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Abstract—Most of Large Language Models (LLMs) struggle 

with hallucinations due to their limited and static internal 

knowledge. Retrieval-Augmented Generation (RAG) improves 

this by providing models with relevant external memory. 

However, standard RAG typically uses flat vector search without 

preserving semantic relationships. GraphRAG addresses this 

limitation by integrating Knowledge Graphs (KGs) into the 

retrieval process. In this paper, we examine how knowledge 

graphs can be constructed from textual sources (e.g., support logs 

or FAQs), how relevant subgraphs can be retrieved using 

algorithms such as breadth-first search, and how this structured 

context can improve question-answering performance. 
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I.  INTRODUCTION 

In recent years, Large Language Models (LLMs) have 
improved exponentially. These modern generative models, 
trained on a massive scale of data, are capable of performing 
complex tasks such as summarization, translation, question 
answering, and more. However, they still have some 
downsides—most notably, hallucination, which in the context of 
LLMs refers to the generation of content that is inconsistent with 
reality or factual information [1]. To address this issue, 
researchers have developed methods to augment generative 
models with external knowledge, enabling them to retrieve 
supporting information from a database or document collection 
during inference. This approached is known as Retrieval-
Augmented Generation (RAG) [2]. By referencing external 
sources, RAG reduces the problem of generating false or 
incorrect text or content. 

RAG enables LLMs to improve factuality and maintain up-
to-date knowledge by incorporating a large document corpus—
as context for generating answers. While this is an effective 
improvement over standalone generation, traditional RAG still 
treats retrieved documents as unstructured text [3]. As a result, 
they often overlook the underlying relationships and structures 
present within or across documents, making it difficult for the 
model to perform multi-step reasoning or link related concepts. 

In response to this limitation, more structured retrieval 
methods have been proposed, one of which is GraphRAG. This 
method integrates knowledge graphs—graph-based 
representations of entities and their relationships—into the RAG 
pipeline. By using these graphs, GraphRAG improves the 

quality and clarity of the information retrieved to support LLM-
generated responses. 

II. RAG OVERVIEW 

Naïve RAG combines two major components: a retriever 
and a generator. The retriever selects relevant documents or 
passages from an external knowledge base based on a given 
input query, while the generator uses the retrieved texts to 
produce an answer. 

A naïve RAG pipeline operates as follows: Let a user provide 
a query q. The retriever searches a document collection 𝐷, which 
is processed into smaller chunks {𝑐1, 𝑐2, … , 𝑐𝑘}. These chunks 
are embedded into vectors using an embedding model, which is 
stored in a vector database, such as FAISS. The query 𝑞 is 
similarly embedded, and the retriever then compares these 
embeddings with the stored vectors using similarity metrics, 
such as cosine similarity, to identify the most relevant passages 
[5]. This part returns top-𝑘 most relevant document chunks 
{𝑑1, 𝑑2, … , 𝑑𝑘} ⊆ 𝐷, that most likely contain the answer to the 
user’s query. A visual overview of the entire pipeline is 
illustrated in Fig. 1. 

The generator, typically a large language model, then takes 
the original query q and the retrieved passages as input context 
to generate an output 𝑎. This can be represented as: 

 𝑎 = Generator (𝑞 | {𝑑1, 𝑑2, … , 𝑑𝑘}) (1) 

This particular framework often lacks an understanding of 
deeper semantic structures or relationships across documents. 
Each passage is treated independently, and any 
interconnections—such as entity relationships or causal links—
are ignored. 

III. KNOWLEDGE GRAPHS 

A knowledge graph (KG) is a structured representation of 
information in the form of a directed graph, where nodes 
represent entities and edges represent relationships between 
them [6]. Each edge in a knowledge graph typically captures a 
fact in the form of a triplet: subject, predicate, and object. 

As early as 2012, Google introduced the knowledge graph as 
a semantic enhancement of Google’s search function. Instead of 
just matching strings of text, it allowed the system to understand 
and search for “things”—real-world entities like people, places, 
or objects [7].  
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Fig. 1. Overview of a naïve Retrieval-Augmented Generation (RAG) pipeline example. The system consists of a retriever and a generator. A user query is first 

embedded and used to retrieve relevant document chunks from a vector database. 1) Retrieval: retrieve the top-𝑘 chunks based on the user’s query. 2) Generator: 

the retrieved chunks are combined with the query and passed to a LLM for answer generation. Note: Figure layout design inspired by prior RAG architecture 

visualizations in [5], adapted and modified. 

 

This graph-based structure allows for efficient organization, 
querying, and inference over complex semantic relationships 
that are difficult to capture using plain text. 

