
Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Propositional Logic Application In Prolog

Programming Language

 Rainaldi Pratama F Sembiring - 13524117

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: raynaldismb@gmail.com , 13524117@std.stei.itb.ac.id

Abstract— The Prolog programming language is widely

recognized for its foundation in the declarative paradigm, setting

it apart from common imperative and object-oriented languages.

This study aims to investigate the practical application of

propositional logic within Prolog to determine the depth of this

relationship. While logic is known to be the foundation of

computer science and reasoning, the direct, functional mapping

between formal logical concepts and Prolog's syntax is often not

explicitly detailed. Adopting a practical methodology, this

research utilized Visual Studio Code as the primary text editor

and the GNU Prolog compiler to translate theoretical logical

constructs into executable code. The analysis involved creating a

knowledge base of facts and rules and executing queries to test

logical arguments. The findings reveal that propositional logic is

not merely applicable to Prolog, but constitutes its fundamental

operational core. It was found that atomic propositions directly

translate to Prolog facts, which serve as the axiomatic truths of a

program. Furthermore, logical operators such as conjunction

(AND) and disjunction (OR) are functionally implemented by

Prolog's operators, respectively. Most significantly, the logical

implication, or the conditional statement "if p, then q", is the

foundational structure of every Prolog rule (conclusion :-

premise.). The query-execution mechanism is a direct automation

of logical inference, mirroring argument forms like Modus

Ponens. This study concludes that a thorough understanding of

these logical underpinnings is essential for programmers to

leverage the full power of Prolog, shifting from a purely syntactic

approach to a truly logical and declarative mindset.

Keywords—prolog, propositional logic

I. INTRODUCTION

Logic is a field of knowledge that functions as a
foundational pillar in computer science, serving as an essential
framework for thinking and reasoning. The process of
reasoning itself is defined as the method of reaching a
conclusion based on a series of multiple statements. One of the
main branches of this study is propositional logic, which
focuses specifically on the relationships between declarative
statements, or propositions. A proposition is formally defined
as a sentence that has a definitive truth value—it is either true
or false, but not both simultaneously. The most basic of these
are atomic propositions, which are singular statements of truth.
These can then be combined using logical constructs, or
operators, such as conjunction (AND), disjunction (OR), and

negation (NOT), to form more complex compound
propositions that allow for sophisticated logical expressions.

Nowadays, a vast array of programming languages exists,
each designed for specific purposes; for instance, Dart is
typically used for creating mobile applications with its
framework, Flutter. While the majority of these languages are
built on imperative or object-oriented paradigms, which require
step-by-step instructions, Prolog is a notable exception that
utilizes the declarative paradigm. As its name suggests, Prolog
stands for "Programming in Logic" and is a logical and
declarative programming language. This paradigm is rooted in
a different approach: program statements express facts and
rules about a problem rather than defining an explicit procedure
for its solution. This makes Prolog particularly suitable for
programs that involve symbolic or non-numeric computation.
For this reason, Prolog was famously adopted by the Japanese
Fifth-Generation Computer Project and remains a primary
language in the field of Artificial Intelligence, where
fundamental tasks like symbol manipulation and inference
manipulation are paramount.

This study focuses on analysing the practical application of
propositional logic within the Prolog programming language to
demonstrate the depth and functionality of their integration.
The discussion will begin by showing how the fundamental
building blocks of logic—atomic and compound
propositions—are translated into a Prolog knowledge base
composed of facts and rules. Following this, the paper will
analyse how the logical implication form, "if p, then q",
becomes the very backbone of Prolog's inference engine,
forming the structure of its rules (conclusion :- premise.) and
enabling its capacity for reasoning. Finally, it will illustrate
how Prolog automates the validation of logical arguments by
treating the program's code as a series of premises and a user's
query as a conclusion to be proven, a process that mirrors valid
logical inference and makes Prolog a system designed for
executing logic.

mailto:raynaldismb@gmail.com
mailto:13524117@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

II. LITERATURE REVIEW

A. Propositional Logic

Logic is knowledge that helps people with thinking and
reasoning, reasoning is a way to achieve conclusions from
multiple statements.

Logic is based on relation between sentences or statements,
only a sentence that has a truth value that’s considered a
proposition, proposition is a statement/sentence that’s either
true or false, but not both.

Propositional Logic is a branch of discrete mathematical
logic, propositional logic based on the relation between
sentence or statement, only sentences with a truth value (true or
false but not both) are considered. In terms of prolog logic,
propositional logic used is logical inference and resolution, it’s
also used to state facts and rules, and implement logical
connectives using operator such as:

1. Conjunction AND (∧)

This operator is true only if both connected
propositions are true.

p∧q = true if p = true and q = true.

