
Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Modeling Daily Healthy Meal Composition
Algorithm Using Recursive Constraints and

Combination with Repetition
Helena Kristela Sarhawa - 13524109

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung
E-mail: hkristela03@gmail.com , 13524109@std.stei.itb.ac.id

Abstract—Food is one of the fundamental human needs
as a primary source of energy. When the composition of
food consumed is not properly controlled, it may become a
source of health problems. Planning a healthy and
nutritionally balanced daily menu often poses a significant
challenge. This paper proposes an algorithmic model for
daily meal planning that considers both nutritional
requirements and menu diversity over a given time period.
The model utilizes the principle of combination with
repetition to generate all possible meal compositions that
satisfy the minimum and maximum nutritional thresholds
based on the user's age. Furthermore, recursive
constraints are applied to ensure that each daily menu
differs from the previous day. Mathematical induction is
employed to formally verify the correctness of the
proposed model.

Keywords—daily healthy menu, combination with
repetition, recursive constraint, mathematical induction,
meal planning

I. INTRODUCTION
Food is a fundamental human need that serves as a source

of energy for performing daily activities. Excessive
consumption or an unbalanced intake of nutrients can pose
health risks, such as obesity, diabetes, or malnutrition.
Therefore, maintaining a balanced and nutritious diet is
essential and should be carefully managed.

In daily life, people often face difficulties in planning daily
meals that meet nutritional requirements while remaining
varied from day to day. Monotony in meal choices may
decrease the motivation to maintain healthy eating habits.
Moreover, not everyone has the time or expertise to manually
calculate the nutritional content of meals.

This paper offers a solution through the design of an
algorithmic model capable of automatically generating daily
healthy meal compositions. The model applies principles of
Discrete Mathematics, particularly combination with repetition,
to construct all possible menu combinations from a predefined

set of food ingredients. To ensure variation between days,
recursive constraints are employed to prevent the selection of
identical menus in succession. Mathematical induction is also
applied as a means of proving that the model remains valid
over a defined time period. With the development of this paper,
it is expected that the model can serve as a foundation for
creating practical and health-oriented meal planning systems,
both for everyday use and in the form of digital meal planner
applications. Furthermore, the model is expected to be
applicable for widespread use, fostering healthier eating habits
within the community.

II. THEORETICAL FOUNDATIONS

A. Recursive Functions
Recursion refers to an object defined in terms of itself. A

recursive function is a rule for generating a value based on a
previous value. A recursive function consists of two parts: the
base case and the recurrence. The base case contains a value of
the function that is explicitly defined. The base serves to
terminate the recursion and acts as its stopping point.
Meanwhile, the recurrence part defines the function in terms of
itself by using the values of preceding elements. Examples of
such preceding elements include a0, a1, a2, …. an-1.

Fig. 2.1 Example of Recursive Function (Source:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/10-
Deretan,%20rekursi-dan-relasi-rekurens-(Bagian1)-2024.pdf)

Recursive functions are used to ensure that the menu on day
n is not identical to the menu on day n-1. The recursive
function will form recursive constraints in the day-to-day
iterations.

B. Combinatorics
Combinatorics is a branch of mathematics that deals with

counting the number of ways or possible arrangements of
objects without listing all possibilities one by one.

mailto:hkristela03@gmail.com
mailto:13524109@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Combinatorics is based on two basic counting principles: the
rule of product and the rule of sum. The rule of product is used
when calculating the number of ways in which multiple
conditions occur simultaneously. On the other hand, the rule of
sum is used when calculating the number of ways in which
multiple conditions may occur alternatively. The application of
both rules is illustrated as follows:

a. Rule of Product

Condition 1: a ways

Condition 2: b ways

Condition 1 and Condition 2: a × b ways

b. Rule of Sum

Condition 1: a ways

Condition 2: b ways

Condition 1 or Condition 2: a + b ways

 A permutation is the number of distinct sequences for
arranging objects. A permutation is a specific application of the
rule of product. A permutation of r from n elements is the
number of possible sequences of r elements chosen from n
distinct elements, assuming each element is unique.

Fig. 2.2 Definition of Permutation (Source:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/18-
Kombinatorika-Bagian1-2024.pdf)
 A specific form of permutation is called a combination. In a
combination, all elements are treated as identical. Thus, the
order in which elements appear is disregarded, as each element
is considered equal. A combination of r from n elements is the
number of ways to choose r elements from n elements without
considering the order of selection.