Fig. 2. An example of a knowledge graph represented as a labeled directed 
graph. Each node (e.g., u, v, x) represents an entity, and each labeled edge (e.g., 

r1, r2, r3, r4) encodes a semantic relation between entities. 

Formally, a knowledge graph can be defined as a labeled 
directed graph: 

 𝐺 = (𝑉, 𝐸) (2) 

where: 
- 𝑉 is the set of nodes (entities), 
- 𝑅 is the set of relation labels, 
- 𝐸 ⊆ 𝑉 × 𝑅 × 𝑉 is the set of directed, labeled edges 

(triplets), where each edge (𝑢, 𝑟, 𝑣) ∈ 𝐸 represents a fact: 
entity 𝑢 is related to entity 𝑣 through relation 𝑟. 

This triplet format is commonly used in Resource 
Description Framework (RDF) and is the basis for many graph-
based knowledge systems such as DBpedia, Wikidata, YAGO, 
Google’s Knowledge Graph, Facebook entity graphs, etc. 

Fig. 3. Comparison between unstructured text retrieval (left), which selects 
passages independently, and structured graph-based retrieval (right), which 

captures semantic relationships through edges. 

IV. GRAPHRAG 

GraphRAG is a refinement of the RAG framework that 
introduces structure into the retrieval process by replacing flat 
document vectors with a knowledge graph. Instead of retrieving 
top-𝑘 passages based on vector similarity, GraphRAG retrieves 
subgraphs of semantically connected entities and relations that 
are relevant to a given query, thus naming it as a graph search 
problem.
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Fig. 4.  Examples of query processor in GraphRAG. These include entity recognition, relation extraction, query structuration, decomposition, and expansion. Each 

step helps convert a raw user query into a more formal or structured representation suitable for graph-based reasoning and retrieval. Note: Figure layout design 

inspired by query processor visualizations in [8], adapted and modified. 

 

With the rise of LLMs, the way knowledge graphs are used 
has started to change. Instead of serving only as static data 
sources, they now play a more active role in RAG pipelines.  

Knowledge graphs help establish links between concepts, 
which can reduce hallucinations, add context, and support 
memory or personalization features for LLMs. This significantly 
improves RAG systems to be more robust and easier to scale—
especially as the graph construction process becomes 
increasingly automated. Knowledge graphs not only serve as 
data stores for information retrieval but also as semantic 
structures that organize vector-based chunks. 

Following the general structure of RAG, a GraphRAG 
system can be decomposed into few key components operating 
over a graph-structured data source 𝐺. Given a user-defined 
query 𝑞, the pipeline proceeds through the following 
components [8]: 

• Query processor: transforms the input into a form compatible 
with the knowledge graph 𝐺. 

 �̂� = Process(𝑞) (3) 

• Retriever: retrieve subgraphs relevant to the processed query 
�̂� from the knowledge graph 𝐺. 

 𝐶 = Retrieve(�̂�, 𝐺) (4) 

• Organizer: refines and filters the retrieved graph 𝐶. 

 �̂� = Organize(�̂�, 𝐶) (5) 

• Generator: produces the final output 𝑎 using both processed 

query �̂� and refined subgraph �̂�. 

 𝑎 = Generate(�̂�, �̂�) (6) 

 

In a full implementation, this graph is typically constructed 
from unstructured documents through processes such as entity 

and relation extraction. However, in this example, we assume 
that the data is already organized in graph format. 

Among these components, the query processor plays a 
crucial role in transforming text documents into a structured 
form that can interact meaningfully with a knowledge graph.  

This transformation often involves a pipeline of sub-tasks 
such as entity recognition, relation extraction, query 
structuration, and query expansion. Each task helps reduce 
ambiguity and makes the meaning of the query clearer. These 
sub-tasks are shown in Fig. 4. 

While GraphRAG primarily uses knowledge graphs built 
from entities and relations, the same framework can also be 
applied to other types of structured data, depending on the 
implementation domain. These include: 

• Document graphs, where nodes represent sections and edges 
represent semantic links. 

• Molecular graphs, which model atoms and chemical bonds 
for tasks like drug discovery. 

• Social graphs, where nodes represent users and edges capture 
interactions such as friend status, shared interests, or message 
replies.  

Each graph type comes with its own structure, semantics, and 
retrieval challenges, to make domain-specific implementation of 
the GraphRAG architecture [8, 10]. 

