏, 𝑐 ∈ 𝐴. In directed graphs, if there is a path from
𝑎 to 𝑏 and from 𝑏 to 𝑐, there must be also be a direct edge
from 𝑎 to 𝑐. 𝑥 > 𝑦, 𝑦 > 𝑧 imply 𝑥 > 𝑧.

Fig. 3. Directed Graph.

[Source: https://codeforces.com/problemset/gymProblem/102411/J]

- Symmetric

 A relation 𝑅 is symmetric if (𝑎, 𝑏) ∈ 𝑅 implies (𝑏, 𝑎) ∈ 𝑅

for all 𝑎, 𝑏 ∈ 𝐴. The matrix of a symmetric relation is
symmetric across its diagonal.

Fig. 4. Symmetric Relation Matrix.

[Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/05-

Relasi-dan-Fungsi-Bagian1-(2024).pdf]

In directed graphs, every edge must have a corresponding
reverse edge.

Fig. 5. Complete Symmetric Diagraph of Four Vertices.

[Source: https://skedbooks.com/books/graph-theory/types-of-digraphs/]

- Antisymmetric

 A relation 𝑅 is antisymmetric if (𝑎, 𝑏) ∈ 𝑅 and (𝑏, 𝑎) ∈ 𝑅

 that imply 𝑎 = 𝑏 for all 𝑎, 𝑏 ∈ 𝐴. In matrix terms,
 if 𝑚𝑖𝑗 = 1 for 𝑖 ≠ 𝑗, then 𝑚𝑗𝑖 must be 0.

Fig. 6. Antisymmetric Matrix.
[Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/05-

Relasi-dan-Fungsi-Bagian1-(2024).pdf]

Graphically, no two distinct vertices can have edges in both
directions. The divides relation is antisymmetric
because 𝑎 divides 𝑏 and 𝑏 divides 𝑎 only if 𝑎 = 𝑏.

2. Relation Composition

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/05-Relasi-dan-Fungsi-Bagian1-(2024).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/05-Relasi-dan-Fungsi-Bagian1-(2024).pdf
https://www.geeksforgeeks.org/relation-and-their-representations/
https://codeforces.com/problemset/gymProblem/102411/J
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/05-Relasi-dan-Fungsi-Bagian1-(2024).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/05-Relasi-dan-Fungsi-Bagian1-(2024).pdf
https://skedbooks.com/books/graph-theory/types-of-digraphs/
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/05-Relasi-dan-Fungsi-Bagian1-(2024).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/05-Relasi-dan-Fungsi-Bagian1-(2024).pdf

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

 Let 𝑅 be a binary relation from set 𝐴 to set 𝐵, and 𝑆 a binary
relation from 𝐵 to set 𝐶. The composition of relations denoted
as 𝑆 ∘ 𝑅, is a relation from 𝐴 to 𝐶, and formally defined as:

𝑆 ∘ 𝑅 = {(𝑎, 𝑐) | ∃𝑏 ∈ 𝐵 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡(𝑎, 𝑏) ∈ 𝑅 𝑎𝑛𝑑(𝑏, 𝑐) ∈ 𝑆}

 If 𝑅1 and 𝑅2 relations are represented by 𝑀𝑅1 and 𝑀𝑅2, then
the matrix that representing the composition of two relations is

𝑀𝑅2∘𝑅1 = 𝑀𝑅1 MR2

where the operator “.” is the same as in ordinary matrix
multiplication, but with the multiplication sign replaced by “∧”

and the addition sign replaced by “∨”.

 Suppose the 𝑅1 and 𝑅2 relations on set 𝐴 is expressed by the
matrix

Fig. 7. 𝑅1 and 𝑅2 Matrices.

[Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/06-

Relasi-dan-Fungsi-Bagian2-(2024).pdf]

Then the matrix that representing 𝑅2 ∘ 𝑅1 is

Fig. 8. 𝑀𝑅1 and 𝑀𝑅2 Multiplication.

[Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/06-

Relasi-dan-Fungsi-Bagian2-(2024).pdf]

Furthermore, the composition of a relation with itself 𝑛 times
is denoted as 𝑅𝑛 and defined recursively

𝑅𝑛 = 𝑅 ∘ 𝑅 ∘ … ∘ 𝑅 with 𝑅𝑛+1 = 𝑅𝑛 ∘ 𝑅

and

𝑀𝑅𝑛 = 𝑀𝑅
[𝑛]

because

𝑅𝑛+1 = 𝑅𝑛 ∘ 𝑅

then

𝑀𝑅𝑛+1 = 𝑀𝑅 MR
[n]

3. Recursive Function

 A function is called a recursive function if its definition
refers to itself and consists of two fundamental components,
such as the base case and the recurrence step.

- Base Case

The part that contains the initial value that does not refer to
itself. This part also simultaneously stops the recursive
definition.

- Recurrence

These sections define function arguments in their own terms.
Whenever a function refers to itself, the argument of the
function should be closer to the initial value (base).

Below are examples of recursive functions.

- Factorial Function

Fig. 9. Factorial Function.
[Source:https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/07-

Relasi-dan-Fungsi-Bagian3-(2024).pdf]

- Chebysev Function

Fig. 10. Chebysev Function.
[Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/07-

Relasi-dan-Fungsi-Bagian3-(2024).pdf]

- Fibonacci Function

Fig. 11. Fibonacci Function.

[Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/07-
Relasi-dan-Fungsi-Bagian3-(2024).pdf]

4. Closure of a Relation

 The closure of a relation refers to the minimal extension of a
given relation so that it satisfies specific property such as
reflexivity, symmetry, or transitivity.

 There are three main types of closures:

- Reflexive Closure

The reflexive closure of 𝑅 is obtained by adding the minimal
number of pairs (𝑎, 𝑎) for every 𝑎 ∈ 𝐴 not already in 𝑅.

 Formally:

𝑅𝑟𝑒𝑓𝑙𝑒𝑥𝑖𝑣𝑒 = 𝑅 ∪ {(𝑎, 𝑎) | 𝑎 ∈ 𝐴}

- Symmetric Closure

The symmetric closure ensures that for every (𝑎, 𝑏) ∈ 𝑅, the
pair (𝑏, 𝑎) is also included.

 Formally:

𝑅𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 = 𝑅 ∪ 𝑅−1

 where 𝑅−1 = {(𝑏, 𝑎) | (𝑎, 𝑏) ∈ 𝑅}.

- Transitive Closure

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/06-Relasi-dan-Fungsi-Bagian2-(2024).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/06-Relasi-dan-Fungsi-Bagian2-(2024).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/06-Relasi-dan-Fungsi-Bagian2-(2024).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/06-Relasi-dan-Fungsi-Bagian2-(2024).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/07-Relasi-dan-Fungsi-Bagian3-(2024).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/07-Relasi-dan-Fungsi-Bagian3-(2024).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/07-Relasi-dan-Fungsi-Bagian3-(2024).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/07-Relasi-dan-Fungsi-Bagian3-(2024).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/07-Relasi-dan-Fungsi-Bagian3-(2024).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/07-Relasi-dan-Fungsi-Bagian3-(2024).pdf

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

The transitive closure is formed by iteratively adding pairs
(𝑎, 𝑐) whenever (𝑎, 𝑏) ∈ 𝑅 and (𝑏. 𝑐) ∈ 𝑅, until no more
such pairs can be added.

Formally:

𝑅∗ = 𝑅 ∪ 𝑅2 ∪ 𝑅3 ∪ … ∪ 𝑅𝑛

C. Graph Theory

A graph 𝐺 is defined as an ordered pair 𝐺 = (𝑉, 𝐸), where
𝑉 is a non-empty set of vertices (or nodes) and 𝐸 is a set of edges
(or arcs) connecting pairs of vertices. 𝐸 may be empty. Graphs
can be classified based on their structural properties:

- Simple Graph

 A graph with no loops or multiple edges between the same

 pair of vertices.

Fig. 12. Simple Graph.

[Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-

Graf-Bagian1-2024.pdf]

- Multigraph

 A graph that may have multiple edges between the same pair
 of vertices (no loops).