Fig. 2.3 Definition of Combination (Source:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/18-
Kombinatorika-Bagian1-2024.pdf)
 Combinations can also be applied with repetition. The
previous definition of combinations only applies when each
selection slot may be filled with at most one object. To allow
for more than one object in a slot, the concept of combination
with repetition is used. In the following definition, n denotes
the number of available slots, and r denotes the number of
objects to be distributed.

Fig. 2.4 Definition of Combination with Repetition (Source:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/19-
Kombinatorika-Bagian2-2024.pdf)

 The concept of combination with repetition will be used to
construct all possible combinations of food ingredients that
meet nutritional constraints.

C. Mathematical Induction
Mathematical induction is a method for proving the truth of

a statement that involves integers. Mathematical induction
helps reduce the steps needed for proof into a limited number
of steps. Without induction, all integers would have to be
verified one by one, which is inefficient and time-consuming.

In this paper, simple mathematical induction will be used.
Simple induction allows a statement to be proven using only
two main steps. The first step is called the base case, and the
second is the inductive step. The base case serves as the
starting point at which the statement is accepted as true.
Meanwhile, the inductive step demonstrates that the statement
holds for element n + 1, assuming it is true for element n,
where n is the base case. The inductive step uses an assumption
that the statement is true—this assumption is called the
inductive hypothesis. If both steps are proven valid, it can be
concluded that the statement is true for all integers greater than
the base case.

Mathematical induction works like a domino effect. To
knock down an entire sequence of dominoes, one only needs to
push the first piece so that the rest follow. With this
mechanism, mathematical induction only needs to prove that
the first element is valid and that the following one is also
valid. In this paper, mathematical induction will be used to
prove that the menu selection model is correct for any number
of days.

Fig. 2.5 Domino Effect (Source:
https://images.app.goo.gl/3xepumGFCtJaNUcm8)

III. MODEL DESIGN

A. Problem Definition
The main problem addressed in this model is how to

construct the composition of a daily food menu that is healthy
and nutritionally balanced, while taking into account the
differing nutritional needs of each individual. These nutritional
needs are influenced by age and gender factors. Therefore, the
developed model must be able to adjust the menu composition
based on the user profile.

This model refers to Angka Kecukupan Energi (AKE) as
stipulated in Peraturan Menteri Kesehatan Republik Indonesia
Nomor 28 Tahun 2019. The document provides the

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

recommended daily nutritional requirements based on age and
gender categories.

TABLE 3.1
Category Age/Condition Energy

(kcal)
Protein
(g)

Fat
(g)

Infant 0–5 months 550 9 31
Infant 6–11 months 800 15 35
Toddler 1–3 years 1350 20 45
Child 4–6 years 1400 25 50
Child 7–9 years 1650 40 55
Boy 10–12 years 2000 50 65
Girl 10–12 years 1900 55 65
Boy 13–15 years 2400 70 80
Girl 13–15 years 2050 65 70
Boy 16–18 years 2650 75 85
Girl 16–18 years 2100 65 70
Man 19–29 years 2650 65 75
Woman 19–29 years 2250 60 65
Man 30–49 years 2550 65 70
Woman 30–49 years 2150 60 60
Man 50–64 years 2150 65 60
Woman 50–64 years 1800 60 50
Man 65–80 years 1800 64 50
Woman 65–80 years 1550 58 45
Man 80+ years 1600 64 45
Woman 80+ years 1400 58 40

TABLE 3.2
Category Age/Condition Carbohydrate

(g)
Fiber
(g)

Water
(ml)

Infant 0–5 months 59 0 700
Infant 6–11 months 105 11 900
Toddler 1–3 years 215 19 1150
Child 4–6 years 220 20 1450
Child 7–9 years 250 23 1650
Boy 10–12 years 300 28 1850
Girl 10–12 years 280 27 1850
Boy 13–15 years 350 34 2100
Girl 13–15 years 300 29 2100
Boy 16–18 years 400 37 2300
Girl 16–18 years 300 29 2150
Man 19–29 years 430 37 2500
Woman 19–29 years 360 32 2350
Man 30–49 years 415 36 2500
Woman 30–49 years 340 30 2350
Man 50–64 years 340 30 2500
Woman 50–64 years 280 25 2350
Man 65–80 years 275 25 1800
Woman 65–80 years 230 22 1550
Man 80+ years 235 22 1600
Woman 80+ years 200 20 1400

The model will receive input from the user:

a. age (in months or years) and

b. gender.