This structured retrieval process allows GraphRAG to 
preserve the semantic relationships between concepts, enabling 
more accurate and interpretable responses. By using graph 
searching rather than the usual similarity search, GraphRAG 
supports multi-hop reasoning, captures latent relationships, and 
organizes context in a way that improves robustness and 
scalability. These capabilities—multi-hop reasoning and latent 
relation capture—are explained in more detail in later section. 
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Fig. 5. End-to-end pipeline for constructing a knowledge graph from text. The process starts with raw unstructured text, followed by named entity recognition and 

relation extraction, which are used to form subject–predicate–object triplets. These triplets are then assembled into a graph structure representing semantic 

relationships. 

 

Overall, GraphRAG helps connect unstructured search with 
structured reasoning. It gives clear advantages in accuracy, 
clarity, and results for tasks that need a lot of knowledge in 
natural language processing. 

V. METHODOLOGY 

A. Graph Construction 

The first step is to transform unstructured documents—such 
as FAQs, support logs, or research summaries—into a structured 
knowledge graph. This process usually involves the following 
stages: 

1. Named Entity Recognition (NER) 

NER is the task of identifying real-world entities in the 
text, such as people, organizations, locations, or 
technical concepts. This process is usually done using 
natural language processing tools such as spaCy, 
BERT-based models, Stanford NER, domain-specific 
tagger, and many more. 

2. Relation Extraction 

This stage extracts or identifies semantic relations 
between pairs of entities, typically using dependency 
parsing, pattern-based matching, or trained relation 
classifiers. 

For example, a sentence like “The router connects to the 
internet” would produce a semantic relation, as shown 
on the right side of Fig. 3. 

3. Triplet Formation 

Present the extracted relation into the format of triplets 
(subject, predicate, object). Each extracted triplet 
becomes a labeled edge in the graph, as shown in (2), 
where 𝐸 ⊆ 𝑉 × 𝑅 × 𝑉, as mentioned in Section III. 

4. Building the Graph 

Map the triplets into a graph data structure (2), where 
each node in the graph represents an entity and each 
edge represents a semantic relation between two 
entities.  

This graph may be stored in a structured data format 
using graph libraries or graph databases. The resulting 
knowledge graph is used as the retrieval backbone in 
GraphRAG. 

B. Query Preprocessing 

When a user inputs a query 𝑞, the system applies a query 
processing pipeline to align it with the already-built knowledge 
graph. This includes: 

1. Entity Linking 

Identify which entities in the KG are mentioned or 
implied in 𝑞. 

2. Relation Mapping 

Match keywords or verbs in 𝑞 to relation types in the 
knowledge graph. 

3. Query Structuring & Expansion 

In some cases, we need to reduce the complexity of the 
questions into sub-questions or expand the query with 
synonyms, aliases, or inferred terms, as seen in Fig. 4. 

This results in a structured query �̂�, which serves as input to 
the graph retriever, as mentioned in (3) and (4). 

C. Subgraph Retrieval 

The system retrieves a relevant subgraph 𝐶 ⊆ 𝐺, as in (4), 
using graph traversal methods based on the structured query �̂�. 
Retrieval strategies may include [11, 12, 13]:  

1. k-hop Neighborhood Search 

Collect all nodes within 𝑘 steps from a source node 
(typically 𝑘 = 1,2,3). This process generally employs 
the breadth-first search (BFS) algorithm to find the 
shortest paths and identify the 𝑘-hop neighbors 
efficiently. The equation is as follows: 

 𝑁𝑘(𝑣) = {𝑢 ∈ 𝑉 ∣ distance(𝑣, 𝑢) ≤ 𝑘} (7) 

 

There are several important characteristics of k-hop 
neighborhood retrieval [14]: 
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• The value of k is determined by the shortest distance 
and it is unique. For example, in Fig. 6, suppose 
there are multiple paths between nodes A and C 
(such as A–C, A–D–C, and A–D–E–C). Since the 
shortest distance is 1 (A–C), node C will appear 
only in the 1-hop neighborhood of A and will not 
be included in the results of 2-hop or 3-hop queries. 

• The 𝑘-hop results are deduplicated. For instance, if 
there are two distinct shortest paths between nodes 
A and E (e.g., A–C–E and A–D–E), node E will still 
appear only once in the 2-hop neighborhood of A. 

 

This strategy ensures that subgraph retrieval remains 
both accurate and efficient, avoiding redundant traversal 
and maintaining consistent structural interpretation of 
node distances. 

Fig. 6. An illustration of 𝑘-hop neighborhood around node A. 

Nodes {B, C, D} are the 1-hop neighbors, {E, F, G} are 2-hop 

neighbors, and node {H} is the 3-hop neighbor. Image taken from 

[14]. 

2. Path-based Retrieval 

Path-based retrieval aims to find connections between 
multiple entities mentioned in a user query. Rather than 
retrieving unrelated facts about each entity individually, 
the system identifies simple paths—non-repeating 
sequences of nodes—that link these entities together 
within the graph. 