Fig. 13. Multigraph.
[Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-

Graf-Bagian1-2024.pdf]

- Pseudograph

 A graph that may contain both loops and multiple edges.

Fig. 14. Pseudograph.
[Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-

Graf-Bagian1-2024.pdf]

- Directed Graph

 A graph where edges have a direction.

Fig. 15. Directed Graph.
[Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-

Graf-Bagian1-2024.pdf]

- Weighted Graph

A graph where edges are assigned numerical values
(weigths).

Fig. 16. Weigthed Graph.

[Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-

Graf-Bagian1-2024.pdf]

The connectivity of a graph refers to whether there exists a
path between pairs of vertices in the graph. A graph is connected
if there exists a path between every pair of distinct vertices, and
a graph is disconnected if at least one pair of vertices lacks a
connecting path.

- Strong Connectivity

For every pair of vertices 𝑢 and 𝑣, there is a directed path
from 𝑢 to 𝑣 and from 𝑣 to 𝑢.

- Weak Connectivity

The graph is not strongly connected, but its underlying
undirected graph is connected.

The structure of a graph is described through several
fundamental concepts that define the relationships between its
vertices and edges.

- Adjacency

Two vertices are adjacent if they are connected directly by
an edge.

- Incedency

 An edge is incident to the vertices it connects.

- Isolated Vertex

 A vertex with no incident edges.

- Degree

 The degree of a vertex is the number of edges incident to it.

- Path

 A path is a sequence of vertices where each consecutive pair
 is connected by an edge.

D. Dynamic Programming

Dynamic Programming (DP) is a method for solving
complex problems by breaking them down into simpler
subproblems, where the solution to the original problem can be
viewed as a sequence of interrelated decisions. The term
"dynamic" reflects the use of tables to store and build solutions
incrementally, rather than implying any connection to
programming languages.

1. Optimization Problems

 DP is primarily used for optimization problems, such as
maximization or minimization. Unlike greedy algorithms, which
make a single sequence of decisions, dynamic programming
(DP) evaluates multiple decision sequences to ensure optimality.

2. Principle of Optimality

 A fundamental tenet of DP is that an optimal solution to the
overall problem contains optimal solutions to its subproblems.
This allows the problem to be solved stage by stage, leveraging
results from previous stages without revisiting earlier decisions.

3. Approaches

- Top-Down DP (Memoization)

 In this method, the computation proceeds sequentially from

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

the first stage to the final stage, denoted as stage 1 to stage
𝑛. At each stage, a decision variable 𝑥𝑘 is selected, and the
optimal cost for reaching the current state is derived based
on previous stages. This approach is suitable when the initial
state is known and decisions are to be made progressively. It
aligns with scenarios where the problem is naturally defined
from beginning to end.

- Bottom-Up DP (Tabulation)

Conversely, the backward method begins from the final
stage and works in reverse towards the first stage. The
decision variable sequence starts from 𝑥𝑛 down to 𝑥1. This
approach is ideal when the final state or goal is clearly
defined, and want to trace back the optimal sequence of
decisions to reach it. The approach also benefits from
simpler reconstruction of the optimal path.

E. Coordinate Compression

Coordinate compression is a technique used to convert large
and sparse coordinate values or numerical data into smaller and
more compact ranges of values. The goal of this technique is to
reduce the size of the state space in dynamic programming,
especially when the absolute values of the coordinates are not
important. However, only their relative positions or orders are
relevant.

Consider a problem setting that involves geometric points or
intervals where coordinate values can span a vast range, such as
from 1 to 109. Directly indexing a DP array would only lead to
prohibitive memory consumption or excessively long
computation times (TLE). To address this, coordinate
compression is applied as a preprocessing step that remaps the
original coordinate values into a smaller, contiguous range while
preserving their relative order.

This transformation enables the use of efficient data
structures such as segment trees, binary indexed trees, or simple
arrays without requiring prohibitively large memory allocation.
By mapping the original values to compressed indices ranging
from 0 to 𝑛 − 1.

The steps that involved are as follows:

- Collect all numeric values that need to be compressed.

- Sort the collected values in ascending order to define their
 relative ranks.

- Eliminate repeated values to obtain a strictly increasing
sequence of unique entries.