 Based on the information provided by the user, the model
will extract the nutritional requirements for six primary
nutritional elements, namely energy (kcal), protein (grams), fat
(grams), carbohydrates (grams), fiber (grams), and water (ml).
The next step, from a set of food ingredients each of which has
a defined nutritional content per serving unit, the model will
generate combinations of these ingredients such that the total
nutritional content of the menu falls within the target range and
the resulting menu differs from day to day.

B. Food Ingredient Data Model
Once the daily nutritional requirements are defined, the

next step is to construct a data model containing a set of food
ingredients as the basic components of menu formation. Each
food ingredient has a nutritional value per serving unit, which
is used as the building block in the composition of the daily
menu.

Each food ingredient is represented as a six-dimensional
vector, for example, bi = [caloriesi, proteini, fati, carbohydratei,
fiberi, wateri]. Thus, one food menu can be formed from one or
more combinations of food ingredients, and the total nutritional
value can be calculated through the summation of the
component vectors.

The following table presents examples of food ingredient
data along with their nutritional contents per serving unit:

TABLE 3.3
Name Energy

(kcal)
Protein (g) Fat (g)

White rice 175 3.0 0.3
Fried tofu 132 7.8 10.0
Boiled
spinach

18 2.0 0.4

Boiled
carrot

33 0.8 0.1

Apple 52 0.3 0.2
Fried
tempeh

118 6.8 6.0

Grilled
chicken
breast

165 31.0 3.6

Boiled
potato

87 2.0 0.1

Banana 89 1.1 0.3
Boiled
broccoli

35 2.4 0.4

Whole
wheat bread

247 13.0 4.2

Boiled
water
spinach

19 2.1 0.2

Grilled beef 250 26.0 15.0
Orange 47 0.9 0.1
Papaya 43 0.5 0.3

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

TABLE 3.4
Name Carbohydrate

(g)
Fiber
(g)

Water (ml)

White rice 40.6 0.2 72
Fried tofu 2.4 0.3 65
Boiled spinach 3.4 2.2 91
Boiled carrot 7.7 3.0 88
Apple 14.0 2.4 85
Fried tempeh 7.5 1.3 64
Grilled
chicken breast

0.0 0.0 70

Boiled potato 20.1 1.8 77
Banana 23.0 2.6 74
Boiled
broccoli

7.2 3.3 89

Whole wheat
bread

41.0 6.0 35

Boiled water
spinach

3.7 1.9 90

Grilled beef 0.0 0.0 55
Orange 11.8 2.4 87
Papaya 10.8 1.7 88

C. Menu Representation as Integer Vectors
After defining the daily nutritional requirements and the

food ingredient data model, the next step is to represent the
food menu as a mathematical structure that enables algorithmic
processing. In this model, each daily menu is represented as an
n-dimensional integer vector, where n is the number of
available food ingredients. Suppose there are n food types (b1,
b2, ..., bn), a daily menu M is represented as M = [x1, x2, ..., xn]
where xi represents the number of servings of food ingredient
(bi) used in that menu. A value of xi	=	0	indicates that the i-th
ingredient is not used in that menu. This reflects that one menu
uses only a subset of all available ingredients.

Each food ingredient (bi) has six nutritional attributes.
Thus, the menu vector M will be operated with a nutritional
matrix to obtain the total nutritional content of the menu. Let A
be a 6 × 30 matrix containing energy, protein, fat,
carbohydrate, fiber, and water values for each food item. Then
T = A · MT will produce a 6-dimensional vector T that holds
the total nutritional contents of menu M, namely T = [Total
Energy, Total Protein, ..., Total Water].

An example of the application is as follows. Four food
ingredients are selected, namely rice (b1), chicken (b2), spinach
(b3), and papaya (b4) out of a total of 30 food items. A possible
menu generated is M = [2, 1, 1, 1, 0, 0, ..., 0], which means the
menu consists of 2 servings of rice, 1 serving of chicken, 1
serving of spinach, and 1 serving of papaya, while the
remaining 26 ingredients are not used. The total nutritional
content is calculated by summing the product of each portion
with the respective nutritional content of each ingredient.