By chaining knowledge across multiple entities, we 
would get better answer. For example, consider the 
question: “What protein is associated with the disease 
treated by Drug X?”. Here, the answer involves 
connecting Drug X → Disease Y → Protein Z. 

Path-based retrieval captures this connection by 
identifying: 

 Path(𝑋, 𝑍) = {𝑋 → 𝑌 → 𝑍} (8) 

Given a graph 𝐺 as in (2), and a source node 𝑠 and target 
node 𝑡, a simple path is a sequence: 

 𝑠 = 𝑣0, 𝑣1, … , 𝑣𝑘 = 𝑡 (9) 

 

such that: 
- (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸 for all 𝑖 ∈ [0, 𝑘 − 1], 
- All 𝑣𝑖 are distinct. 

This approach enables multi-hop reasoning, where the 
answer is obtained by following meaningful chains of 
entities and relations, improving accuracy and semantic 
relevance. 

3. Subgraph Filtering 

Subgraph filtering refers to the post-processing step 
after retrieval, where the goal is to remove irrelevant 
nodes—or so-called noise—and edges from the 
subgraph. This step is usually done based on relation 
types, semantic types, or relevance score. 

 For example, even after subgraph retrieval, some nodes 
may remain off-topic, contain duplicate or redundant 
information, or offer minimal value to the query context. 
These nodes would overwhelm the overall structure, 
thus bring back the hallucination problem—similar to 
what occurs in naïve RAG system. 

Fig. 7. Visualization of a subgraph within a larger knowledge 

graph. The full graph (left) contains various entities and relations. The 

subgraph highlighted in red (right) represents a reasoning path 

relevant to a specific query [15]. 

The final filtered subgraph �̂� ⊆ 𝐺, as in (5),  is smaller, more 
coherent, and optimized for interpretability and answer 
generation.  

D. Graph-based Contextualization 

After retrieving a subgraph, the information is converted into 
natural language prompts. This contextual information is then 
combined with the original query and passed to a language 
model. There are two primary strategies: 

1. Text-based Serialization 

In this approach, the retrieved subgraph is verbalized—
that is, each triplet is transformed into a natural language 
sentence. For instance, each triplet shown in Fig. 3, can 
be serialized into: “Laptop connects to Router. Router 
provides Internet.” 

This process is repeated for all triplets in the filtered 

subgraph �̂�. The resulting statements are then combined 
into a single text as a context. 
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2. Logical Representation 

In settings where symbolic reasoning or exact logic is 
desired, the subgraph may instead be expressed in a 
structured knowledge representation language, such as 
Resource Description Framework (RDF) triples [17].  

For example: 

:Router :connects_to :Internet . 

:Modem :provides :Internet . 

After converting the subgraph into either natural language or 
a logical format, the next step is to combine the contextual 
information with user query. This combined input serves as the 
complete prompt for the generator module. Usually, this 
integration is done by prepending the contextual knowledge to 
the query, ensuring that the model processes the relevant 
information first and incorporates it into the generation process. 

E. Answer Generation  

The final stage of the GraphRAG pipeline is to generate an 
output 𝑎, conditioned on the structured query �̂� and the context 

�̂�, as shown in (6). The generator usually takes the form of a 
LLM, such as GPT, BART, LLaMA, etc. These models receive 
the combined input—including both the retrieved contextual 
knowledge and user query—and generate a response based on 
this prompt. 

VI. CONCLUSION 

In this paper, we explored the use of knowledge graphs to 
improve Retrieval-Augmented Generation (RAG) systems, 
focusing on the GraphRAG framework. Unlike traditional RAG, 
which uses vector similarity to find unstructured document 
chunks, GraphRAG uses structured graph-based retrieval to 
capture more semantic relationships between entities. This 
allows it to perform multi-hop reasoning and deliver more 
accurate and connected answers. 

We explained how a GraphRAG system works—from 
building the graph using entity and relation extraction, to 
retrieving subgraphs based on user queries, and finally 
generating answers with structured context. 

Although building knowledge graphs can be challenging, 
especially in domain-specific cases, GraphRAG offers a strong 
foundation for making large language models more reliable, 
especially as graph construction becomes easier with new tools.  

In conclusion, GraphRAG combines unstructured text search 
with structured reasoning, making use of the best of both worlds. 
Its ability to retrieve information in a more meaningful way 
makes it a strong foundation for future systems that rely on 
external knowledge. 

VIDEO LINK AT YOUTUBE 

https://youtu.be/VqhosB7FxQs  
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