
Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

A Study of Knowledge Graph Integration in

Retrieval-Augmented Generation

Nathaniel Christian - 13524122

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: nathaniel.christian@gmail.com, 13524122@std.stei.itb.ac.id

Abstract—Most of Large Language Models (LLMs) struggle

with hallucinations due to their limited and static internal

knowledge. Retrieval-Augmented Generation (RAG) improves

this by providing models with relevant external memory.

However, standard RAG typically uses flat vector search without

preserving semantic relationships. GraphRAG addresses this

limitation by integrating Knowledge Graphs (KGs) into the

retrieval process. In this paper, we examine how knowledge

graphs can be constructed from textual sources (e.g., support logs

or FAQs), how relevant subgraphs can be retrieved using

algorithms such as breadth-first search, and how this structured

context can improve question-answering performance.

Keywords—GraphRAG, Retrieval-Augmented Generation,

Question Answering, Knowledge Graphs

I. INTRODUCTION

In recent years, Large Language Models (LLMs) have
improved exponentially. These modern generative models,
trained on a massive scale of data, are capable of performing
complex tasks such as summarization, translation, question
answering, and more. However, they still have some
downsides—most notably, hallucination, which in the context of
LLMs refers to the generation of content that is inconsistent with
reality or factual information [1]. To address this issue,
researchers have developed methods to augment generative
models with external knowledge, enabling them to retrieve
supporting information from a database or document collection
during inference. This approached is known as Retrieval-
Augmented Generation (RAG) [2]. By referencing external
sources, RAG reduces the problem of generating false or
incorrect text or content.

RAG enables LLMs to improve factuality and maintain up-
to-date knowledge by incorporating a large document corpus—
as context for generating answers. While this is an effective
improvement over standalone generation, traditional RAG still
treats retrieved documents as unstructured text [3]. As a result,
they often overlook the underlying relationships and structures
present within or across documents, making it difficult for the
model to perform multi-step reasoning or link related concepts.

In response to this limitation, more structured retrieval
methods have been proposed, one of which is GraphRAG. This
method integrates knowledge graphs—graph-based
representations of entities and their relationships—into the RAG
pipeline. By using these graphs, GraphRAG improves the

quality and clarity of the information retrieved to support LLM-
generated responses.

II. RAG OVERVIEW

Naïve RAG combines two major components: a retriever
and a generator. The retriever selects relevant documents or
passages from an external knowledge base based on a given
input query, while the generator uses the retrieved texts to
produce an answer.

A naïve RAG pipeline operates as follows: Let a user provide
a query q. The retriever searches a document collection 𝐷, which
is processed into smaller chunks {𝑐1, 𝑐2, … , 𝑐𝑘}. These chunks
are embedded into vectors using an embedding model, which is
stored in a vector database, such as FAISS. The query 𝑞 is
similarly embedded, and the retriever then compares these
embeddings with the stored vectors using similarity metrics,
such as cosine similarity, to identify the most relevant passages
[5]. This part returns top-𝑘 most relevant document chunks
{𝑑1, 𝑑2, … , 𝑑𝑘} ⊆ 𝐷, that most likely contain the answer to the
user’s query. A visual overview of the entire pipeline is
illustrated in Fig. 1.

The generator, typically a large language model, then takes
the original query q and the retrieved passages as input context
to generate an output 𝑎. This can be represented as:

 𝑎 = Generator (𝑞 | {𝑑1, 𝑑2, … , 𝑑𝑘}) (1)

This particular framework often lacks an understanding of
deeper semantic structures or relationships across documents.
Each passage is treated independently, and any
interconnections—such as entity relationships or causal links—
are ignored.

III. KNOWLEDGE GRAPHS

A knowledge graph (KG) is a structured representation of
information in the form of a directed graph, where nodes
represent entities and edges represent relationships between
them [6]. Each edge in a knowledge graph typically captures a
fact in the form of a triplet: subject, predicate, and object.

As early as 2012, Google introduced the knowledge graph as
a semantic enhancement of Google’s search function. Instead of
just matching strings of text, it allowed the system to understand
and search for “things”—real-world entities like people, places,
or objects [7].

mailto:nathaniel.christian@gmail.com
mailto:13524122@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig. 1. Overview of a naïve Retrieval-Augmented Generation (RAG) pipeline example. The system consists of a retriever and a generator. A user query is first

embedded and used to retrieve relevant document chunks from a vector database. 1) Retrieval: retrieve the top-𝑘 chunks based on the user’s query. 2) Generator:

the retrieved chunks are combined with the query and passed to a LLM for answer generation. Note: Figure layout design inspired by prior RAG architecture

visualizations in [5], adapted and modified.

