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Abstract— This paper explores two advanced techniques that 

alleviate this issue: discretization and state partitioning. 

Discretization compresses large or continuous domains into 

compact, tractable representations, enabling efficient indexing 

and memory use. State partitioning, on the other hand, exploits the 

structure of the solution space to reduce redundant computations 

through mathematical properties like convexity or monotonicity. 

Through theoretical exposition and two practical competitive 

programming case studies group segmentation minimization and 

source inference in trees. This paper demonstrates how these 

strategies significantly enhance the performance and scalability of 

DP algorithms. 
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I.  INTRODUCTION 

In the domain of competitive programming, temporal 
complexity assumes a critical role, often serving as the decisive 
criterion between an "Accepted" solution and a "Time Limit 
Exceeded" outcome. The strict limitations imposed by limited 
computing resources, particularly in terms of memory allocation 
and execution time, necessitate a profound understanding of 
algorithm efficiency that extends beyond the concept of 
superiority alone and has evolved into an essential requirement 
for effective computing practices. Such comprehension is  very 
critical for optimizing performance and ensuring computational 
viability in complex problem-solving scenarios. Within this 
paradigm, dynamic programming emerges as one of the most 
widely adopted and theoretically grounded methodologies for 
addressing complex optimization problems, offering a 
systematic framework for breaking down intricate problems into 
overlapping subproblems while leveraging memoization or 
tabulation to ensure polynomial-time solutions where naive 
approaches would succumb to exponential complexity. 

As problem complexity escalates, the implementation of 
techniques such as problem discretization and state partitioning 
becomes crucial for developing efficient solutions. 
Discretization serves to transform substantial or continuous 
value domains into more manageable discrete representations 
while preserving the core characteristics of the original problem. 
Conversely, state partitioning is focused on probing the specific 
structure of the solution space, thereby reducing computational 
complexity. 

A solid foundation in discrete mathematics is essential for 
the practical application of optimization strategies. Basic 
concepts such as set theory, functions, relations, and discrete 
structures play a crucial role in the process of state construction, 
compression, and processing in dynamic programming. 

II. THEORETICAL BASIS 

A. Set Theory 

A set is a collection of objects that are unordered and distinct 
from one another but whose values can still be defined and 
undefined about one another. Objects within a set can also be 
referred to as elements. Sets are usually denoted in curly braces, 
followed by their elements. One of the examples is S = {1, 2, 3, 
4, 5, 6}, which represents a set with six elements, namely 1, 2, 
3, 4, 5, and 6. 

Within a set, there are several basic operations that can be 
used to form a new set. 

1.   Intersection 

 The intersection of two sets 𝐴 and 𝐵, denoted as  
𝐴 ∩ 𝐵, produces a set that containing elements that in both 
sets  
Formally: 

𝐴 ∩ 𝐵 = {𝑥 | 𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∈ 𝐵}. 

2.   Union 

 The union of two sets 𝐴 and 𝐵, denoted as 𝐴 ∪ 𝐵, produces 
a set that containing all elements that are in  either 𝐴, or 𝐵, or 
both.  

Formally: 

𝐴 ∪ 𝐵 = {𝑥 | 𝑥 ∈ 𝐴 𝑜𝑟 𝑥 ∈ 𝐵}. 

3.   Complement  

 The complement of a set 𝐴, denoted 𝐴𝑐 or 𝐴, is the set of all 
elements in the universal set 𝑈 that are not in 𝐴. The universal 
set must be defined for all complements to be meaningful.  

Formally: 

𝐴 = {𝑥 | 𝑥 ∈ 𝑈, 𝑥 ∉ 𝐴}. 

4.   Difference 

The difference between two sets 𝐴 and 𝐵, denoted as 𝐴 − 𝐵, 
is the set of elements that belong to 𝐴 but not to 𝐵. 
Formally: 

𝐴 − 𝐵 = {𝑥 | 𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∉ 𝐵 = 𝐴 ∩ 𝐵}. 

