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Abstract—Mixue is a well-known Chinese brand, famous for its 

drinks and ice cream. It began as a small, shaved ice shop in 

Zhengzhou, Henan, and has since expanded significantly, now 

boasting 60 stores in Bandung. Mixue ensures fresh and high-

quality products by centrally supplying ingredients to each store. 

To minimize delivery costs, it is crucial for the company to find 

the shortest and most efficient delivery routes. This paper 

explores methods to optimize ingredient delivery to the Bandung 

stores. The objective is to reduce expenses by identifying the 

quickest and most straightforward delivery paths. The study 

employs a strategy known as the Traveling Salesman Problem 

(TSP), which is solved using dynamic programming. This 

approach is used to determine the most effective delivery routes. 

Such meticulous planning is essential to ensure that all Mixue 

stores receive their supplies promptly and cost-effectively. 

 

Keywords—Graf, Mixue, Most Effective Delivery Routes, 

Travelling Salesman Problem  

 

I.   INTRODUCTION 

Mixue, one of the world's largest ice cream franchise 

companies, first established its roots in Zhengzhou, Henan, 

China on June 16, 1997. Founded by the Zhang brothers, 

Mixue initially focused on selling ice cream. However, the 

soaring popularity of their ice cream led to the decision to start 

a franchise business. Today, Mixue boasts a remarkable 

presence with 21,581 outlets operating across China and 12 

other countries in the Asia-Pacific region. 

In Indonesia, Mixue made its debut in 2020, opening its first 

store in Cihampelas Walk, Bandung. Since then, the company 

has expanded rapidly, now operating over a thousand outlets 

throughout Indonesia. Bandung alone is home to around 60 

Mixue branches. To support this growth, Mixue has developed 

a central warehousing and logistics hub, aiming to minimize 

production chain costs. The company's primary focus has 

shifted from just selling ice cream to supplying raw materials, 

packaging, and processing machines to its franchises, 

essentially functioning as a supply chain company. 

Ensuring the daily delivery of raw materials from the 

warehouse to various Mixue branches is a critical operation. 

With numerous branches in Bandung, distribution is organized 

among several trucks, each covering different delivery 

locations. The selection of delivery routes plays a vital role in 

this process, as choosing the shortest and most efficient routes 

minimizes distance, time, and fuel consumption. 

In this paper, we will explore how Mixue can maximize its 

profits by minimizing distribution costs. This will involve 

optimizing delivery routes to determine the shortest possible 

paths for the trucks. We will model the distances between the 

warehouse and each Mixue branch as nodes in a weighted 

graph, connected by edges. The paper will focus on applying 

the Travelling Salesman Problem approach to optimize these 

delivery routes.  

 

II.  BASIC THEORY 

A. Graph Definition 

   A graph is defined as a discrete structure consisting of a 

collection of vertices (nodes) connected through a set of edges. 

Vertices represent individual points or elements within the 

graph, and they may or may not be connected to each other. In 

graphical representation, vertices are often denoted by dots or 

circles. On the other hand, edges are the connections or links 

between two vertices and are represented as lines connecting 

the corresponding dots or circles.  There are also edges that 

start and end at the same vertex, known as loops. Graph is 

represented in the form 𝐺 = (𝑉, 𝐸), where G represents the 

graph, V is a non-empty set of vertices such as 𝑣1, 𝑣2, …, 𝑣𝑛, 

and E is a set of edges like 𝑒1, 𝑒2, …, 𝑒𝑛, which connect pairs 

of vertices within the graph. 

B. Types of Graphs 

   Based on the presence and presence and absence of multiple 

and loop edges connecting the same vertices, the graph has two 

types:  

1. Simple graphs 

A simple graph is characterized by having precisely 

one edge connecting any pair of vertices, and it does 

not include multiple edges between the same pair of 

vertices or self-connections (loops). 