- Transform all values in the original dataset using the
mapping to obtain compressed coordinates.

F. Divide and Conquer

This approach involves three main steps: divide, conquer,
and combine. The divide step breaks a problem into smaller
subproblems of similar type, the conquer step solves these
subproblems either directly or recursively, and the combine step
merges the solutions to form the final answer. The method is
naturally expressed through recursive schemes and is
particularly effective for problems where the input can be
partitioned into smaller, manageable instances, such as arrays,
matrices, exponents, or polynomials.

The algorithmic structure follows a recursive pattern. If the
problem size is below a threshold 𝑛0, it’s solved directly.
Otherwise, it’s divided into 𝑟 subproblems, each recursively

solved, and their solutions are combined. The time complexity
is expressed as a recurrence relation:

Fig. 17. Divide and Conquer Time Complexity.

[Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/07-

Algoritma-Divide-and-Conquer-(2025)-Bagian1.pdf]

Where 𝑔(𝑛) is the time to solve a base case, and 𝑓(𝑛) is the
time to combine solutions. A common case is dividing the
problem into two equal parts, yielding 𝑇(𝑛) = 2𝑇(𝑛/2) +
𝑓(𝑛).

G. Depth-First Search (DFS)

Depth-First Search (DFS) is a graph traversal algorithm that
explores as far as possible along each branch before
backtracking. The algorithm starts at a selected node (root) and
explores each adjacent node recursively, marking nodes as
visited to avoid cycles. The traversal steps will continues until
all reachable nodes are visited.

III. STUDY CASE 1

A. Problem Definition

One of the problem discussed in this paper involves the
optimal division of individuals into a fixed number of sequential
groups, such that the unfamiliarity between individuals within
each group is minimized.

Formally, let there be 𝑛 individuals labeled 𝑝1, 𝑝2, … , 𝑝𝑛 ,
aligned in a queue. The goal is to allocate these individuals into
exactly 𝑘 non-empty groups, where each group consists of a
contiguous segment of people from the front of the remaining
queue. Let 𝑞1, 𝑞2, … , 𝑞𝑘 denote the number of people in each
group, then the following must hold:

𝑞𝑖 > 0 𝑓𝑜𝑟𝑎𝑙𝑙 𝑖, ∑ 𝑞𝑖 = 𝑛

k

𝑖=1

Each unordered pair of individuals (𝑝𝑖 , 𝑝𝑗) is assigned an

unfamiliarity score 𝑢𝑖𝑗 ∈ Z≥0, with the following properties:

𝑢𝑖𝑗 = 𝑢𝑗𝑖 , 𝑢𝑖𝑖 = 0, 0 ≤ uij ≤ 9

The unfamiliarity of a group is defined as the sum of all 𝑢𝑖𝑗

for all unordered pairs 𝑖, 𝑗 within that group. The objective is to
find a partition into exactly 𝑘 contiguous groups that minimizes
the total unfamiliarity cost across all groups.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/07-Algoritma-Divide-and-Conquer-(2025)-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/07-Algoritma-Divide-and-Conquer-(2025)-Bagian1.pdf

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

B. Solution

Fig. 18. Codeforces: 321E - Ciel and Gondolas Solution

[Source: Author]

In order to solve the sequential unfamiliarity minimization
problem, we adopt a dynamic programming framework
optimized through the divide-and-conquer paradigm. The idea is
to represent the problem as a partitioning task over a queue of
individuals, where each partition contributes a quadratic cost
derived from pairwise unfamiliarities among its members. This
can allows us to exploit structural properties of the cost function
in order to improve computational efficiency.

The first part of the solution involves precomputing
cumulative unfamiliarity scores using a two-dimensional prefix
sum matrix. Let 𝑎[𝑖][𝑗] denote the total unfamiliarity between
the first 𝑖 individuals in the queue. Using the standard inclusion-
exclusion principle, this allows for constant-time queries of the
total unfamiliarity cost within any rectangular submatrix of the
input.

We can define a dynamic programming state 𝑑𝑝[𝑔][𝑚],
which represents the minimal total unfamiliarity achievable by
partitioning the first 𝑚 individuals into 𝑔 contiguous segments.