5.   Symmetric Difference 
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The symmetric difference of two sets 𝐴 and 𝐵, denoted 𝐴 ⊕
𝐵, is the set of elements that are in either of the sets but not in 
both. 

Formally:  

𝐴 ⊕ 𝐵 = (𝐴 ∪ 𝐵) − (𝐴 ∩ 𝐵) = (𝐴 − 𝐵) ∪ (𝐵 − 𝐴) 

B. Relations and Functions Theory 

1.   Properties of Relations 

Relations that defined on a set can have properties such as 
reflexive, transitive, symmetric, antisymmetric. 

-     Reflexive 

A relation 𝑅 is reflexive if every element in 𝐴 is related to 
itself (𝑎, 𝑎) ∈ 𝑅 for all 𝑎 ∈ 𝐴. Reflexive relations have 
matrices whose main diagonal elements are all equal to 1, or 
𝑚𝑖𝑖 for 𝑖 = 1, 2, … , 𝑛, 

 

Fig. 1. Reflexive Matrix.     
[Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/05-

Relasi-dan-Fungsi-Bagian1-(2024).pdf] 

A directed graph of reflexive relation is characterized by the 
presence of a ring at each node. 

 

Fig. 2. Reflexive Directed Graph.    

[Source: https://www.geeksforgeeks.org/relation-and-their-representations/] 

-     Transitive  

A relation 𝑅 is transitive if whenever (𝑎, 𝑏) ∈ 𝑅 and (𝑏, 𝑐) ∈
𝑅 for all 𝑎, 𝑏, 𝑐 ∈ 𝐴. In directed graphs, if there is a path from 
𝑎 to 𝑏 and from 𝑏 to 𝑐, there must be also be a direct edge 
from 𝑎 to 𝑐. 𝑥 > 𝑦, 𝑦 > 𝑧 imply 𝑥 > 𝑧. 

 

 

Fig. 3. Directed Graph.      

[Source: https://codeforces.com/problemset/gymProblem/102411/J] 

-     Symmetric 

 A relation 𝑅 is symmetric if (𝑎, 𝑏) ∈ 𝑅 implies (𝑏, 𝑎) ∈ 𝑅 

for all 𝑎, 𝑏 ∈ 𝐴. The matrix of a symmetric relation is 
symmetric across its diagonal.  

 

Fig. 4. Symmetric Relation Matrix.     

[Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/05-

Relasi-dan-Fungsi-Bagian1-(2024).pdf] 

In directed graphs, every edge must have a corresponding 
reverse edge. 

 

Fig. 5. Complete Symmetric Diagraph of Four Vertices.   

[Source: https://skedbooks.com/books/graph-theory/types-of-digraphs/] 

-     Antisymmetric 

 A relation 𝑅 is antisymmetric if (𝑎, 𝑏) ∈ 𝑅 and (𝑏, 𝑎) ∈ 𝑅 

 that imply 𝑎 = 𝑏 for all 𝑎, 𝑏 ∈ 𝐴. In matrix terms,  
 if 𝑚𝑖𝑗 = 1 for 𝑖 ≠ 𝑗, then 𝑚𝑗𝑖 must be 0. 

 

Fig. 6. Antisymmetric Matrix.      
[Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/05-

Relasi-dan-Fungsi-Bagian1-(2024).pdf] 

Graphically, no two distinct vertices can have edges in both 
directions. The divides relation is antisymmetric 
because 𝑎 divides 𝑏 and 𝑏 divides 𝑎 only if 𝑎 = 𝑏.  