 

 

 

 

Fig. 1. Simple Graphs Example (Source:[1]) 
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2. Unsimple graphs 

An unsimple graph refers to a type of graph in 

which loops, which are edges that connect a 

vertex to itself, or multiple edges connecting the 

same pair of vertices are present. Unsimple 

graphs can be categorized into two subcategories: 

a. Multi-graph 

A multigraph is a type of graph characterized 

by the presence of multiple edges that 

connect the same pair of vertices. In other 

words, a multigraph can have multiple edges 

associated with the same unordered pair of 

vertices {𝑢, 𝑣}, and the number of these 

edges is known as the multiplicity of the 

edge {𝑢, 𝑣}. 

b. Pseudo-graph 

A pseudograph is a type of graph that can 

include loops, which are edges connecting a 

vertex to itself, and it may also have multiple 

edges connecting the same pair of vertices or 

a vertex to itself. 

  

       
 

Fig. 2. Unsimple Graphs Example (Source : [1]) 

 

Based on the direction of the edges, graphs can be divided 

into two types:  

1. Undirected graph 

Undirected graph is a graph that does not have any 

direction on its edges 

 

 

 

 

 

Fig. 3. Undirected Graphs Example (Source: [1]) 

 

2. Directed graph 

A directed graph is a collection of vertices connected by 

edges, where the edges have a specific directionality, 

indicating the path from one vertex to another. In a 

directed graph, each edge is characterized as an ordered 

pair of vertices. This means that each edge has a 

direction indicated by its starting and ending points. For 

example, an edge represented by the ordered pair {𝑢, 𝑣} 

is understood to be an edge that starts at vertex 𝑢 and 

ends at vertex 𝑣. 

 

 

 

 

 

 

 

Fig. 4. Directed Graphs Example (Soruce: [2]) 

 

C. Figures and Tables 

    In graph theory, there is some terminologies that is used 

when analyzing graphs: 

1. Adjacent 

In the realm of graph theory, adjacency in an 

undirected graph implies that two vertices are 

connected by an edge. Conversely, in a directed 

graph, adjacency is specifically defined: the vertex 

from where an edge originates is adjacent to the 

vertex where the edge terminates. For an edge (𝑢, 𝑣) 

in a graph 𝐺, vertex 𝑢 is known as the starting or 

initial vertex, while vertex 𝑣 is referred to as the 

terminal or end vertex. Notably, in cases where an 

edge loops back to its origin, the initial and terminal 

vertices are identical. 

2. Incidence 

In the context of edges and vertices, an edge (𝑢, 𝑣) 

that links vertices 𝑢 and 𝑣 is said to be incident with 

these vertices. This term describes the relationship 

between vertices and the edges that connect them. 

3. Degree 

In undirected graphs, the degree of a vertex is the total 

count of edges incident to it. When a vertex contains a 

loop, this loop is counted twice towards the vertex's 

degree. The degree is denoted as 𝑑𝑒𝑔(𝑣). A vertex is 

termed isolated if no edges are incident to it. 

Furthermore, a graph comprised entirely of isolated 

vertices is classified as a null or empty graph. 

4. Path 

A path within a graph is essentially a series of edges 

connecting a sequence of vertices, starting from one 

vertex and proceeding through others along the edges. 

A key concept here is that two vertices are deemed 

connected if a path exists between them. A graph is 

considered connected if there is a path linking every 

pair of vertices. In directed graphs, strong 

connectivity is the presence of directed paths both 

from 𝑢 to 𝑣 and from 𝑣 to 𝑢 for any pair of vertices 𝑢, 

𝑣. Weak connectivity, in contrast, is a state where a 

directed graph becomes connected only after 

transforming all its directed edges to undirected ones. 

5. Cycle or Circuit 

A cycle is defined as a sequence of vertices and edges 

that forms a closed loop, beginning and ending at the 

same vertex. This means a cycle is a path without a 

distinct start or end point but rather a continuous loop. 

The length of a cycle is determined by the number of 

edges it encompasses. It is possible for a graph to 

contain various cycles, each differing in length. 

6. Subgraph 
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A subgraph is essentially a smaller portion of a graph, 

comprising a selection of vertices and edges from a 

larger graph. This smaller graph retains the properties 

and connections of the original, larger graph, 

effectively forming a graph within a graph. 