This graph-based structure allows for efficient organization,
querying, and inference over complex semantic relationships
that are difficult to capture using plain text.

Fig. 2. An example of a knowledge graph represented as a labeled directed
graph. Each node (e.g., u, v, x) represents an entity, and each labeled edge (e.g.,

r1, r2, r3, r4) encodes a semantic relation between entities.

Formally, a knowledge graph can be defined as a labeled
directed graph:

 𝐺 = (𝑉, 𝐸) (2)

where:
- 𝑉 is the set of nodes (entities),
- 𝑅 is the set of relation labels,
- 𝐸 ⊆ 𝑉 × 𝑅 × 𝑉 is the set of directed, labeled edges

(triplets), where each edge (𝑢, 𝑟, 𝑣) ∈ 𝐸 represents a fact:
entity 𝑢 is related to entity 𝑣 through relation 𝑟.

This triplet format is commonly used in Resource
Description Framework (RDF) and is the basis for many graph-
based knowledge systems such as DBpedia, Wikidata, YAGO,
Google’s Knowledge Graph, Facebook entity graphs, etc.

Fig. 3. Comparison between unstructured text retrieval (left), which selects
passages independently, and structured graph-based retrieval (right), which

captures semantic relationships through edges.

IV. GRAPHRAG

GraphRAG is a refinement of the RAG framework that
introduces structure into the retrieval process by replacing flat
document vectors with a knowledge graph. Instead of retrieving
top-𝑘 passages based on vector similarity, GraphRAG retrieves
subgraphs of semantically connected entities and relations that
are relevant to a given query, thus naming it as a graph search
problem.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig. 4. Examples of query processor in GraphRAG. These include entity recognition, relation extraction, query structuration, decomposition, and expansion. Each

step helps convert a raw user query into a more formal or structured representation suitable for graph-based reasoning and retrieval. Note: Figure layout design

inspired by query processor visualizations in [8], adapted and modified.

With the rise of LLMs, the way knowledge graphs are used
has started to change. Instead of serving only as static data
sources, they now play a more active role in RAG pipelines.

Knowledge graphs help establish links between concepts,
which can reduce hallucinations, add context, and support
memory or personalization features for LLMs. This significantly
improves RAG systems to be more robust and easier to scale—
especially as the graph construction process becomes
increasingly automated. Knowledge graphs not only serve as
data stores for information retrieval but also as semantic
structures that organize vector-based chunks.

Following the general structure of RAG, a GraphRAG
system can be decomposed into few key components operating
over a graph-structured data source 𝐺. Given a user-defined
query 𝑞, the pipeline proceeds through the following
components [8]:

• Query processor: transforms the input into a form compatible
with the knowledge graph 𝐺.

 �̂� = Process(𝑞) (3)

• Retriever: retrieve subgraphs relevant to the processed query
�̂� from the knowledge graph 𝐺.

 𝐶 = Retrieve(�̂�, 𝐺) (4)

• Organizer: refines and filters the retrieved graph 𝐶.

 �̂� = Organize(�̂�, 𝐶) (5)

• Generator: produces the final output 𝑎 using both processed

query �̂� and refined subgraph �̂�.

 𝑎 = Generate(�̂�, �̂�) (6)

In a full implementation, this graph is typically constructed
from unstructured documents through processes such as entity

and relation extraction. However, in this example, we assume
that the data is already organized in graph format.

Among these components, the query processor plays a
crucial role in transforming text documents into a structured
form that can interact meaningfully with a knowledge graph.

This transformation often involves a pipeline of sub-tasks
such as entity recognition, relation extraction, query
structuration, and query expansion. Each task helps reduce
ambiguity and makes the meaning of the query clearer. These
sub-tasks are shown in Fig. 4.

While GraphRAG primarily uses knowledge graphs built
from entities and relations, the same framework can also be
applied to other types of structured data, depending on the
implementation domain. These include:

• Document graphs, where nodes represent sections and edges
represent semantic links.

• Molecular graphs, which model atoms and chemical bonds
for tasks like drug discovery.

• Social graphs, where nodes represent users and edges capture
interactions such as friend status, shared interests, or message
replies.

Each graph type comes with its own structure, semantics, and
retrieval challenges, to make domain-specific implementation of
the GraphRAG architecture [8, 10].