2.   Relation Composition 
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 Let 𝑅 be a binary relation from set 𝐴 to set 𝐵, and 𝑆 a binary 
relation from 𝐵 to set 𝐶. The composition of relations denoted 
as 𝑆 ∘ 𝑅, is a relation from 𝐴 to 𝐶, and formally defined as: 

𝑆 ∘ 𝑅 = {(𝑎, 𝑐) | ∃𝑏 ∈ 𝐵 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡(𝑎, 𝑏) ∈ 𝑅 𝑎𝑛𝑑(𝑏, 𝑐) ∈ 𝑆} 

 

 If 𝑅1 and 𝑅2 relations are represented by 𝑀𝑅1 and 𝑀𝑅2, then 
the matrix that representing the composition of two relations is 

𝑀𝑅2∘𝑅1 = 𝑀𝑅1  MR2 

where the operator “.” is the same as in ordinary matrix 
multiplication, but with the multiplication sign replaced by “∧” 

and the addition sign replaced by “∨”. 

 Suppose the 𝑅1 and 𝑅2 relations on set 𝐴 is expressed by the 
matrix 

 

Fig. 7. 𝑅1 and 𝑅2 Matrices.      

[Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/06-

Relasi-dan-Fungsi-Bagian2-(2024).pdf] 

Then the matrix that representing 𝑅2 ∘ 𝑅1 is 

 

Fig. 8. 𝑀𝑅1 and 𝑀𝑅2 Multiplication.     

[Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/06-

Relasi-dan-Fungsi-Bagian2-(2024).pdf] 

Furthermore, the composition of a relation with itself 𝑛 times 
is denoted as 𝑅𝑛 and defined recursively 

𝑅𝑛 = 𝑅 ∘ 𝑅 ∘ … ∘ 𝑅 with 𝑅𝑛+1 = 𝑅𝑛 ∘ 𝑅 

and 

𝑀𝑅𝑛 = 𝑀𝑅
[𝑛]

 

because 

𝑅𝑛+1 = 𝑅𝑛 ∘ 𝑅 

then 

𝑀𝑅𝑛+1 = 𝑀𝑅  MR
[n]

 

3.   Recursive Function 

 A function is called a recursive function if its definition 
refers to itself and consists of two fundamental components, 
such as the base case and the recurrence step. 

-     Base Case 

The part that contains the initial value that does not refer to 
itself. This part also simultaneously stops the recursive 
definition. 

-     Recurrence 

These sections define function arguments in their own terms. 
Whenever a function refers to itself, the argument of the 
function should be closer to the initial value (base). 

Below are examples of recursive functions. 

-     Factorial Function 

 

Fig. 9. Factorial Function.      
[Source:https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/07-

Relasi-dan-Fungsi-Bagian3-(2024).pdf] 

-     Chebysev Function 

 

Fig. 10. Chebysev Function.      
[Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/07-

Relasi-dan-Fungsi-Bagian3-(2024).pdf] 

-     Fibonacci Function 

 

Fig. 11. Fibonacci Function.      

[Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/07-
Relasi-dan-Fungsi-Bagian3-(2024).pdf] 

 

4.   Closure of a Relation 

 The closure of a relation refers to the minimal extension of a 
given relation so that it satisfies specific property such as 
reflexivity, symmetry, or transitivity.  

 There are three main types of closures: 

-     Reflexive Closure 

The reflexive closure of 𝑅 is obtained by adding the minimal 
number of pairs (𝑎, 𝑎) for every 𝑎 ∈ 𝐴 not already in 𝑅. 

 Formally: 

𝑅𝑟𝑒𝑓𝑙𝑒𝑥𝑖𝑣𝑒 = 𝑅 ∪ {(𝑎, 𝑎) | 𝑎 ∈ 𝐴} 

-     Symmetric Closure 

The symmetric closure ensures that for every (𝑎, 𝑏) ∈ 𝑅, the 
pair (𝑏, 𝑎) is also included. 

 Formally: 

𝑅𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 = 𝑅 ∪ 𝑅−1 

 where 𝑅−1 = {(𝑏, 𝑎) | (𝑎, 𝑏) ∈ 𝑅}. 

 

 

-     Transitive Closure 
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The transitive closure is formed by iteratively adding pairs 
(𝑎, 𝑐) whenever (𝑎, 𝑏) ∈ 𝑅 and (𝑏. 𝑐) ∈ 𝑅, until no more 
such pairs can be added. 

