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Abstract—Architectural wiring diagrams are pictures that 

show the approximate locations and interconnections of 

receptacles, lighting, and permanent electrical services in a 

building. Optimizing the layout of a wiring diagram can save 

time and money involved in the installation of said wiring. This 

paper examines the implementation of Prim’s algorithm to find 

the minimum spanning tree for a weighted graph and 

investigates the use of restrictions to adjust the graph based on 

real-life situations. 
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I.  INTRODUCTION 

An architectural wiring diagram serves as a comprehensive 
visual representation or blueprint that details the entire 
electrical wiring system within a building or a specific room. 
Unlike schematic diagrams, which focus on the theoretical 
operation of circuits, architectural wiring diagrams emphasize 
the physical layout, showing the approximate locations and 
interconnections of electrical components such as receptacles, 
lighting fixtures, switches, circuit breakers, and permanent 
electrical services. These diagrams use standardized symbols to 
represent different types of devices, ensuring clarity and 
consistency for electricians, engineers, and inspectors involved 
in the design, installation, and maintenance processes. 

Fig. 1. An example of an architectural wiring diagram. (Source: 

https://www.edrawmax.com/house-wiring-diagram/) 

 

Wiring diagrams are indispensable tools in both the 
planning and execution phases of electrical installation. They 
not only guide the initial installation by illustrating how each 
component should be connected, but also serve as essential 
references for troubleshooting, upgrades, and repairs 
throughout the building’s lifecycle. By providing a clear map 
of the wiring routes and device placements, these diagrams 
help ensure that electrical power is distributed efficiently and 
safely to operate a wide range of devices and appliances. 
Furthermore, accurate wiring diagrams are often required by 
regulatory authorities to verify compliance with safety 
standards and approve connections to the public electrical 
supply system. 

 

Optimizing the design process of a wiring diagram can 
significantly reduce both the time and materials required for 
installation, while also minimizing the risk of workplace 
injuries associated with inefficient layouts or excessive wiring. 
One effective method for achieving such optimization is the 
application of graph theory, specifically by using a minimum 
spanning tree (MST) to visualize the shortest and most cost-
effective set of paths between electrical fixtures. By 
minimizing the total length of wiring needed, designers can 
reduce material costs and simplify installation procedures. 

 

This paper explores the implementation of Prim’s algorithm 
in the context of architectural wiring diagram design. The study 
investigates how Prim’s algorithm can be used to identify the 
optimal wiring paths that connect all necessary fixtures with 
the least total wire length. Additionally, the paper examines the 
impact of applying algebraic restrictions to the underlying 
graph, analyzing how these constraints affect the resulting 
network topology and overall efficiency. 

II. THEORETICAL FRAMEWORK 

A. Graph Theory 

Graph theory is a branch of mathematics dedicated to 
studying graphs, which are abstract structures used to model 
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pairwise relationships between entities or objects. In this 
context, a graph is formally defined as a collection of vertices 
(also called nodes or points) and edges (also referred to as arcs, 
links, or lines) that connect pairs of vertices. The edges can be 
either undirected (signifying a two-way relationship) or 
directed, signifying a one-way relationship from one vertex to 
another. 

The origins of graph theory date back to 1735, when 
Leonhard Euler solved the famous Königsberg bridge problem, 
laying the foundation for the field. Since then, graph theory has 
become a fundamental area within discrete mathematics, with 
wide-ranging applications in computer science, engineering, 
social sciences, biology, and more. For example, graphs are 
used to model communication networks, transportation 
systems, social networks, and molecular structures. 

Graphs can be further classified based on their properties. 
For instance, a graph is called Eulerian if it contains a circuit 
that traverses every edge exactly once, and weighted if each 
edge is assigned a numerical value, which is particularly useful 
in optimization problems such as finding the shortest path or 
minimum spanning tree. The study of graphs also includes 
concepts such as graph coloring, connectivity, and subgraphs, 
each providing tools for analyzing complex relational data. 