7. Weighted graph 

In weighted graphs, a numerical value, or weight, is 

assigned to each edge. These weights may represent 

different quantities or values, such as distances, costs, 

or capacities. This concept of weighted graphs is 

applicable to both directed and undirected graphs, 

adding an extra layer of information to the graph's 

structure. 

8. Completed graph 

A complete graph is a type of graph in which every 

vertex is connected to every other vertex by an edge. 

In this graph, there is a direct link between each pair 

of vertices, ensuring that no vertex is isolated. This 

means that if the graph has n vertices, there will be an 

edge connecting every possible pair of vertices, 

resulting in a highly interconnected structure. The 

defining characteristic of a complete graph is this 

thorough and comprehensive connectivity among all 

its vertices. 

 

 

 

 

 

 

 

Fig. 5. Completed graph (Source: [1]) 

 

D. Graph Representation 

   There is some way to represent graph:  

1. Adjacency matrix 

An adjacency matrix is a representation of an undirected 

graph with n vertices (nodes) using a square matrix M of 

size n x n. Each element in the matrix, denoted as 

M[i][j], represent the connection between i and j vertex. 

If M[i][j] is set to 1, it means there is an edge connecting 

vertex I to vertex j, but if it sets to 0, it means there is no 

edge connecting i and j vertex. For directed graph , if it 

sets to 1 , it means there is an edge from i vertex  to j 

vertex , and 0 if no. For weighted graph, M[i][j] 

represents the edge weight from vertex i to vertex j.  

 

 
 

Fig. 6. Adjacency Matrix (Source: [2]) 

 

 

2. Incidence matrix 

The incidence matrix A of an undirected graph has a 

row for each vertex and a column for each edge of the 

graph. The element A[i][j] of A is 1 if the i vertex is a 

vertex of the jth edge and 0 otherwise. 

 

 
  

Fig. 7. Incidence Matrix (Source: [2]) 

 

E. Hamilton Trail and Circuit 

   A Hamiltonian path is a route in a graph that visits every 

vertex at least once. Conversely, a Hamiltonian circuit is a 

Hamiltonian path that returns to its starting point, meaning all 

vertices are visited with the starting vertex being visited twice. 

Graphs with only Hamiltonian paths are known as semi-

Hamiltonian, while those with Hamiltonian circuits are termed 

Hamiltonian graphs. For a simple undirected graph to be 

Hamiltonian, a common condition is that each of its n vertices 

(for 𝑛 ≥ 3) should have a degree of at least 
𝑛

2
. However, a graph 

may still contain a Hamiltonian circuit even if it doesn't meet 

this criterion. 

 

 

 

 

 

 

 

Fig. 8. Hamilton Graf (Source: [2]) 

 

F. Travelling Salesman Problem 

The Traveling Salesman Problem (TSP) is an optimization 

challenge well recognized in computer science and operations 

research. It involves finding the shortest possible route that a 

salesman can take to visit each city in a given set exactly once 

and return to the starting city. This requires determining a 

Hamiltonian circuit in a complete graph where the total weight 

of all the edges is minimized. 

 

In a typical TSP scenario, a number of cities are given, along 

with the distances between them. For example, in a graph 

representation, each city is a node, and the paths between cities 

are edges with weights representing the distances. The goal is 

to find the shortest path that covers all cities and returns to the 

origin, optimizing travel time and costs. 
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Fig. 9. Weighted graph for TSP example (Source: [2]) 

 

There are several approaches to solving the TSP. A brute-

force method calculates the weight of every Hamiltonian 

circuit and chooses the one with the minimum weight. For 

instance, a graph with five nodes has 
(5−1)!

2
 = 12 Hamiltonian 

circuits. This brute-force approach, however, becomes 

inefficient for many cities due to its time complexity of O(n!), 

where n is the number of nodes in the complete graph. For n 

that larger than 5, this approach not efficient. Therefore, in this 

paper using dynamic programming, because it offers a more 

efficient solution, especially for larger values of n, by reducing 

the time complexity from exponential to polynomial. It does 

this by storing solutions to subproblems and avoiding 

redundant calculations. Besides that, there is other approaches 

to solving TSP like nearest neighbor, branch and bound, and  

genetic algorithms. 