Formally: 

𝑅∗ = 𝑅 ∪ 𝑅2 ∪ 𝑅3 ∪ … ∪ 𝑅𝑛 

C. Graph Theory 

A graph 𝐺 is defined as an ordered pair 𝐺 = (𝑉, 𝐸), where 
𝑉 is a non-empty set of vertices (or nodes) and 𝐸 is a set of edges 
(or arcs) connecting pairs of vertices. 𝐸 may be empty. Graphs 
can be classified based on their structural properties: 

-     Simple Graph 

 A graph with no loops or multiple edges between the same  

 pair of vertices. 

 

Fig. 12. Simple Graph.      

[Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-

Graf-Bagian1-2024.pdf] 

-     Multigraph 

 A graph that may have multiple edges between the same pair 
 of vertices (no loops). 

 

Fig. 13. Multigraph.       
[Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-

Graf-Bagian1-2024.pdf] 

-     Pseudograph 

 A graph that may contain both loops and multiple edges. 

 

Fig. 14. Pseudograph.       
[Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-

Graf-Bagian1-2024.pdf] 

-     Directed Graph 

 A graph where edges have a direction. 

 

Fig. 15. Directed Graph.      
[Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-

Graf-Bagian1-2024.pdf] 

-     Weighted Graph 

A graph where edges are assigned numerical values 
(weigths). 

 

Fig. 16. Weigthed Graph.      

[Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-

Graf-Bagian1-2024.pdf] 

 

The connectivity of a graph refers to whether there exists a 
path between pairs of vertices in the graph. A graph is connected 
if there exists a path between every pair of distinct vertices, and 
a graph is disconnected if at least one pair of vertices lacks a 
connecting path. 

-     Strong Connectivity 

For every pair of vertices 𝑢 and 𝑣, there is a directed path 
from 𝑢 to 𝑣 and from 𝑣 to 𝑢. 

-     Weak Connectivity 

The graph is not strongly connected, but its underlying 
undirected graph is connected. 

The structure of a graph is described through several 
fundamental concepts that define the relationships between its 
vertices  and edges. 

-     Adjacency 

Two vertices are adjacent if they are connected directly by 
an edge. 

-     Incedency 

 An edge is incident to the vertices it connects. 

-     Isolated Vertex 

 A vertex with no incident edges. 

-     Degree 

 The degree of a vertex is the number of edges incident to it. 

-     Path 

 A path is a sequence of vertices where each consecutive pair
 is connected by an edge. 

D. Dynamic Programming 

Dynamic Programming (DP) is a method for solving 
complex problems by breaking them down into simpler 
subproblems, where the solution to the original problem can be 
viewed as a sequence of interrelated decisions. The term 
"dynamic" reflects the use of tables to store and build solutions 
incrementally, rather than implying any connection to 
programming languages. 

1.   Optimization Problems 

 DP is primarily used for optimization problems, such as 
maximization or minimization. Unlike greedy algorithms, which 
make a single sequence of decisions, dynamic programming 
(DP) evaluates multiple decision sequences to ensure optimality. 

2.   Principle of Optimality 

 A fundamental tenet of DP is that an optimal solution to the 
overall problem contains optimal solutions to its subproblems. 
This allows the problem to be solved stage by stage, leveraging 
results from previous stages without revisiting earlier decisions. 

3.   Approaches 

- Top-Down DP (Memoization) 

 In this method, the computation proceeds sequentially from  
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the first stage to the final stage, denoted as stage 1 to stage 
𝑛. At each stage, a decision variable 𝑥𝑘 is selected, and the 
optimal cost for reaching the current state is derived based 
on previous stages. This approach is suitable when the initial 
state is known and decisions are to be made progressively. It 
aligns with scenarios where the problem is naturally defined 
from beginning to end. 

- Bottom-Up DP (Tabulation) 

Conversely, the backward method begins from the final 
stage and works in reverse towards the first stage. The 
decision variable sequence starts from 𝑥𝑛 down to 𝑥1. This 
approach is ideal when the final state or goal is clearly 
defined, and want to trace back the optimal sequence of 
decisions to reach it. The approach also benefits from 
simpler reconstruction of the optimal path. 