2. Disjunction OR (∨)

This operator is true if at least one or both
connected propositions are true.

p∨q = ture if p = true or q = true.

3. Negation NOT (¬)

This operator reverses the truth value of an
argument.

If p = true, then ¬p = false.

4. Exclusive Disjunction ()

This operator is true if one proposition is true but
not both.

1. p = True dan q = False

2. p = False dan q = True

These are the propositional operators.

Pict 2.1 Truth table for the 4 propositional
operations

Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/M
atdis/2024-2025/01-Logika-2024.pdf

 Implication that also also called conditional proposition,
proposition form “if p, then q”, and the notation is p → q or the

equivalents is ~p q, p is premise, and q is conclusion,
implication is the representation of rules in prolog
programming languages

Pict 2.2 Implication truth table

Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/M
atdis/2024-2025/01-Logika-2024.pdf

 Two compound proposition is called equivalent if both
have identical truth table, this equivalent symbolized byP⇔Q.
One of the most important equivalents is De Morgan Law, that
is :

∼(p∧q)⇔∼p∨∼q.

 These concepts form the foundation for constructing and
analyzing arguments. An argument is a series of propositions
consisting of premises and a conclusion. An argument is said to
be valid if its conclusion is true when all of its hypotheses are
true. Otherwise, the argument is considered false or invalid.
The validity of an argument can be demonstrated by showing
that the implication (p1∧p2∧...∧pn)→q is a tautology, that is, a
proposition that is always true in all cases. Well-established
rules of inference, such as Modus Ponens (p→q,p⇒q) and
Modus Tollens (p→q,∼q⇒∼p), are often used to validate
arguments.

B. Prolog

 The heritage of prolog includes research on theorem
provers and some other automated deduction systems that were
developed in 1960s and 1970s. The Inference mechanism of
the Prolog is based on Robinson’s Resolution Principle, that
was proposed in 1965, and Answer extracting mechanism by
Green (1968). These ideas came together forcefully with the
advent of linear resolution procedures.

 The explicit goal-directed linear resolution procedures gave
impetus to the development of a general-purpose logic
programming system. The first Prolog was the Marseille
Prolog based on the work by Colmer Auer in the year 1970.
The manual of this Marseille Prolog interpreter (Roussel, 1975)
was the first detailed description of the Prolog language.

 Prolog is also considered as a fourth-generation
programming language supporting the declarative
programming paradigm. The well-known Japanese Fifth-
Generation Computer Project, that was announced in 1981,

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/01-Logika-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/01-Logika-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/01-Logika-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/01-Logika-2024.pdf

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

adopted Prolog as a development language, and thereby
grabbed considerable attention on the language and its
capabilities.

 Prolog as the name itself suggests, is the short form of
LOGical PROgramming. It is a logical and declarative
programming language. Before diving deep into the concepts
of Prolog, let us first understand what exactly logical
programming is.

 Logic Programming is one of the Computer Programming
Paradigm, in which the program statements express the facts
and rules about different problems within a system of formal
logic. Here, the rules are written in the form of logical clauses,
where head and body are present. For example, H is head and
B1, B2, B3 are the elements of the body. Now if we state that
“H is true, when B1, B2, B3 all are true”, this is a rule. On the
other hand, facts are like the rules, but without anybody. So, an
example of fact is “H is true”.

 Some logic programming languages like Datalog or ASP
(Answer Set Programming) are known as purely declarative
languages. These languages allow statements about what the
program should accomplish. There is no such step-by-step
instruction on how to perform the task. However, other
languages like Prolog, have declarative and also imperative
properties. This may also include procedural statements like
“To solve the problem H, perform B1, B2 and B3”

 The difference between logical programming and
functional programming.

Pict 2.3 Difference between logical programming and
functional shown with a picture.

Source:

https://www.tutorialspoint.com/prolog/prolog_tutorial.pdf

 From this illustration, we can see that in Functional
Programming, we have to define the procedures, and the rules
of how the procedures work. These procedures work step by
step to solve one specific problem based on the algorithm. On
the other hand, for Logic Programming, we will provide a
knowledge base. Using this knowledge base, the machine can
find answers to the given questions, which is totally different
from functional programming.

 In functional programming, we have to mention how one
problem can be solved, but in logic programming we have to
specify for which problem we actually want the solution. Then
logic programming automatically finds a suitable solution that
will help us solve that specific problem.