 

G. Dynamic Programming TSP Algorithms 

Dynamic programming is a method for solving a complex 

problem by breaking down the given problem into several sub 

problems and solving these sub problems once and storing the 

solution to these sub problems in a table. Generally, dynamic 

programming is applied to optimization problems. Dynamic 

programming is applied when there is an overlapping between 

sub problems of the same problem.  In many computational 

problems, the brute-force approach, which evaluates all 

possible configurations to find a solution, can be extremely 

inefficient, especially with a growing number of elements. 

Dynamic programming addresses this inefficiency by storing 

the solutions to subproblems, thus avoiding redundant 

calculations. If applicable to some problem, it takes less time 

than naive methods. It can be used to solve problem in time 

polynomial time for which a naive approach would take 

exponential time. 

The Traveling Salesman Problem (TSP) is a classic example 

where dynamic programming is particularly advantageous. In 

TSP, the goal is to find the shortest possible route that visits 

each city exactly once and returns to the starting point. This 

problem presents a significant number of overlapping sub-

routes, especially as the number of cities increases. The brute-

force method of evaluating every possible permutation of cities 

becomes impractical due to its factorial time complexity. For 

example, route A - B - C - D -A has the same sub-route with A 

- C - B - D - A. Instead of calculating the distance for every 

possible route, dynamic programming would solve smaller 

sub-routes and store these solutions. Dynamic programming, 

however, efficiently tackles this by solving each sub-route 

once and reusing the solution in the context of larger routes. 

In this paper, we address the Traveling Salesman Problem 

(TSP) using the Held-Karp algorithm, a dynamic programming 

approach renowned for reducing the computational complexity 

from factorial to polynomial time, making it suitable for 

moderately sized TSP instances. The algorithm is implemented 

through the function held_karp_tsp(matrix), where matrix is a 

weighted adjacency matrix indicating distances between cities. 

It begins by initializing a dictionary C that stores the minimum 

cost of reaching each subset of cities, ending at a specific city. 

Utilizing binary representation for efficient management of 

city subsets, the algorithm determines the minimum cost path 

for each city within these subsets. Crucially, by storing and 

reusing results for each subset in C, the algorithm adheres to 

the dynamic programming principle of solving each 

subproblem only once, thereby avoiding redundant calculations 

and optimizing the route-finding process in TSP. 

Here is the pseudocode for dynamic programming using 

bellman-Held-Karp algorithm: 

 
Fig. 10. Pseudocode for solving TSP using Held-Karp 

algorithm (Source: [4]) 

 

III. METHODOLOGY 

A. Limitations 

In this paper, there is certain limitations encountered while 

applying the Traveling Salesman Problem (TSP) to determine 

the most efficient route for distributing ice cream materials to 

Mixue branches in Bandung. These limitations are outlined as 

follows. 

1. The assumption that the shortest route is always the 

optimum route. This assumption overlooks other critical 

factors that impact the efficiency of the route, such as 

traffic conditions, road infrastructure, and the time 

required for delivery. 

2. The analysis and solutions provided are applied to only 

20 Mixue branches in Bandung, under the assumption 

that these branches are serviced by a single delivery 

truck. 

3. The distances considered for each route are based on the 

minimum possible routes. 

 

B. Data Used 

The data on Mixue branches in Bandung was obtained using 

the Google Maps API, a method that allowed for a thorough 

and precise compilation of information. This approach led to 

the identification of over 60 Mixue branches throughout 

Bandung. The dataset includes essential details such as the 

names and addresses of these branches, with each address 

providing the city and postal code.  

 

 

 

 

 

 

Fig. 11. Snapshot of Mixue Branches Data in Bandung 

(Source: Google Maps API) 

 

The starting point for all delivery is from Mixue warehouse 

that located on Jalan Raya Terusan Kopo no.611. 
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C. Problem Modeling 

Step 1 

Select n Mixue Branches in Bandung that delivered by one 

truck.  