The use of vector representation allows for the evaluation
of nutritional feasibility through simple linear algebra

operations, generation of all possible menus using the principle
of combination with repetition, and the application of
constraints between daily menus.

D. Daily Menu Generation Model
After the menu is represented as a vector of serving

quantities of food ingredients, the next step is to construct an
algorithmic model to generate daily menus that meet nutritional
requirements and maintain inter-day variation. The menu
generation model is carried out in three main stages, namely
enumeration of all valid candidate menus, application of
recursive constraints between days, and scheduling of menus
for a specified number of days.

a. Step 1: Enumerating Valid Menu Combinations

The first step is to generate all possible
combinations of food ingredients that form a single
menu. Since one food ingredient may be used more
than once, the principle of combination with repetition
is applied. Each candidate menu is represented as a
vector M = [x1, x2, ..., xn] composed of the number of
servings of each food item. For each candidate menu,
the total nutritional content is calculated with T = A ·
MT, then filtered with the condition that Tj ≤ maxj for
all components j (where j is a nutritional attribute
considered), where Tj is the total amount of nutrient j
from the menu, and maxⱼ is the upper bound of daily
nutritional needs based on Angka Kecukupan Energi
(AKE) that has been increased by a tolerance of
1.25% from the standard AKE value. Menus that meet
these criteria will be stored in the candidate menu set.

b. Step 2: Recursive Constraints Between Days

 To maintain menu variation between days,
recursive constraints are applied. This means that the
menu selection for day t depends on the menu of day
t–1 and may not be identical in vector structure.

 Given two menus Mt dan Mt-1, the constraint
applied is that the menus must not be identical (Mt ≠
Mt-1).

c. Step 3: Recursive Menu Scheduling

 After all candidate menus are stored in the set M,
the scheduling of menus for N days is performed. This
is done recursively, by selecting one menu from M
that does not violate the constraint with the previous
menu, and continuing the process until the desired
number of days is reached.

Listing 1. Function schedule_menu

def schedule_menu(N, valid_menus, window=400):

 result = []

 for t in range(N):

 for menu in valid_menus:

 is_unique_recently =
all(is_different_enough(menu, result[prev]) for prev
in range(max(0, t - window), t))

 if t == 0 or is_unique_recently:

 result.append(menu)

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

 break

 return result

E. Algorithm Overview
The following flowchart illustrates the steps carried out by

the algorithm in a structured manner.

Fig. 3.1 Flowchart

IV. SIMULATION AND RESULTS

A. Implementation Overview
The program is implemented in Python using a modular

structure. Two external data files are used as inputs:

a. food_ingredients.csv: Contains food ingredients
along with their nutritional values (energy,
protein, fat, carbohydrate, fiber, and water) per
unit. The full list of ingredients and their
corresponding nutritional information is provided
in Table 3.3 and Table 3.4, which serve as the

basis for evaluating the nutritional content of each
generated menu during the simulation.

b. nutrition_requirements_with_range.csv: Contains
daily nutritional requirement ranges for various
user profiles based on age, gender, and
physiological status. These ranges, as detailed in
Table 3.1 and Table 3.2, are used as constraints in
the menu generation algorithm to ensure that each
simulated menu meets the personalized dietary
needs of the user.

B. Code Implementation

Listing 2. Daily Menu Scheduling Program Based on Nutritional Constraints

import pandas as pd

from itertools import product

Read external CSV files

nutrition_df =
pd.read_csv("nutrition_requirements_with_range.csv")

food_df = pd.read_csv("food_ingredients.csv")

Get the nutritional target bounds from user profile

def get_nutrition_bounds(category, age_condition):

 row = nutrition_df[

 (nutrition_df["Category"] == category) &

 (nutrition_df["Age/Condition"] == age_condition)