Table 2.1 Difference between functional programming and
logic programming

Source:

https://www.tutorialspoint.com/prolog/prolog_tutorial.pdf

 Prolog or PROgramming in LOGics is a logical and
declarative programming language. It is one major example of
the fourth-generation language that supports the declarative
programming paradigm. This is particularly suitable for
programs that involve symbolic or non-numeric computation.
This is the main reason to use Prolog as the programming
language in Artificial Intelligence, where symbol manipulation
and inference manipulation are the fundamental tasks.

 In Prolog, we need not mention the way one problem can
be solved, we just need to mention what the problem is, so that
Prolog automatically solves it. However, in Prolog we are
supposed to give clues as the solution method.

 Prolog language basically has three different elements:

 Facts: The fact is predicate that is true, for example, if we
say, “Tom is the son of Jack”, then this is a fact.

 Rules: Rules are extinctions of facts that contain
conditional clauses. To satisfy a rule these conditions should be
met. For example, if we define a rule as:

Pict 2.4 rule example.

 This implies that if its rainy, then its wet, since the rainy
fact is stated above, then wet function value is true.

 Questions: And to run a prolog program, we need some
questions, and those questions can be answered by the given
facts and rules.

 Prolog's internal mechanisms automatically use inference
rules, as described in the theory of logic, to deduce answers to

https://www.tutorialspoint.com/prolog/prolog_tutorial.pdf
https://www.tutorialspoint.com/prolog/prolog_tutorial.pdf

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

given queries based on existing facts and rules. This makes
Prolog an ideal subject for analyzing direct applications of the
theory of propositional logic.

III. METHODOLOGY AND TOOLS

 This chapter outlines the practical methodology and
the specific software tools employed to conduct the analysis for
this paper. The research approach adopted for this study is
practical and analytical, designed to bridge the gap between the
theoretical principles of propositional logic and their functional
implementation within the Prolog programming language. The
core of this approach involved creating a knowledge base of
facts and rules and executing queries to test logical arguments.
This hands-on method of translating theoretical logical
constructs into executable code ensures that the findings are not
merely theoretical but are grounded in the actual, observable
behavior of a Prolog environment, making the conclusions both
practical and verifiable.

To facilitate this implementation and testing process, a
standard set of development tools was used, specifically Visual
Studio Code as the primary text editor and the GNU Prolog
compiler. All Prolog source code was written using Visual
Studio Code, a modern and extensible code editor whose
features, such as syntax highlighting and integrated terminal
support, provided an efficient environment for creating the
knowledge bases. The compilation and execution of the code
were handled by GNU Prolog, a free and widely used
implementation of the language. This tool served the dual
functions of a compiler, used to parse source files and check
for syntactical errors, and an interactive interpreter. The
interactive top-level shell was critical to the methodology, as it
allowed for the knowledge base to be loaded directly into
memory and for queries to be posed in real-time, providing
immediate feedback for testing the validity of the logical
arguments.

IV. ANALYSIS AND DISCUSSION

According to the established theoretical foundations of
propositional logic and Prolog programming languages detailed
in the previous chapter, this chapter will now begin the deep
and practical analysis required to demonstrate how facts and
rules are stated to represent propositional logic within the
Prolog programming language. This exploration starts by
examining the very heart of logical systems. Logic itself is a
field of knowledge that provides the essential tools for thinking
and reasoning, with reasoning defined as the process of
achieving conclusions from multiple statements. The entire
framework of reasoning is built upon its most fundamental
component: the proposition.

The analysis, therefore, commences with this foundational
building block. A proposition is formally defined as a
statement or sentence that is definitively either true or false, but
not both. The simplest form, a single or atomic proposition, is a
declarative statement asserting a singular, indivisible truth,
such as the example p : 13 is an odd number. In the Prolog

logic programming paradigm, this concept finds its direct and
functional equivalent in a fact. A fact in Prolog is defined as a
predicate that is asserted to be true and serves as the most basic
component for building a program by stating an unconditional
truth. It can also be understood as a special type of rule that has
no body or conditions. Therefore, the logical proposition p can
be represented within the Prolog knowledge base with the
following syntax, forming the ground truth from which the
program will reason:

Pict 4.1 fact example.

While atomic propositional is the fundamental, most logical
reasoning involves compound propositions, which are formed
by combining 2 or more propositions with connective
operators, such as:

Logic operator in prolog:

1. Conjunction (AND)

In prolog ‘,’ represents logical conjunction. So, a :- b, c.
means “a is true if b and c is true” in propositional logic.

c, it is usually written b∧c→a.