E. Coordinate Compression 

Coordinate compression is a technique used to convert large 
and sparse coordinate values or numerical data into smaller and 
more compact ranges of values. The goal of this technique is to 
reduce the size of the state space in dynamic programming, 
especially when the absolute values of the coordinates are not 
important. However, only their relative positions or orders are 
relevant. 

Consider a problem setting that involves geometric points or 
intervals where coordinate values can span a vast range, such as 
from 1 to 109. Directly indexing a DP array would only lead to 
prohibitive memory consumption or excessively long 
computation times (TLE). To address this, coordinate 
compression is applied as a preprocessing step that remaps the 
original coordinate values into a smaller, contiguous range while 
preserving their relative order. 

This transformation enables the use of efficient data 
structures such as segment trees, binary indexed trees, or simple 
arrays without requiring prohibitively large memory allocation. 
By mapping the original values to compressed indices ranging 
from 0 to 𝑛 − 1. 

The steps that involved are as follows: 

- Collect all numeric values that need to be compressed. 

- Sort the collected values in ascending order to define their 
 relative ranks. 

- Eliminate repeated values to obtain a strictly increasing 
sequence of unique entries. 

- Transform all values in the original dataset using the 
mapping to obtain compressed coordinates. 

F. Divide and Conquer 

This approach involves three main steps: divide, conquer, 
and combine. The divide step breaks a problem into smaller 
subproblems of similar type, the conquer step solves these 
subproblems either directly or recursively, and the combine step 
merges the solutions to form the final answer. The method is 
naturally expressed through recursive schemes and is 
particularly effective for problems where the input can be 
partitioned into smaller, manageable instances, such as arrays, 
matrices, exponents, or polynomials. 

The algorithmic structure follows a recursive pattern. If the 
problem size is below a threshold 𝑛0, it’s solved directly. 
Otherwise, it’s divided into 𝑟 subproblems, each recursively 

solved, and their solutions are combined. The time complexity 
is expressed as a recurrence relation: 

 

Fig. 17. Divide and Conquer Time Complexity.    

[Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/07-

Algoritma-Divide-and-Conquer-(2025)-Bagian1.pdf] 

Where 𝑔(𝑛) is the time to solve a base case, and 𝑓(𝑛) is the 
time to combine solutions. A common case is dividing the 
problem into two equal parts, yielding 𝑇(𝑛) = 2𝑇(𝑛/2) +
𝑓(𝑛). 

G. Depth-First Search (DFS) 

Depth-First Search (DFS) is a graph traversal algorithm that 
explores as far as possible along each branch before 
backtracking. The algorithm starts at a selected node (root) and 
explores each adjacent node recursively, marking nodes as 
visited to avoid cycles. The traversal steps will continues until 
all reachable nodes are visited. 

III. STUDY CASE 1 

A. Problem Definition 

One of the problem discussed in this paper involves the 
optimal division of individuals into a fixed number of sequential 
groups, such that the unfamiliarity between individuals within 
each group is minimized. 

Formally, let there be 𝑛 individuals labeled 𝑝1, 𝑝2, … , 𝑝𝑛 , 
aligned in a queue. The goal is to allocate these individuals into 
exactly 𝑘 non-empty groups, where each group consists of a 
contiguous segment of people from the front of the remaining 
queue. Let 𝑞1, 𝑞2, … , 𝑞𝑘 denote the number of people in each 
group, then the following must hold: 

𝑞𝑖 > 0 𝑓𝑜𝑟𝑎𝑙𝑙 𝑖, ∑ 𝑞𝑖 = 𝑛

k

𝑖=1

 

Each unordered pair of individuals (𝑝𝑖 , 𝑝𝑗) is assigned an 

unfamiliarity score 𝑢𝑖𝑗 ∈ Z≥0, with the following properties: 