This structured retrieval process allows GraphRAG to
preserve the semantic relationships between concepts, enabling
more accurate and interpretable responses. By using graph
searching rather than the usual similarity search, GraphRAG
supports multi-hop reasoning, captures latent relationships, and
organizes context in a way that improves robustness and
scalability. These capabilities—multi-hop reasoning and latent
relation capture—are explained in more detail in later section.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig. 5. End-to-end pipeline for constructing a knowledge graph from text. The process starts with raw unstructured text, followed by named entity recognition and

relation extraction, which are used to form subject–predicate–object triplets. These triplets are then assembled into a graph structure representing semantic

relationships.

Overall, GraphRAG helps connect unstructured search with
structured reasoning. It gives clear advantages in accuracy,
clarity, and results for tasks that need a lot of knowledge in
natural language processing.

V. METHODOLOGY

A. Graph Construction

The first step is to transform unstructured documents—such
as FAQs, support logs, or research summaries—into a structured
knowledge graph. This process usually involves the following
stages:

1. Named Entity Recognition (NER)

NER is the task of identifying real-world entities in the
text, such as people, organizations, locations, or
technical concepts. This process is usually done using
natural language processing tools such as spaCy,
BERT-based models, Stanford NER, domain-specific
tagger, and many more.

2. Relation Extraction

This stage extracts or identifies semantic relations
between pairs of entities, typically using dependency
parsing, pattern-based matching, or trained relation
classifiers.

For example, a sentence like “The router connects to the
internet” would produce a semantic relation, as shown
on the right side of Fig. 3.

3. Triplet Formation

Present the extracted relation into the format of triplets
(subject, predicate, object). Each extracted triplet
becomes a labeled edge in the graph, as shown in (2),
where 𝐸 ⊆ 𝑉 × 𝑅 × 𝑉, as mentioned in Section III.

4. Building the Graph

Map the triplets into a graph data structure (2), where
each node in the graph represents an entity and each
edge represents a semantic relation between two
entities.

This graph may be stored in a structured data format
using graph libraries or graph databases. The resulting
knowledge graph is used as the retrieval backbone in
GraphRAG.

B. Query Preprocessing

When a user inputs a query 𝑞, the system applies a query
processing pipeline to align it with the already-built knowledge
graph. This includes:

1. Entity Linking

Identify which entities in the KG are mentioned or
implied in 𝑞.

2. Relation Mapping

Match keywords or verbs in 𝑞 to relation types in the
knowledge graph.

3. Query Structuring & Expansion

In some cases, we need to reduce the complexity of the
questions into sub-questions or expand the query with
synonyms, aliases, or inferred terms, as seen in Fig. 4.

This results in a structured query �̂�, which serves as input to
the graph retriever, as mentioned in (3) and (4).

C. Subgraph Retrieval

The system retrieves a relevant subgraph 𝐶 ⊆ 𝐺, as in (4),
using graph traversal methods based on the structured query �̂�.
Retrieval strategies may include [11, 12, 13]:

1. k-hop Neighborhood Search

Collect all nodes within 𝑘 steps from a source node
(typically 𝑘 = 1,2,3). This process generally employs
the breadth-first search (BFS) algorithm to find the
shortest paths and identify the 𝑘-hop neighbors
efficiently. The equation is as follows:

 𝑁𝑘(𝑣) = {𝑢 ∈ 𝑉 ∣ distance(𝑣, 𝑢) ≤ 𝑘} (7)

There are several important characteristics of k-hop
neighborhood retrieval [14]:

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

• The value of k is determined by the shortest distance
and it is unique. For example, in Fig. 6, suppose
there are multiple paths between nodes A and C
(such as A–C, A–D–C, and A–D–E–C). Since the
shortest distance is 1 (A–C), node C will appear
only in the 1-hop neighborhood of A and will not
be included in the results of 2-hop or 3-hop queries.

• The 𝑘-hop results are deduplicated. For instance, if
there are two distinct shortest paths between nodes
A and E (e.g., A–C–E and A–D–E), node E will still
appear only once in the 2-hop neighborhood of A.

This strategy ensures that subgraph retrieval remains
both accurate and efficient, avoiding redundant traversal
and maintaining consistent structural interpretation of
node distances.

Fig. 6. An illustration of 𝑘-hop neighborhood around node A.

Nodes {B, C, D} are the 1-hop neighbors, {E, F, G} are 2-hop

neighbors, and node {H} is the 3-hop neighbor. Image taken from

[14].