2. Disjunction (OR)

The logical representation of disjunction is a∨b →c, there is
no direct representation of disjunction in prolog like
conjunction does, but you can derive the logical notation
a∨b→c into a→c∨b→c, so it finally can be represented as:

c:-a.

c:-b.

means “if a or b is true then c is true”

3. Negation (NOT)

 Prolog provides “\+” for negation as failure, while not
strictly classical negation, it often serves a similar purpose in
practical applications. \+a. means “it’s not provable that it’s a”

 The most significant application of propositional logic
within Prolog is the implementation of logical implication. A
conditional proposition, expressed as “if p, then q”, is an
essential component of logical deduction and forms the very
structure of a prolog rule.In logic, implication writen with
p→q, where ‘p’ is premise and ‘q’ is conclusion, on the other
hand prolog has the syntax q:-p. Therefore, the rule q:-p is the
computational equivalent of the logical expression p→q. For
instance, the classic implication "if the temperature reach 80°C,
then the alarm will ring" directly translates into the Prolog rule
alarm_sounds :- temperature_reaches(80). This structure allows
Prolog to perform deductions; if the program can prove the
premise of a rule is true, it can then deduce that the conclusion
is also true.

Pict 4.2 logical implication in prolog.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

 Since we it is already stated that temperature_reaches(80),
so the value is true, then the alarm_sounds must be true too

Pict 4.3 query result from Pict 4.2

 As shown on the picture above, the query alarm_sounds
return the value true.

 This deductive capability allows Prolog to automate logical
arguments. An argument is a sequence of propositions, called
premises, that lead to a final proposition, the conclusion. An
argument is considered valid if the conclusion is necessarily
true whenever all premises are true. In Prolog, the entire
collection of facts and rules in a program forms the set of
premises, while a user's query represents the conclusion that
needs to be proven. The primary rule of inference that Prolog
uses is Modus Ponens, an argument form stated as: if (p→q) is
true and (p) is true, then (q) must be true. The provided source
material illustrates this with a clear example: the premise “If
the sea water recedes after an earthquake at sea, then a tsunami
will come” combined with the premise “The sea water recedes
after an earthquake at sea” leads to the valid conclusion
"tsunami will come". This is modeled in a Prolog knowledge
base with the rule tsunami_is_coming :-
sea_recedes_after_quake. and the fact
sea_recedes_after_quake. When a user poses the query ?-
tsunami_is_coming., Prolog's inference engine checks if the
conclusion logically follows from the premises, finds that it
does through a process identical to Modus Ponens, and
confirms the argument's validity by responding with true.

Pict 4.4 logical implication in prolog

Pict 4.5 query result from Pict 4.4

 As shown in the picture above, the query resulted a true.

Finally, the concept of logical equivalence, where

two compound propositions are considered equivalent if they

possess identical truth tables, holds significant practical value

in Prolog programming. Beyond well-known equivalences like

De Morgan's Law, which states that ∼(p∧q)⇔∼p∨∼q , a

particularly useful example in programming is the equivalence

between a logical implication (p→q) and its contrapositive

(∼q→∼p). The source material effectively demonstrates this

with the example of two shopkeeper mottos: the first stating

"if an item is good, it is not cheap" (p→∼q), and the second

stating "if an item is cheap, it is not good" (q→∼p). Although

these statements are worded differently, they are logically

identical, a fact verifiable through truth table analysis. This

equivalence provides flexibility to the programmer, who can

implement either is_not_cheap(Item) :- is_good(Item). or

is_not_good(Item) :- is_cheap(Item).. This choice can be

based on which formulation is more intuitive or leads to a

more computationally efficient search by Prolog's inference

engine, all while ensuring the logical integrity of the program

remains intact. This chapter has systematically demonstrated

the direct application of such core tenets of propositional logic

within the Prolog language. It has been established that atomic

propositions directly translate to Prolog facts, which serve as

the axiomatic truths of a program. Furthermore, it was shown

that logical operators like conjunction and disjunction are

functionally implemented by Prolog's syntax within its rules,

and that the logical implication is the foundational structure of

every Prolog rule (conclusion :- premise.). The query-

execution mechanism was revealed to be a direct automation

of logical inference, mirroring argument forms like Modus

Ponens to derive new truths. Prolog is, therefore, more than a

language inspired by logic; it is a system explicitly designed

for executing logic. Having established this foundational

mapping, the following chapter will apply these principles to a

comprehensive case study, demonstrating how this logical

framework can be used to solve a complex problem.