𝑢𝑖𝑗 = 𝑢𝑗𝑖 ,           𝑢𝑖𝑖 = 0, 0 ≤ uij ≤ 9 

The unfamiliarity of a group is defined as the sum of all 𝑢𝑖𝑗 

for all unordered pairs 𝑖, 𝑗 within that group. The objective is to 
find a partition into exactly 𝑘 contiguous groups that minimizes 
the total unfamiliarity cost across all groups. 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/07-Algoritma-Divide-and-Conquer-(2025)-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/07-Algoritma-Divide-and-Conquer-(2025)-Bagian1.pdf
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B. Solution 

 

Fig. 18. Codeforces: 321E - Ciel and Gondolas Solution    

[Source: Author] 

In order to solve the sequential unfamiliarity minimization 
problem, we adopt a dynamic programming framework 
optimized through the divide-and-conquer paradigm. The idea is 
to represent the problem as a partitioning task over a queue of 
individuals, where each partition contributes a quadratic cost 
derived from pairwise unfamiliarities among its members. This 
can allows us to exploit structural properties of the cost function 
in order to improve computational efficiency. 

The first part of the solution involves precomputing 
cumulative unfamiliarity scores using a two-dimensional prefix 
sum matrix. Let 𝑎[𝑖][𝑗] denote the total unfamiliarity between 
the first 𝑖 individuals in the queue. Using the standard inclusion-
exclusion principle, this allows for constant-time queries of the 
total unfamiliarity cost within any rectangular submatrix of the 
input. 

We can define a dynamic programming state 𝑑𝑝[𝑔][𝑚], 
which represents the minimal total unfamiliarity achievable by 
partitioning the first 𝑚 individuals into 𝑔 contiguous segments. 

𝑑𝑝[𝑔][𝑚] = 𝑚𝑖𝑛𝑖=𝑔−1
𝑚 (𝑑𝑝[𝑔 − 1][𝑖 − 1] + 𝑐𝑜𝑠𝑡(𝑖, 𝑚)) 

where 𝑐𝑜𝑠𝑡(𝑖, 𝑚) denotes the total unfamiliarity score for 
assigning individuals 𝑖 through 𝑚 to a group. 

 By applying Divide and Conquer Optimization will reduces 
the overall time complexitity of the dynamic programming from 
𝑂(𝑘𝑛2) to 𝑂(𝑘𝑛 𝑙𝑜𝑔 𝑛). Optimized recurrence can also be 
implemented using a recursive function 
𝑐𝑜𝑚𝑝𝑢𝑡𝑒(𝑔, 𝑙, 𝑟, 𝑜𝑝𝑡𝐿, 𝑜𝑝𝑡𝑅). 

 After computing the dynamic programming table, the final 
result is obtained from 𝑑𝑝[𝑘][𝑛], that represents the minimum 
possible unfamiliarity when dividing all 𝑛 individuals into 𝑘 

groups. Since each pairwise unfamiliarity 𝑢𝑖𝑗 is counted twice, 

the final result is divided by two before being the output. 

 

Fig. 19. Submission result for Codeforces: 321E - Ciel and Gondolas  

[Source: Author] 

IV. STUDY CASE 2 

A. Problem Definition 

The problem addressed in this section concerns the 
identification of possible source locations of a spreading 
anomaly (referred to as the Book of Evil) within a network of 
interconnected settlements. Formally, the area is modeled as a 
tree an undirected, connected, and acyclic graph with 𝑛 nodes 
and 𝑛 − 1 bidirectional edges (paths). 

Each edge represents a direct connection between two 
settlements and has a uniform traversal cost of 1. Among these 
𝑛 settlements, 𝑚 settlements are known to be affected by the 
Book of Evil. The book if placed at certain settlement, can exert 
an influence with a fixed radius 𝑑. 

The objective is to determine the number of settlements 
where the Book of Evil may be located, under the condition that 
if it were placed in such a settlement, all 𝑚 affected settlements 
would fall within a distance of at most 𝑑 from it. 