𝑑𝑝[𝑔][𝑚] = 𝑚𝑖𝑛𝑖=𝑔−1
𝑚 (𝑑𝑝[𝑔 − 1][𝑖 − 1] + 𝑐𝑜𝑠𝑡(𝑖, 𝑚))

where 𝑐𝑜𝑠𝑡(𝑖, 𝑚) denotes the total unfamiliarity score for
assigning individuals 𝑖 through 𝑚 to a group.

 By applying Divide and Conquer Optimization will reduces
the overall time complexitity of the dynamic programming from
𝑂(𝑘𝑛2) to 𝑂(𝑘𝑛 𝑙𝑜𝑔 𝑛). Optimized recurrence can also be
implemented using a recursive function
𝑐𝑜𝑚𝑝𝑢𝑡𝑒(𝑔, 𝑙, 𝑟, 𝑜𝑝𝑡𝐿, 𝑜𝑝𝑡𝑅).

 After computing the dynamic programming table, the final
result is obtained from 𝑑𝑝[𝑘][𝑛], that represents the minimum
possible unfamiliarity when dividing all 𝑛 individuals into 𝑘

groups. Since each pairwise unfamiliarity 𝑢𝑖𝑗 is counted twice,

the final result is divided by two before being the output.

Fig. 19. Submission result for Codeforces: 321E - Ciel and Gondolas

[Source: Author]

IV. STUDY CASE 2

A. Problem Definition

The problem addressed in this section concerns the
identification of possible source locations of a spreading
anomaly (referred to as the Book of Evil) within a network of
interconnected settlements. Formally, the area is modeled as a
tree an undirected, connected, and acyclic graph with 𝑛 nodes
and 𝑛 − 1 bidirectional edges (paths).

Each edge represents a direct connection between two
settlements and has a uniform traversal cost of 1. Among these
𝑛 settlements, 𝑚 settlements are known to be affected by the
Book of Evil. The book if placed at certain settlement, can exert
an influence with a fixed radius 𝑑.

The objective is to determine the number of settlements
where the Book of Evil may be located, under the condition that
if it were placed in such a settlement, all 𝑚 affected settlements
would fall within a distance of at most 𝑑 from it.

B. Solution

Fig. 20. Codeforces: 337D – Book of Evil Solution

[Source: Author]

The approach leverages a bottom-up traversal to collect
information from subtrees and a top-down traversal to propagate
external information from parent and sibling subtrees.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Let the given tree be denoted by 𝑇 = (𝑉, 𝐸), with |𝑉| = 𝑛
nodes and |𝐸| = 𝑛 − 1 edges. A subset 𝐴 ⊆ 𝑉, where |𝐴| = 𝑚,
contains all settlements reported to be affected by the Book of
Evil.

The objective is to determine for how many nodes 𝑢 ∈ 𝑉 it
holds that the distance from 𝑢 to every node in 𝐴 is less than or
equal to the damage threshold 𝑑. Define a function 𝐷(𝑢) ≤ 𝑑.
Computing 𝐷(𝑢) for all nodes 𝑢 ∈ 𝑉 in naïve manner would
involve performing breadth-first search (BFS) or depth-first
search (DFS) from each node, resulting in a time complexity of
𝑂(𝑛𝑚) in the worst case, which is computationally infeasible
for large 𝑛 and 𝑚.

The first phase involves performing a bottom-up DFS
traversal starting from an arbitrary root (e.g., node 1). For each
node 𝑢:

- 𝑓[𝑢][0]: the maximum distance from 𝑢 to any affected node
 in its own subtree.

- 𝑓[𝑢][1]: the second maximum distance, used to handle
 rerooting transitions correctly.

If a node 𝑢 in the set 𝐴, it is better to initialize 𝑓[𝑢][0] = 0

And 𝑓[𝑢][1] = −∞. Otherwise, these values are inherited from
its child nodes during traversal and incremented by one.