V. CONCLUSION

This study was conducted to investigate and analyze the
practical application of propositional logic within the Prolog
programming language, aiming to move beyond a general
acknowledgment of their connection to a detailed
demonstration of their functional relationship. The research
confirmed that the link is not superficial; propositional logic
constitutes the fundamental operational core of Prolog. The
analysis systematically revealed that the core components of
propositional logic have direct and tangible equivalents within
Prolog's structure. It was found that atomic propositions, which
are singular statements of truth such as "13 is an odd number",
are represented as Prolog facts, forming the axiomatic
foundation of a program's knowledge base. This initial
mapping establishes the groundwork upon which all other
logical operations are built, providing the unconditional truths
from which Prolog's reasoning engine begins its work.

Furthermore, the study demonstrated how compound
propositions are built using logical operators that are
functionally implemented in Prolog's syntax. The logical
conjunction (AND) is directly represented by the comma
operator (,) to connect multiple necessary conditions within the
premise of a rule. Disjunction (OR), while not having a single
direct operator within a rule's body, is effectively expressed by
defining multiple rules that share the same conclusion, stating
that the conclusion is true if any of the separate premises are
met. Most significantly, the analysis affirmed that logical
implication, the conditional statement "if p, then q", is the
foundational structure of every Prolog rule, expressed in the
syntactically reversed format conclusion :- premise.. This
structure allows Prolog to perform deductions, a capability that
is fully realized through its query-execution mechanism. This
mechanism was shown to be a direct automation of logical
inference, with its process mirroring established argument

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

forms like Modus Ponens to validate conclusions against a set
of premises, as demonstrated with the tsunami example.
Finally, the practical value of logical equivalence, such as the
relationship between an implication and its contrapositive, was
shown to allow for more intuitive and flexible program design,
enabling programmers to choose the most efficient or readable
representation of a logical truth.

In synthesizing these findings, this paper concludes that a
thorough understanding of these logical underpinnings is
essential for any programmer seeking to leverage the full
power of Prolog. This is because Prolog supports a declarative
paradigm where, unlike in functional or imperative
programming, the programmer's role is not to provide step-by-
step instructions on how to solve a problem, but rather to
specify what the problem is within a knowledge base of facts
and rules. The significance of this approach was recognized by
initiatives like the Japanese Fifth-Generation Computer
Project, which adopted Prolog due to its strengths in handling
symbolic or non-numeric computation. This knowledge
elevates a developer's approach from a purely syntactic one to a
truly logical and declarative mindset, which is critical in fields
like Artificial Intelligence where symbol manipulation and
inference manipulation are fundamental tasks.

Therefore, while this study has demonstrated numerous
applications of propositional logic in the Prolog programming
language, the ultimate conclusion is that the relationship is far
deeper. It is not just that propositional logic is applicable to
Prolog, but that propositional logic serves as the very
foundation on which the language is built. This research
solidifies that Prolog is a system meticulously designed for
executing logic, providing a computational framework for the
very act of thinking and reasoning. This understanding
demystifies the language, showing that its power comes not
from complex, user-defined algorithms, but from its innate
ability to perform inference manipulation over a well-defined
logical system. Ultimately, the language truly embodies its
name: Programming in Logic.

ACKNOWLEDGMENT

The author would like to express profound gratitude to
almighty God for blessing me throughout making this paper,
also the gratitude to Dr. Ir. Rinaldi Munir, M.T. for his
invaluable guidance and insights as IF1220 Discrete
Mathematics course lecturer, which greatly contributed to the
development of this paper, and and also an honorable thanks to
Yey’s Cozy Campfire(discord server), for being a place for
discussion and helping each other.

REFERENCES

[1] Munir, R. 2024. Logika. [online] Source :
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/01-
Logika-2024.pdf [Acessed: 18 June. 2025]

[2] Tutorialspoint, prolog_tutorial. [online] Source :
https://www.tutorialspoint.com/prolog/prolog_tutorial.pdf

[3] Paun, N. 2016. Propositional logic in prolog. [online] Source :
https://www.cs.mcgill.ca/~npaun/articles/propositional-logic-in-prolog

[4] a bit of intelligence, Logic and Prolog. [online] Source :
https://youtu.be/nDLrpT50vFE?si=m13FUZdU6s_LcJCi

STATEMENT

I hereby declare that this paper is my own work, not a
paraphrase or a translation of someone else’s paper, and
definitely not plagiarism.

Bandung, 19 June 2025

Ttd

Rainaldi Pratama F Sembiring 13524117

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/01-Logika-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/01-Logika-2024.pdf
https://www.tutorialspoint.com/prolog/prolog_tutorial.pdf
https://www.cs.mcgill.ca/~npaun/articles/propositional-logic-in-prolog
https://youtu.be/nDLrpT50vFE?si=m13FUZdU6s_LcJCi