Below is the data of the chosen Mixue branches for one 

delivery shift: 

Mixue 

Branches 

Address 

Mixue 

Tubagus 

Ismail 

Jl. Tubagus Ismail No.27B, Sekeloa, 

Kecamatan Coblong, Kota Bandung, Jawa 

Barat 40134, Indonesia 

Mixue 

Dipatiukur 

Jl. Dipati Ukur No.72F, Lebakgede, 

Kecamatan Coblong, Kota Bandung, Jawa 

Barat 40132, Indonesia 

Mixue Dago 

Pusat 

Jl. Ir. H. Juanda No.314A, RT.1/RW.1, 

Dago, Kecamatan Coblong, Kota 

Bandung, Jawa Barat 40135, Indonesia 

Mixue 

Cihampelas 

Jl. Cihampelas No.160, Cipaganti, 

Kecamatan Coblong, Kota Bandung, Jawa 

Barat 40131, Indonesia 

Mixue 

Ciumbuleuit 

Jl. Ciumbuleuit No.91, Hegarmanah, Kec. 

Cidadap, Kota Bandung, Jawa Barat 

40141, Indonesia 

Mixue 

Sukamaju 

Jl. Sukamaju No.6, Pasteur, Kec. 

Sukajadi, Kota Bandung, Jawa Barat 

40161, Indonesia 

Mixue 

Cigadung 

Jl. Cikondang No.15, Sadang Serang, 

Kecamatan Coblong, Kota Bandung, Jawa 

Barat 40133, Indonesia 

Mixue Banda Jl. Banda No.32, Citarum, Kec. Bandung 

Wetan, Kota Bandung, Jawa Barat 40115, 

Indonesia 

Mixue 

Pahlawan 

Jl. Pahlawan No.41, Cihaur Geulis, Kec. 

Cibeunying Kaler, Kota Bandung, Jawa 

Barat 40122, Indonesia 

Mixue 

Sumanti 

Jl. Surya Sumantri No.72b, Sukagalih, 

Kec. Sukajadi, Kota Bandung, Jawa Barat 

40164, Indonesia 

Mixue 

Cihapit 

Jl. Cihapit No.25A, Cihapit, Kec. 

Bandung Wetan, Kota Bandung, Jawa 

Barat 40114, Indonesia 

Mixue 

SetiaBudi 

Jl. Dr. Setiabudi No.170d, Hegarmanah, 

Kec. Cidadap, Kota Bandung, Jawa Barat 

40141, Indonesia 

Mixue paskal 

sukajadi 

Jl. Pasir Kaliki No.215, Sukabungah, Kec. 

Sukajadi, Kota Bandung, Jawa Barat 

40162, Indonesia 

Mixue 

Cikutra 

Jl. Cikutra No.150, Cikutra, Kec. 

Cibeunying Kidul, Kota Bandung, Jawa 

Barat 40124, Indonesia 

Mixue Dago 

Atas 

Jl. Ir. H. Juanda, Dago, Kecamatan 

Coblong, Kota Bandung, Jawa Barat 

40135 

Mixue BEC Istana BEC LU S01/02, Babakan Ciamis, 

Kec. Sumur Bandung, Kota Bandung, 

Jawa Barat 40117, Indonesia 

Mixue Jl. Kebon Kawung No.30, Pasir Kaliki, 

Kawung Kec. Cicendo, Kota Bandung, Jawa Barat 

40171, Indonesia 

Mixue 

Padjajaran 

Jl. Pajajaran No.122B, Pajajaran, Kec. 

Cicendo, Kota Bandung, Jawa Barat 

40172, Indonesia 

Mixue 

Cibadak 

Jl. Cibadak No.125, Karanganyar, Kec. 

Astanaanyar, Kota Bandung, Jawa Barat 

40241, Indonesia 

Table 1. Selected Mixue Branches  

 

Step 2 

From the data on the locations of Mixue branches requiring 

delivery, the distance between each branch and all other 

branches is determined. The distance between each branch and 

the Mixue warehouse is also calculated. This distance 

calculation is performed using the Google Maps Distance 

Matrix API, ensuring that the obtained data represents the 

shortest route passable by a truck. 