2. Path-based Retrieval

Path-based retrieval aims to find connections between
multiple entities mentioned in a user query. Rather than
retrieving unrelated facts about each entity individually,
the system identifies simple paths—non-repeating
sequences of nodes—that link these entities together
within the graph.

By chaining knowledge across multiple entities, we
would get better answer. For example, consider the
question: “What protein is associated with the disease
treated by Drug X?”. Here, the answer involves
connecting Drug X → Disease Y → Protein Z.

Path-based retrieval captures this connection by
identifying:

 Path(𝑋, 𝑍) = {𝑋 → 𝑌 → 𝑍} (8)

Given a graph 𝐺 as in (2), and a source node 𝑠 and target
node 𝑡, a simple path is a sequence:

 𝑠 = 𝑣0, 𝑣1, … , 𝑣𝑘 = 𝑡 (9)

such that:
- (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸 for all 𝑖 ∈ [0, 𝑘 − 1],
- All 𝑣𝑖 are distinct.

This approach enables multi-hop reasoning, where the
answer is obtained by following meaningful chains of
entities and relations, improving accuracy and semantic
relevance.

3. Subgraph Filtering

Subgraph filtering refers to the post-processing step
after retrieval, where the goal is to remove irrelevant
nodes—or so-called noise—and edges from the
subgraph. This step is usually done based on relation
types, semantic types, or relevance score.

 For example, even after subgraph retrieval, some nodes
may remain off-topic, contain duplicate or redundant
information, or offer minimal value to the query context.
These nodes would overwhelm the overall structure,
thus bring back the hallucination problem—similar to
what occurs in naïve RAG system.

Fig. 7. Visualization of a subgraph within a larger knowledge

graph. The full graph (left) contains various entities and relations. The

subgraph highlighted in red (right) represents a reasoning path

relevant to a specific query [15].

The final filtered subgraph �̂� ⊆ 𝐺, as in (5), is smaller, more
coherent, and optimized for interpretability and answer
generation.

D. Graph-based Contextualization

After retrieving a subgraph, the information is converted into
natural language prompts. This contextual information is then
combined with the original query and passed to a language
model. There are two primary strategies:

1. Text-based Serialization

In this approach, the retrieved subgraph is verbalized—
that is, each triplet is transformed into a natural language
sentence. For instance, each triplet shown in Fig. 3, can
be serialized into: “Laptop connects to Router. Router
provides Internet.”

This process is repeated for all triplets in the filtered

subgraph �̂�. The resulting statements are then combined
into a single text as a context.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

2. Logical Representation

In settings where symbolic reasoning or exact logic is
desired, the subgraph may instead be expressed in a
structured knowledge representation language, such as
Resource Description Framework (RDF) triples [17].

For example:

:Router :connects_to :Internet .

:Modem :provides :Internet .

After converting the subgraph into either natural language or
a logical format, the next step is to combine the contextual
information with user query. This combined input serves as the
complete prompt for the generator module. Usually, this
integration is done by prepending the contextual knowledge to
the query, ensuring that the model processes the relevant
information first and incorporates it into the generation process.

E. Answer Generation

The final stage of the GraphRAG pipeline is to generate an
output 𝑎, conditioned on the structured query �̂� and the context

�̂�, as shown in (6). The generator usually takes the form of a
LLM, such as GPT, BART, LLaMA, etc. These models receive
the combined input—including both the retrieved contextual
knowledge and user query—and generate a response based on
this prompt.

VI. CONCLUSION

In this paper, we explored the use of knowledge graphs to
improve Retrieval-Augmented Generation (RAG) systems,
focusing on the GraphRAG framework. Unlike traditional RAG,
which uses vector similarity to find unstructured document
chunks, GraphRAG uses structured graph-based retrieval to
capture more semantic relationships between entities. This
allows it to perform multi-hop reasoning and deliver more
accurate and connected answers.

We explained how a GraphRAG system works—from
building the graph using entity and relation extraction, to
retrieving subgraphs based on user queries, and finally
generating answers with structured context.

Although building knowledge graphs can be challenging,
especially in domain-specific cases, GraphRAG offers a strong
foundation for making large language models more reliable,
especially as graph construction becomes easier with new tools.

In conclusion, GraphRAG combines unstructured text search
with structured reasoning, making use of the best of both worlds.
Its ability to retrieve information in a more meaningful way
makes it a strong foundation for future systems that rely on
external knowledge.