B. Tree 

Within graph theory, a tree is a special type of graph 
characterized by being connected and acyclic—that is, there is 
a path between every pair of vertices, and no cycles exist 
within the structure. More formally, a tree with n vertices 
always has exactly n−1 edges, and removing any edge from a 
tree would disconnect the graph. Another equivalent definition 
states that for any two vertices in a tree, there exists exactly one 
unique path connecting them. 

 

Fig. 2. An example of a tree. (Source: https://www.shmoop.com/computer-

science/graphs/trees.html) 

Trees are fundamental in both theoretical and applied 
contexts due to their strong structural properties. In computer 
science, trees serve as essential data structures for organizing 
and storing information efficiently, such as in file systems, 
database indexing, and hierarchical data representation. 
Additionally, trees are used in algorithms for searching, 
sorting, and parsing, as well as in network design and data 
compression techniques like Huffman coding. 

 

A related concept is the forest, which is a disjoint union of 
trees—essentially, a graph with no cycles that may not be 
connected. In a tree, a vertex of degree one is called a leaf, 
representing an endpoint in the structure. 

C. Minimum Spanning Tree 

A minimum spanning tree (MST) is the subgraph of an 
edge-weighted graph that connects every vertex within the 
graph, is a tree (contains no cycles), and has the minimum 
combined edge-weight of all subgraphs that fulfill the previous 
two conditions. 

 

 

Fig. 3. An example of a minimum spanning tree. (Source: 

https://byjus.com/gate/minimum-spanning-tree-notes/) 

Minimum spanning trees play a crucial role in network design 
and optimization. They are widely used in constructing 
efficient communication, transportation, and utility networks, 
ensuring that all points are connected with the least total cost. 
Applications include designing computer and telephone 
networks, road systems, and electrical grids, where minimizing 
the overall connection cost is essential for efficiency and 
resource management. 

D. Prim’s Algorithm 

Prim's algorithm is a greedy method used to identify a 

minimum spanning tree within a weighted, undirected graph. It 

selects a group of edges that connect all vertices without 

forming any cycles, ensuring the sum of the edge weights is as 

low as possible. The process begins with any chosen vertex and 

progressively expands the tree by repeatedly adding the least 

expensive edge that links the existing tree to a new vertex until 

every vertex is connected. 

III. IMPLEMENTATION 

This paper conducts a comprehensive examination of 
Prim's algorithm implementation for identifying minimum 
spanning trees (MSTs) in wiring diagram optimization. The 
methodology employs C programming language with strategic 
library integration to achieve robust functionality. String.h and 
stdlib.h enable advanced string parsing for user-defined 
parameters, facilitate dynamic memory allocation for graph 
structures, and provide pseudorandom number generation via 
rand(). Time.h seeds random number generation using 
srand(time(NULL)) to ensure non-repetitive coordinate 
sequences. 



Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025 

 

Firstly, to represent a wiring diagram, we generate several 
random coordinates using the rand() function within stdlib.h 
and store them within an array. 

 

Fig. 4. Code snippet used to generate random coordinates between (–1, –1, –

1) and (1,1,1). 

Next, we create a complete graph from every vertex within 
the diagram as the basis for our MST. We do this by iterating 
through every combination of vertices, creating an edge 
between them, and storing the edges in another array. 

 

Fig. 5. Code snippet used to generate an edge between every unique pair of 

vertices. 

Using this complete graph, we create a minimum spanning 
tree using Prim’s algorithm, using the length of the edge as its 
weight. 

 

Fig. 6. Code snippet used to create a MST out of a graph using Prim’s 

algorithm. 

 

A. Results 

The results of the implementation are as thus: 

Fig. 7. Series of random coordinates generated to represent a set of fixtures 

in a wiring diagram. 

 

 

 

 

 

Fig. 8. Same series of coordinates, visualized in desmos 3D. 

 

Fig. 9. List of every edge between two unique pairs of vertices in Fig. 7, 

written for compatibility with desmos 3D. 

 

Fig. 10. Same list of edges, visualized in desmos 3D. 

 

Fig. 11. Resulting MST from Prim’s algorithm. 
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Fig. 12. The MST, visualized in desmos 3D. 