].iloc[0]

 bounds = {

 "Energy (kcal)": (row["Energy_min"],
row["Energy_max"]),

 "Protein (g)": (row["Protein_min"],
row["Protein_max"]),

 "Fat (g)": (row["Fat_min"], row["Fat_max"]),

 "Carbohydrate (g)": (row["Carbohydrate_min"],
row["Carbohydrate_max"]),

 "Fiber (g)": (row["Fiber_min"],
row["Fiber_max"]),

 "Water (ml)": (row["Water_min"],
row["Water_max"]),

 }

 return bounds

Check if a menu is valid according to nutrition bounds

def is_valid_menu(menu, food_data, bounds):

 total = {k: 0 for k in bounds}

 for idx, portion in enumerate(menu):

 for nutrient in bounds:

 total[nutrient] +=
food_data.iloc[idx][nutrient] * portion

 for nutrient, (_, max_val) in bounds.items():

 if total[nutrient] > max_val:

 return False

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

 return True

Check if two menus are sufficiently different (at least
1 item differs)

def is_different_enough(menu1, menu2):

 return sum([abs(a - b) for a, b in zip(menu1,
menu2)]) >= 1

Schedule menus for N days, ensuring no identical days

def schedule_menu(N, valid_menus, window=400):

 result = []

 for t in range(N):

 for menu in valid_menus:

 is_unique_recently =
all(is_different_enough(menu, result[prev]) for prev in
range(max(0, t - window), t))

 if t == 0 or is_unique_recently:

 result.append(menu)

 break

 return result

def has_all_required_categories(menu, food_data,
required_categories):

 selected = [food_data.iloc[i]["Category"] for i,
portion in enumerate(menu) if portion > 0]

 return all(cat in selected for cat in
required_categories)

Main function to generate daily healthy menu schedule

def generate_menu_schedule(category, age_condition,
total_days, max_portion=1):

 bounds = get_nutrition_bounds(category,
age_condition)

 food_data = food_df.copy()

 n = len(food_data)

 required_categories = ["Carbohydrate", "Protein",
"Vegetable"]

 valid_menus = []

 max_check = 20000

 min_ingredients_used = 3

 for i, combo in enumerate(product(range(max_portion +
1), repeat=n)):

 if i >= max_check:

 break

 if sum(combo) == 0:

 continue

 if sum(1 for x in combo if x > 0) <
min_ingredients_used:

 continue

 if not has_all_required_categories(combo,
food_data, required_categories):

 continue

 if is_valid_menu(combo, food_data, bounds):

 valid_menus.append(combo)

 if len(valid_menus) >= 20000:

 break

 print("Valid menu count:", len(valid_menus))

 return schedule_menu(total_days, valid_menus)

C. Simulation Results
The simulation was conducted for various user profiles,

each defined by different age and gender combinations that
determine their respective nutritional requirements. The output
of each simulation is a daily menu represented as a vector,
where each element corresponds to the portion count of a
specific food ingredient. The position of each element in the
vector follows the order of ingredients as listed in the
food_ingredients.csv file. For example, if the third element in
the vector is 2, it means that the third ingredient in the CSV file
is included in the menu with 2 portions. This vectorized
representation allows for efficient evaluation of nutritional
values by multiplying each portion with the corresponding
nutrient content per ingredient.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig. 4.1 Simulation Result for Woman Aged 30–49 Years

Fig. 4.2 Simulation Result for Boy Aged 16–18 Years

Fig. 4.3 Simulation Result for Man Aged 50–64 Years

V. MODEL VALIDATION
To ensure that the schedule_menu(N, valid_menus)

algorithm can generate a valid and non-identical daily food
menu for every day over a period of N days, we apply a simple
mathematical induction proof on the number of days N.

a. Base Case (N = 1)

For N = 1, the algorithm begins by selecting the
first available menu from the pre-generated set
valid_menus. Each menu in this set has already been
verified for nutritional validity (within upper bounds
only) and completeness of required food categories
(e.g., carbohydrate, protein, vegetable) through the
function is_valid_menu. Since there is no previous
menu to compare against, the uniqueness condition
automatically holds. Therefore, the algorithm can

generate one valid menu for the first day, and the base
case is satisfied.

b. Inductive Hypothesis

Assume that for some k ≥ 1, the algorithm
successfully schedules valid and non-identical menus
for k days, resulting in a set of menus {M1, M2, ...,
Mk}, where each menu satisfies all nutritional and
categorical constraints and differs from the others in at
least one component.

c. Inductive Step

We now show that the algorithm can also generate
a valid menu for day k+1 that is not identical to any of
the previous k menus. At iteration k+1, the
schedule_menu function iterates through all
candidates in valid_menus, checking whether each
candidate menu differs sufficiently from recent
selections using the is_different_enough function.
Because the set valid_menus is large (up to 20,000
elements) and generated to include various valid
combinations, the algorithm is highly likely to find a
new valid menu that satisfies all constraints and
differs from menus in previous days. Once such a
menu is found, it is appended to the result list.
Therefore, by the principle of mathematical induction,
the algorithm is able to construct a schedule of N valid
and non-identical daily menus for any N ≥ 1, as long
as the candidate set is sufficiently large and diverse.