VIDEO LINK AT YOUTUBE

https://youtu.be/VqhosB7FxQs

ACKNOWLEDGMENT

The author would like to thank Dr. Ir. Rinaldi Munir and
Arrival Dwi Sentosa, for their guidance and support throughout
the IF1220 Discrete Mathematics course. Appreciation is also
extended to fellow students for their discussions and feedback
during the preparation of this work.

REFERENCES

[1] P. Wang, Y. Liu, Y. Lu, J. Hong, and Y. Wu, “What are Models Thinking
about? Understanding Large Language Model Hallucinations
‘Psychology’ through Model Inner State Analysis,” arXiv preprint
arXiv:2502.13490, 2025.

[2] P. Lewis et al., “Retrieval-Augmented Generation for Knowledge-
Intensive NLP Tasks,” arXiv preprint arXiv:2005.11401, 2021.

[3] Z. Xu, M. J. Cruz, M. Guevara, T. Wang, M. Deshpande, X. Wang, and
Z. Li, “Retrieval-Augmented Generation with Knowledge Graphs for
Customer Service Question Answering,” arXiv preprint
arXiv:2404.17723, 2024.

[4] D. Edge et al., “From local to global: A Graph RAG approach to query-
focused summarization,” arXiv preprint arXiv:2404.16130, 2024.

[5] S. Wu et al., “Retrieval-Augmented Generation for Natural Language
Processing: A Survey,” arXiv preprint arXiv:2407.13193, 2024.

[6] L. Ehrlinger and W. Wöß, "Towards a definition of knowledge graphs,"
in Joint Proceedings of the Posters and Demos Track of the 12th
International Conference on Semantic Systems (SEMANTiCS 2016) and
the 1st International Workshop on Semantic Change & Evolving
Semantics (SuCCESS16), Leipzig, Germany, Sept. 2016, vol. 1695.

[7] A. Singhal, “Introducing the Knowledge Graph: things, not strings,”
Google Blog, 2012. [Online]. Available:
https://blog.google/products/search/introducing-knowledge-graph-
things-not/

[8] H. Han et al., "Retrieval-Augmented Generation with Graphs
(GraphRAG)," arXiv preprint arXiv:2501.00309, 2025.

[9] H. Han et al., "RAG vs. GraphRAG: A Systematic Evaluation and Key
Insights," arXiv preprint arXiv:2502.11371, 2025.

[10] https://github.com/Graph-RAG/GraphRAG

[11] Y. Tian, “Graph Neural Prompting with Large Language Models”, AAAI,
vol. 38, no. 17, pp. 19080-19088, Mar. 2024.

[12] M. Yasunaga, H. Ren, A. Bosselut, P. Liang, and J. Leskovec, “QA-GNN:
Reasoning with language models and knowledge graphs for question
answering,” arXiv preprint arXiv:2104.06378, 2022.

[13] M. Yasunaga, A. Bosselut, H. Ren, X. Zhang, C. D. Manning, P. Liang,
and J. Leskovec, “Deep bidirectional language-knowledge graph
pretraining,” arXiv preprint arXiv:2210.09338, 2022.

[14] Ultipa, “K-Hop Traversal - Ultipa Documentation.” [Online]. Available:
https://www.ultipa.com/docs/uql/k-hop. Accessed: Jun. 18, 2025.

[15] K. S. Yow, N. Liao, S. Luo, and R. Cheng, “Machine Learning for
Subgraph Extraction: Methods, Applications and Challenges,” Proc.
VLDB Endow., vol. 16, no. 12, pp. 3864–3867, Aug. 2023.

[16] IBM Technology, “GraphRAG vs. Traditional RAG: Higher Accuracy &
Insight with LLM,” YouTube, Feb 17, 2025. [Online video]. Available:
https://www.youtube.com/watch?v=Aw7iQjKAX2k

[17] RDF/JS, “Data Model Specification,” RDF/JS: JavaScript RDF Library
Interfaces, 2022. [Online]. Available: https://rdf.js.org/data-model-spec/.
Accessed: Jun. 18, 2025.

https://youtu.be/VqhosB7FxQs
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://github.com/Graph-RAG/GraphRAG
https://www.ultipa.com/docs/uql/k-hop
https://www.youtube.com/watch?v=Aw7iQjKAX2k
https://rdf.js.org/data-model-spec/

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini

adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari

makalah orang lain, dan bukan plagiasi.

Bandung, 20 Juni 2025

Nathaniel Christian – 13524122