From the results, we can see that Prim’s algorithm is indeed 
successful in creating a MST from the set of vertices. Checking 
the distances between the two points that seem closest together 
(marked in red and white) show that the chosen edge is the 
shortest way to reach the right red point. 

  

Fig. 13. Distance calculations for the original edge (left) and the proposed 

edge (right, showing that the original edge is part of the MST. 

B. Restrictions 

In real-world spatial applications—such as plumbing 
layouts, architectural planning, or circuit design—physical 
barriers often prevent direct connections between vertices. 
Examples include: 

- Structural obstacles like walls, columns, or load-
bearing beams 

- Functional constraints (e.g., preserving living spaces 
between fixtures) 

- Safety regulations requiring clearance zones 

These limitations necessitate modifying graphs to exclude 
impractical edges before applying algorithms like Prim's MST. 
Without this step, the resulting connections would violate real-
world feasibility. 

Any restriction that is composed of straight, orthogonal 
edges (aligned with Cartesian axes) can be modeled with a 
series of linear inequalities, like thus: 

 

Fig. 14. Example set of restrictions and the visualization in desmos 3D. 

We can see that the set of restrictions is composed of 
several linear inequalities joined by OR (commas) and AND 
(curly brackets) operands. This structure can be modeled with a 
tree. 

- Root node checks edge viability 

- Branches split into sub-conditions (AND/OR layers) 

- Leaf nodes represent atomic inequalities 

This structure enables efficient edge validation through 
recursive tree traversal. 

 

Fig. 15. Tree representation of the set of restrictions from Fig. 14. 

 To implement these restrictions, we check every edge to 
see if at least part of the edge fulfills the restrictions. If part of 
the edge does fulfill all the restrictions, we don’t add it to the 
interim graph. 

 

Fig. 16. Updated edge generation snippet, now cheking for restrictions before 

adding the edge to the array. 
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C. Results of Investigations on Restrictions 

After generating another set of random coordinates, the 
result of the updated implementation is as thus: 

 

Fig. 17. MST generated from new set of coordinates. 

From the results, we can see that the MST does follow the 
restrictions inputted into the program, validating our 
investigation. 

IV. CONCLUSION 

This study demonstrates that Prim’s algorithm is an 
effective tool for optimizing architectural wiring diagrams by 
generating a minimum spanning tree (MST) that connects all 
electrical fixtures with the least total wire length. The 
implementation successfully models wiring layouts as 
weighted graphs, allowing the algorithm to identify the most 
efficient paths and thereby reduce material costs and 
installation time. Furthermore, the introduction of real-world 
restrictions—such as physical barriers or inaccessible areas—
can be incorporated into the graph model using algebraic 
constraints, ensuring that the generated MST adheres to 
practical limitations commonly encountered in building design. 
The results confirm that Prim’s algorithm not only produces 
optimal wiring layouts in idealized conditions but also remains 
robust and adaptable when faced with complex, real-life 
constraints. This approach offers a systematic and scalable 
method for improving the efficiency and safety of electrical 
installations in architectural projects. 

V. FURTHER WORK 

While the current approach effectively models spatial 
restrictions using linear inequalities and logical operators to 
exclude impractical edges, further progress can be achieved by 
incorporating non-linear restrictions. Many real-world 
constraints—such as curved architectural features, irregular 
safety zones, or complex functional boundaries—cannot be 
accurately represented by linear inequalities alone. By 
extending the model to support non-linear restrictions, such as 
quadratic or polynomial inequalities, circular clearance zones, 
or spline-defined obstacles, the graph pruning process can 
better reflect realistic environments. This advancement would 
require adapting the edge validation algorithm to handle more 
complex geometric checks, potentially leveraging 

computational geometry techniques or numerical solvers. 
Consequently, the resulting minimum spanning trees (MSTs) 
would not only respect orthogonal and linear constraints but 
also conform to intricate spatial limitations, enhancing the 
applicability and precision of the algorithm in diverse real-
world scenarios. 

LINKS 

Link to mega folder containing video: 

https://mega.nz/folder/bYwggLrK#jhJgcQYydN-
cc353raSyEw 

Link to github repo:  

https://github.com/kalkabena/MST 
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