VI. CONCLUSION
This paper develops an algorithmic model for generating

daily healthy meal plans based on individual nutritional needs
and menu variation across days. Combination with repetition is
used to enumerate all possible menus that meet daily
nutritional limits, while recursive constraints are applied to
prevent identical menus on consecutive days. The
implementation is carried out in Python using a modular
structure and two external data sources: a list of food
ingredients with nutritional values and nutritional requirements
categorized by age and gender.

Simulations show that the algorithm can produce daily meal
schedules that are nutritionally valid and non-identical across
days. However, results also indicate a limitation in the selection
process. Despite the large number of valid menus, those
selected for the initial days tend to follow similar food
composition patterns. This is due to a selection strategy that
processes menus in order without any shuffling mechanism.

Further development is needed to improve the quality of the
generated menu schedule, particularly in terms of variety in
ingredient composition. Approaches such as controlled random
selection or distribution of menu structures based on vector
similarity may be considered to ensure the algorithm is not
only nutritionally valid but also adaptive to long-term variation
needs.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

VII. APPENDIX
The attached document in CSV format contains the

nutritional content of food ingredients and the nutritional
requirements for various user profiles. A video explaining this
paper can be accessed here.

VIII. ACKNOWLEDGMENT
Upon the completion of this paper, the author extends

sincere appreciation to:

1. God Almighty, for His blessings and guidance
throughout the writing process;

2. Dr. Rinaldi Munir, M.T., lecturer of the K-1 IF1220
Discrete Mathematics course, for his valuable
guidance and knowledge; and

3. The author’s parents, for their unwavering support and
encouragement.

REFERENCES
[1] Kementerian Kesehatan Republik Indonesia, Direktorat Jenderal

Kesehatan Masyarakat, Direktorat Gizi Masyarakat. 2018. Tabel
Komposisi Pangan Indonesia. Jakarta: Kementerian Kesehatan RI.

[2] Munir, Rinaldi. 2024. "Deretan, rekursi, dan relasi rekurens (Bagian 1)".
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/10-
Deretan,%20rekursi-dan-relasi-rekurens-(Bagian1)-2024.pdf . Accessed
18 June 2025 at 18:08.

[3] Munir, Rinaldi. 2024. "Induksi matematika (Bagian 1)".
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/08-
Induksi-matematik-bagian1-2024.pdf . Accessed 19 June 2025 at 13:03.

[4] Munir, Rinaldi. 2024. "Kombinatorika (Bagian 1)".
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/18-
Kombinatorika-Bagian1-2024.pdf . Accessed 18 June 2025 at 19:48.

[5] Munir, Rinaldi. 2024. "Kombinatorika (Bagian 2)".
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/19-
Kombinatorika-Bagian2-2024.pdf . Accessed 19 June 2025 at 12:28.

[6] Wardani, Agustin Tri. “Berapa Kebutuhan Nutrisi Per Hari? Simak
Panduan Berikut Ini...” Kompas.com,
https://health.kompas.com/read/24A07063000468/berapa-kebutuhan-
nutrisi-per-hari-simak-panduan-berikut-ini-. Accessed 19 June 2025 at
15:19.

STATEMENT OF ORIGINALITY
I hereby declare that this paper I have written is my own work,
not an adaptation or translation of someone else's paper, and
not plagiarism.

Bandung, 20th June 2025

Helena Kristela Sarhawa
13524109

https://drive.google.com/file/d/1uOd4ckKCGrolR0_JF0ED8RuVBr5vTV3Q/view?usp=sharing
https://drive.google.com/file/d/1TW10M3ez6qbCgJwkKWpOu_wNztAnbpqR/view?usp=sharing
https://drive.google.com/file/d/1TW10M3ez6qbCgJwkKWpOu_wNztAnbpqR/view?usp=sharing
https://drive.google.com/file/d/1b6g1cx9rJ97Lu3ec7PnUlEETDwRnMbvG/view?usp=sharing