The gathered data is then modeled as a weighted graph, with 

each location serving as a node, and each edge bearing a 

weight corresponding to the distance between locations. Below 

is the modeling of the problem as a weighted graph (weights 

are not shown due to overlap): 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Data modeling as weighted graph (Source: Primary) 

     

    The graph in Figure 12 is a directed and weighted graph. It 

is concerned that the distance from node-I to node-j is different 

from node-j to node-i. Below is the mapping of nodes in the 

graph to Mixue Branches: 

 

Vertices 
Mixue 

Brranches 
Vertices 

Mixue 

Branches 

0 
Mixue 

Warehouse 
10 

Mixue 

Sumatri 

1 
Mixue Tubagus 

Ismail 
11 Mixue Cihapit 

2 
Mixue 

Dipatiukur 
12 

Mixue 

Setiabudi 

3 
Mixue Dago 

Pusat 
13 

Mixue Paskal 

Sukajadi 

4 
Mixue 

Cihampelas 
14 Mixue Cikutra 

5 
Mixue 

Ciumbuleuit 
15 Mixue BEC 

6 Mixue 16 Mixue Dago 
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Sukamaju Atas 

7 
Mixue 

Cigadung 
17 

Mixue 

Kawung 

8 Mixue Banda 18 
Mixue 

Padjajaran 

9 
Mixue 

Pahlawan 
19 

Mixue 

Cibadak 

Table 2. Vertices representation to Mixue Branches 

    

     The Adjacency matrix that represents the graph, which each 

cell represents the distance (in meter):  

From/To 0 1 2 3 4 

0 ∞ 31278 29741 31041 28908 

1 29535 ∞ 1310 1324 3561 

2 28704 1065 ∞ 1599 3459 

3 29611 1054 1387 ∞ 3638 

4 27146 4418 2981 4181 ∞ 

5 29224 3342 2742 3105 2657 

6 37194 12248 13231 14410 16063 

7 30944 1977 3287 3180 5538 

8 28866 4239 2824 4003 5655 

9 29848 3100 3924 5103 6755 

10 24917 7567 8142 7330 6566 

11 29461 4155 3547 4725 6378 

12 27432 4839 4239 4603 3838 

13 27622 5504 4903 5267 2151 

14 30864 3956 4940 6118 7771 

15 27830 4673 3257 4436 4626 

16 31783 3225 3558 2171 5809 

17 20405 5986 4571 5750 3415 

18 20314 6576 5160 6339 3967 

19 18723 6952 5536 6715 4794 

 

From/To 5 6 7 8 9 

0 31707 29159 31249 23949 30979 

1 3039 12246 1977 3613 3100 

2 2936 12540 2759 2782 3226 

3 3115 13300 3031 3690 4154 

4 4847 13710 4666 2979 4396 

5 ∞ 15812 5319 5045 6498 

6 15540 ∞ 10499 12859 9563 

7 5016 10498 ∞ 4158 1351 

8 5133 12263 3375 ∞ 2713 

9 6233 9569 1351 2938 ∞ 

10 6336 18693 9650 8216 9380 

11 5855 11566 3444 970 2346 

12 3609 16947 6817 6216 7633 

13 4273 14600 5557 3869 5286 

14 7248 8505 2208 3904 1271 

15 5566 13348 4776 1819 4505 

16 5286 14155 3658 5861 5009 

17 5537 14587 5544 3133 5273 

18 6090 15177 6133 3723 5863 

19 6916 16186 6922 3936 6652 

From/To 10 11 12 13 14 

0 24674 15765 29457 26758 32002 

1 6246 4464 5707 4193 3956 

2 5415 3626 5605 3362 4250 

3 6323 4541 5784 4270 5010 

4 3857 3890 4355 1791 5420 

5 5935 5993 4803 3869 7522 

6 15867 12203 17347 13814 8488 

7 7655 3503 7684 5603 2208 

8 5578 1036 7058 3525 3736 

9 6560 2282 8040 4507 1279 

10 ∞ 9780 4784 5158 10403 

11 6172 ∞ 7652 4119 3321 

12 4169 7127 ∞ 4614 8657 

13 4333 4780 3533 ∞ 6310 

14 7576 3249 9056 5523 ∞ 

15 4542 2114 6008 2475 5529 

16 8494 6712 7955 6441 5865 

17 3307 4045 4798 1253 6297 

18 3860 4634 5350 1805 6887 

19 4686 4090 6176 2632 7676 

 