B. Solution 

 

Fig. 20. Codeforces: 337D – Book of Evil Solution    

[Source: Author] 

The approach leverages a bottom-up traversal to collect 
information from subtrees and a top-down traversal to propagate 
external information from parent and sibling subtrees. 
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Let the given tree be denoted by 𝑇 = (𝑉, 𝐸), with |𝑉| = 𝑛 
nodes and |𝐸| = 𝑛 − 1 edges. A subset 𝐴 ⊆ 𝑉, where |𝐴| = 𝑚, 
contains all settlements reported to be affected by the Book of 
Evil.  

The objective is to determine for how many nodes 𝑢 ∈ 𝑉 it 
holds that the distance from 𝑢 to every node in 𝐴 is less than or 
equal to the damage threshold 𝑑. Define a function 𝐷(𝑢) ≤ 𝑑. 
Computing 𝐷(𝑢) for all nodes 𝑢 ∈ 𝑉 in naïve manner would 
involve performing breadth-first search (BFS) or depth-first 
search (DFS) from each node, resulting in a time complexity of 
𝑂(𝑛𝑚) in the worst case, which is computationally infeasible 
for large 𝑛 and 𝑚.  

The first phase involves performing a bottom-up DFS 
traversal starting from an arbitrary root (e.g., node 1). For each 
node 𝑢: 

-     𝑓[𝑢][0]: the maximum distance from 𝑢 to any affected node 
 in its own subtree. 

-     𝑓[𝑢][1]: the second maximum distance, used to handle 
 rerooting transitions correctly. 

If a node 𝑢 in the set 𝐴, it is better to initialize 𝑓[𝑢][0] = 0 

And 𝑓[𝑢][1] =  −∞. Otherwise, these values are inherited from 
its child nodes during traversal and incremented by one. 

 The second phase involves a top-down traversal that 
propagate the maximum distance from affected nodes outside 
the current node’s subtree. Let 𝑢𝑝[𝑢] denote the maximum 
distance from 𝑢 to any node in 𝐴 not contained in its own 
subtree. This value is computed recursively using the upward 
distance of its parent and the appropriate sibling subtree depths, 
ensuring that each node receives the most relevant information 
from the rest of the tree. 

 After both passes are complete, each node 𝑢 ∈ 𝑉 has a 
complete view of its distance to the furthest affected node. 

𝐷(𝑢) = 𝑚𝑎𝑥(𝑓[𝑢][0], 𝑢𝑝[𝑢]) 

If 𝐷(𝑢) ≤ 𝑑, then 𝑢 is included in the answer. This check is 
performed in constant time per node and since both traversals 
are linear in the number of nodes, the total time complexity 
remains 𝑂(𝑛). 

 

Fig. 21. Submission Result for Codeforces: 337D – Book of Evil   

[Source: Author] 

V. CONCLUSION 

In this paper, we have explored advanced optimization 
techniques in dynamic programming through the lens of 
discretization and state partitioning. These strategies have 
proven indispensable in overcoming challenges posed by large 
state spaces and high time complexity. Discretization, through 
techniques such as coordinate compression, enables the 
transformation of large numeric domains into compact, 
indexable forms—making them amenable to efficient data 
structures. Meanwhile, state partitioning strategies, exemplified 
by divide and conquer DP and rerooting on trees, exploit the 

mathematical structure of problems to significantly reduce 
redundant computations. 

Theoretical discussions were supported by two real-world 
competitive programming cases. The first showcased how 
divide and conquer optimization reduces DP complexity from 
𝑂(𝑘 ⋅ 𝑛2) to 𝑂(𝑘 ⋅ 𝑛 𝑙𝑜𝑔 𝑛) while the second demonstrated how 
tree rerooting allows linear-time resolution of center-point 
queries on affected nodes. 

VI. APPENDIX 

The following is the source code used to solve several problems 

from Codeforces that used as study cases in this paper.  

https://github.com/AzriVz/makalah-matematika-diskrit 
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