 The second phase involves a top-down traversal that
propagate the maximum distance from affected nodes outside
the current node’s subtree. Let 𝑢𝑝[𝑢] denote the maximum
distance from 𝑢 to any node in 𝐴 not contained in its own
subtree. This value is computed recursively using the upward
distance of its parent and the appropriate sibling subtree depths,
ensuring that each node receives the most relevant information
from the rest of the tree.

 After both passes are complete, each node 𝑢 ∈ 𝑉 has a
complete view of its distance to the furthest affected node.

𝐷(𝑢) = 𝑚𝑎𝑥(𝑓[𝑢][0], 𝑢𝑝[𝑢])

If 𝐷(𝑢) ≤ 𝑑, then 𝑢 is included in the answer. This check is
performed in constant time per node and since both traversals
are linear in the number of nodes, the total time complexity
remains 𝑂(𝑛).

Fig. 21. Submission Result for Codeforces: 337D – Book of Evil

[Source: Author]

V. CONCLUSION

In this paper, we have explored advanced optimization
techniques in dynamic programming through the lens of
discretization and state partitioning. These strategies have
proven indispensable in overcoming challenges posed by large
state spaces and high time complexity. Discretization, through
techniques such as coordinate compression, enables the
transformation of large numeric domains into compact,
indexable forms—making them amenable to efficient data
structures. Meanwhile, state partitioning strategies, exemplified
by divide and conquer DP and rerooting on trees, exploit the

mathematical structure of problems to significantly reduce
redundant computations.

Theoretical discussions were supported by two real-world
competitive programming cases. The first showcased how
divide and conquer optimization reduces DP complexity from
𝑂(𝑘 ⋅ 𝑛2) to 𝑂(𝑘 ⋅ 𝑛 𝑙𝑜𝑔 𝑛) while the second demonstrated how
tree rerooting allows linear-time resolution of center-point
queries on affected nodes.

VI. APPENDIX

The following is the source code used to solve several problems

from Codeforces that used as study cases in this paper.

https://github.com/AzriVz/makalah-matematika-diskrit

ACKNOWLEDGMENT

The author would like to express his deepest gratitude to
Allah SWT for the continuous blessings, guidance, and strength
that made the completion of this paper possible. The author is
also sincerely thankful to Dr. Ir. Rinaldi Munir, M.T. for his
invaluable guidance, insightful teaching, and encouragement
throughout the course.

Furthermore, heartfelt appreciation is extended to the
author’s parents, siblings, and close friends for their unwavering
moral and emotional support during his academic journey at
Institut Teknologi Bandung.

REFERENCES

[1] Munir, R. “IF1220 Matematika Diskrit - Semester II Tahun 2024/2025”,
Teknik Informatika Institut Teknologi Bandung. Available at:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025-
2/matdis24-25-2.htm#SlideKuliah (Accessed: 19 June 2025).

[2] Munir, R. “IF2211 Strategi Algoritma - Semester II Tahun 2024/2025”,
Teknik Informatika Institut Teknologi Bandung. Available at:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-
2025/stima24-25.htm#SlideKuliah (Accessed: 20 June 2025).

[3] Competitive Programmer’s Handbook. Available at:
https://cses.fi/book/book.pdf (Accessed: 20 June 2025).

[4] Custom comparators and coordinate compression · USACO Guide.
Available at: https://usaco.guide/silver/sorting-custom?lang=cpp
(Accessed: 20 June 2025).

[5] W3schools.com “Dynamic Programming”. Available at:
https://www.w3schools.com/dsa/dsa_ref_dynamic_programming.php
(Accessed: 20 June 2025).

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini

adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari

makalah orang lain, dan bukan plagiasi.

Bandung, 20 Juni 2025

Azri Arzaq Pohan, 13524139

https://github.com/AzriVz/makalah-matematika-diskrit

	I. Introduction
	II. Theoretical Basis
	A. Set Theory
	B. Relations and Functions Theory
	C. Graph Theory
	D. Dynamic Programming
	E. Coordinate Compression
	F. Divide and Conquer
	G. Depth-First Search (DFS)

	III. Study Case 1
	A. Problem Definition
	B. Solution

	IV. Study Case 2
	A. Problem Definition
	B. Solution

	V. Conclusion
	VI. Appendix
	Acknowledgment
	References