From/To 15 16 17 18 19 

0 23125 33014 13570 20226 12665 

1 3749 3668 5483 6453 6079 

2 2918 3572 4652 5622 5248 

3 3826 2651 5560 6529 6156 

4 2155 6154 3873 4069 5040 

5 4257 5078 5976 6189 7143 

6 14160 14157 16423 16074 15264 

7 5948 3658 7666 7862 7486 

8 2303 5975 4309 5784 3668 

9 4852 5009 6571 6766 6136 

10 7102 9303 6495 7569 8612 

11 3594 6698 5050 6379 3930 

12 5392 6576 7110 6934 8277 

13 3045 7240 4763 4587 5930 

14 5868 5865 7587 7782 7102 

15 ∞ 6409 2452 3954 3264 

16 5997 ∞ 7731 8701 8327 

17 2309 7722 ∞ 2225 3265 

18 2899 8312 2551 ∞ 3855 
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19 3274 8688 1422 3604 ∞ 

Table 3. Graph representation with weighted adjacency 

matrix. 

 

D. The implementation of Dynamic Programming for 

the Traveling Salesman Problem (TSP) in Python 

In this paper, the author applies an implementation of the 

Traveling Salesman Problem (TSP) solution algorithm through 

a dynamic programming approach, employing the Held-Karp 

algorithm in Python. This implementation can be seen in the 

function held_karp_tsp(matrix). However, the implementation 

has been modified so that it not only returns the shortest 

distance but also the nodes it passes through. 

 

Firstly, the author performs the initialization of the data 

variable distance_matrix to hold the weighted adjacency matrix 

as can be seen in Table 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Store Matrix to variable (Source: Primary) 

 

Then, the function held_karp_tsp(matrix) is called, where 

matrix is the weighted adjacency matrix, to obtain the shortest 

route and the total shortest distance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. held_karp_tsp(matrix) function. (Source: Primary) 

 

Inside the function, the function initially stores the distances 

from node 0 to other nodes, indicating that node 0 is designated 

as the starting point. 

 

 
Fig. 15. Set vertices 0 as starting point (Source: Primary) 

 

Then, the function searches for the shortest total distance 

Hamiltonian circuit by using the subset distance values that 

have been recorded in the dictionary C. 

 

 
Fig. 16. Code to set shortest route. (Source: Primary) 

 

Subsequently, the results returned by the function are stored 

in the variables shortest route and total distance, and then 

output to the terminal. 

 

 
Fig. 17. Output result. (Source: Primary) 

 

IV.   ANALYSIS AND DISCUSSION 

A. Analysis of the Most Optimal Route: Results of the 

Program Execution for Solving TSP with Dynamic 

Programming 

The result of the program execution implementing 

Travelling Salesman Problem (TSP) with dynamic 

programming to find the most optimum route for material 

distribution to Mixue Branches in Bandung:  

 

 
Fig. 18. The Result of program execution. (Source: Primary) 

 

The most optimum route for delivering material to 20 Mixue 

Branches is:  

1. Node 0 – Mixue Warehouse 

2. Node 17 – Mixue Kawung 

3. Node 18 – Mixue Padjajaran 

4. Node 13 – Mixue Paskal Sukajadi 

5. Node 4 – Mixue Cihampelas 
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6. Node 10 – Mixue Sumatri 

7. Node 12 – Mixue Setiabudi 

8. Node 5 – Mixue Ciumbuleuit 

9. Node 2 – Mixue Dipatiukur 

10. Node 1 – Mixue Tubagus Ismail 

11. Node 3 – Mixue Dago Pusat 

12. Node 16 – Mixue Dago Atas 

13. Node 7 – Mixue Cigadung 

14. Node 6 – Mixue Sukamaju 

15. Node 14 – Mixue Cikutra 

16. Node 9 – Mixue Pahlawan 

17. Node 11 – Mixue Cihapit 

18. Node 8 – Mixue Banda 

19. Node 15 – Mixue BEC 

20. Node 19 – Mixue Cibadak 

21. Node 0 – Mixue Warehouse 

 

The total distance for one time delivery from Mixue 

warehouse to 20 Mixue branches, then back to Mixue 

warehouse is 91240 meter or 91,240 kilometers.  

 

 
Fig. 19. Optimum Route Visualization. (Source: Primary) 

In figure 19, it shows the Hamilton circuit with minimum 

weight (in meter) to deliver material to 20 Mixue branches in 

Bandung. 

 

B. Algorithm and Method Analysis 

The researchers utilized a dynamic programming approach 

incorporating the Held-Karp algorithm to address the 

Travelling Salesman Problem (TSP). This approach 

significantly reduces computational redundancy compared to 

brute-force methods, yet it still entails examining all possible 

routes to determine the shortest distance. The algorithm 

demonstrates considerable time complexity, particularly when 

applied to scenarios involving more than 20 nodes, with a 

complexity order of O (n^2 * 2^n). The initialization itself is 

O(n), then the loop runs for every subset size from 2 to n-1. 

The number of the subset is 2𝑛 .Lastly, the algorithm iterates 

over n elements to find the minimum cost path. This is 

markedly more efficient than the brute-force approach, which 

has a complexity order of O(n!). However, the algorithm's 

efficiency diminishes for problems with more than 20 nodes, 

leading the researchers to limit their analysis to 20 Mixue 

branches. 

 

The researchers concluded that employing the TSP approach 

was optimal for identifying the shortest route for material 

delivery to Mixue branches. The primary focus of the research 

was on minimizing the distance covered to visit all locations. 

However, they acknowledged that this method has limitations, 

as the most optimal route is not solely determined by distance. 

Factors such as traffic conditions, time, and road infrastructure 

also play significant roles. Despite these considerations, the 

researchers maintained that prioritizing shortest distance is the 

most effective strategy in optimizing delivery routes. 

Applying this methodology, Mixue can potentially lower 

delivery costs to its branches, thereby enhancing its 

profitability. 

V.   CONCLUSION 

This paper shows that the Traveling Salesman Problem 

(TSP) algorithm works well for figuring out the best way to 

deliver goods to Mixue shops in Bandung city. This algorithm 

helps find the shortest path to visit all the Mixue branches, 

which can help the Mixue company save money on deliveries. 

Researcher used a special way of solving problems, called 

dynamic programming, to make the TSP algorithm work. This 

method is good because it looks at every possible route and 

picks the shortest one. This makes sure it doesn’t miss any 

better routes. 

From this research, researcher found the best way to deliver 

materials to 20 Mixue branches. The route starts at Mixue 

Warehouse → Mixue Kawung → Mixue Padjajaran → Mixue 

Paskal Sukajadi → Mixue Cihampelas → Mixue Sumatri → 

Mixue Setiabudi → Mixue Ciumbuleuit → Mixue Dipatiukur 

→ Mixue Tubagus Ismail → Mixue Dago Pusat → Mixue 

Dago Atas → Mixue Cigadung → Mixue Sukamaju → Mixue 

Cikutra → Mixue Pahlawan → Mixue Cihapit → Mixue Banda 

→ Mixue BEC → Mixue Cibadak → Mixue Warehouse. The 

total distance of this route is approximately 91.24 kilometers. 

This methodology can be similarly applied to determine the 

optimal routes for other Mixue branches. By consistently 

applying this approach, the Mixue company can ensure the 

efficiency of its delivery operations across various locations, 

thereby optimizing operational costs and enhancing overall 

logistical efficiency. 

 

VI.   APPENDIX 

       The completed Traveling Salesman Problem algorithm cab 

be found below. 

https://github.com/Benardo07/TSP-Mixue-Branches  
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