
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024 

 

Application of Hashing and Breadth First Search in 

the search for God’s Number of the Pyraminx 

Farhan Nafis Rayhan - 135220371  

Program Studi Teknik Informatika  

Sekolah Teknik Elektro dan Informatika 

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia  
1author@itb.ac.id 

 

 

 

Abstract—The Pyraminx is one of the most popular variation of 

the rubik’s cube. It’s pyramid like shape has captivated enthusiasts 

with its complexity and diverse solving strategies. One problem in 

the twisty puzzle community that relates heavily to discrete maths 

is the God’s Number, the maximum number of moves needed to 

solve any puzzle. In this paper, we will delve into the exploration of 

God’s Number for Pyraminx, and show how it can be found using 

Breadth First Search and hashing. 

 

Keywords—Pyraminx, Hashing, BFS, Graph 

 

 

I.   INTRODUCTION 

The Pyraminx is a twisty puzzle invented in 1970 by the  

German Puzzle designer, Uwe Mèffert [1]. In the same vein as 

it’s sibling, the world famous Rubik’s Cube, Pyraminx consisted 

of sticker colored puzzle pieces, yet instead of cube shaped, 

Pyraminx is a regular tetrahedron. The unique shape is the 

reason why Pyraminx is one of the most popular yet interesting 

among all other Rubik’s cube variations. Pyraminx consists of 4 

faces, each given different color. The puzzle is said to be in a 

solved state if every face shows same colored piece. 

All 4 faces are split into 3 different layers, as shown in the 

picture below, which could be turned in a clockwise manner or 

otherwise. What follows is 16 different possible rotation to 

change the state of the puzzle. Any rotation from the solved state 

brings into an unsolved state, another rotation might discover a 

new state, and so on. This is why twisty puzzles like pyraminx 

are so beloved, every other rotation gives us a new scramble we 

had never encounter before, leading us a step further from the 

solved state. 

 
 

Fig 1.1. Solved state of the Pyraminx 

(Taken from wikimedia.org) 

Some sequence of moves actually brings us closer to solving 

the puzzle. These such sequences are called “Algorithm”, not to 

be mistaken by the general definition of algorithm. Throughout 

the years, there are many algorithms and different methods 

discovered to solve the Pyraminx. However, some methods are 

known to be faster than the other, and the most effective one had 

been in constant search since the history of this puzzle. Among 

the fastest solution, there had been another mystery looming 

since the dawn of Rubik’s cube. 

What is the least number of moves needed, to ensure that we 

can solve the Pyraminx, from any of it’s possible scramble? The 

answer of this problem is known as the God’s Number. This is 

only one example of the intersections between the world of 

discrete mathematics and the famous puzzle. It took 

mathematician about 35 years of research and computer 

calculation to finally determine the answer for the original 

3x3x3 Rubik’s cube. On July 2010, it was determined that the 

God’s number is 20 [2], proven by Tomas Rokicki, Herbert 

Kociemba, Morley Davidson, and John Dethridge. But for the 

Pyraminx , the God’s Number haven’t been clearly documented, 

or perhaps it there haven’t been any resource of it’s formal 

proof. Therefore, it is the subject matter of this paper. 

The formal proof for the 3x3x3 cube God’s Number used a 

deep understanding of group theory and complex computer 

algorithms to search for optimal solving solutions. This is 

beyond the scope of this paper, so we will approach the problem 

differently. We will picture every state of the Pyraminx as a 

graph vertice, where the edges are moves that would connect 

each state. The solution could be achieved by searching for the 

shortest path between each state and the solved state. Breadth 

First Search would be used to do the task. For optimization and 

representing the state of the puzzle, we will utilize a hash 

algorithm. 

 

 

II.  GRAPH THEORY 

A. Definition 

Graph are discrete structures that is represented by vertices 

and edges that connects them. Formally, graph is defined as 𝐺 =
(𝑉, 𝐸) where 𝑉 is a nonempty set of vertices and 𝐸 is a set of 

edges [3]. Each edges are connected to at least 1 vertices, also 

called end points. For directed graph, each edge is assumed as 

an ordered pair (𝑣𝑠, 𝑣𝑒) which signifies that an edge starts from 

vertex 𝑣𝑠 and ends at 𝑣𝑒. 



Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024 

 

 
 

Fig 2.1 Graph Illustration 

(Taken from geeksforgeeks.org) 

 

To further deepens the understanding, we will be using graph 

terminologies described below. 

 

B. Terminology 

Adjacency 

If 2 vertices u and v are endpoints of an edge, where (u, v), 

then u is said to be adjacent to v, while v is adjacent from u. 

Especially in a graph with directed edges, u is also named as the 

initial vertex, and v is the terminal vertex. 

 

In-degree & out-degree 

For a directed graph, the in-degree of v is the number of edges 

with v as it’s terminal. On the other hand, the out-degree of v is 

the number of edges with v as it’s initial vertex. In-degree and 

out-degree of v is denoted by 𝑑𝑒𝑔−(𝑣) and 𝑑𝑒𝑔+(𝑣) 

repectively. For example in the figure below, vertex 3 has 1 out-

degree and 3 in-degree. 

 
Fig 2.2 In-degree & Out-degree example 

(Taken from log2base2.com) 

 

Multiple Edges 

If there is a pair of edges that connects the same vertex. In a 

directed graph, if there is 2 different edges that assumes the same 

pair (u, v), therefore this pair of edges is called multiple edges. 

 

Self Loop 

An edge that connects vertex (u, u), in other words it’s and 

edge where the initial vertex is also the terminal. 

 

 
Fig 2.3 Multiple Edges & Self Loop 

(Taken from scanftree.com) 

 

 

 

Path 

A sequence of edges that starts at a vertex of a graph and 

walks along the edges according to the direction, visiting 

vertices that acts as the terminal of those edges. For a path with 

length n, the notation is 𝑥0, 𝑥1, 𝑥2, … 𝑥𝑛 which is the sequence of 

n+1 vertices it runs into. 

 

Cycle 

Special type of paths that starts and ends at the same vertex, 

in other words, for a path with length n denoted by 

𝑥0, 𝑥1, 𝑥2, … 𝑥𝑛, we must have 𝑥0 = 𝑥𝑛. 

 

 
Fig 2.4 Cycle B,C,E,D,B in a directed graph 

(Taken from codingninjas.com) 

 

Simple Graph 

Any graph that doesn’t contain multiple edges or self loops is 

called a simple graph. Otherwise, it is said to be non-simple. 

Usually non-simple graph are divided even further into 2 

different class depending on the existence of multiple edges or 

the self loop (Multi-graph & Pseudo-graph) but we won’t delve 

into it further since these 2 classification is beyond the scope of 

this paper. 

In the figure below, we can classify the first graph as a simple 

graph since it doesn’t contain neither self loops nor multiple 

edges. The second graph is non-simple due to the existence of 2 

different edges connecting the same pair of vertices, one of 

which is the horizontal pair of vertices. Finally the last graph is 

also considered to be non-simple for the existence of 2 self loops 

at the right most vertex. 

 

 
 

 Fig 2.5 Examples of simple and non-simple graphs 

(Taken from mathworld.wolfram.com) 

 

 



Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024 

 

III.  BACKGROUND ON THE PYRAMINX 

A. Pieces 

 
Fig 3.1. Pyraminx pieces names 

(Taken from cubelelo.com/blogs) 

 

Every Pyraminx consist of 3 type of pieces. The pieces shaped 

like an upside down triangle is called the Center, due to the fact 

that they can only rotate around an axis. Each center have 3 

colors corresponding to which face it is in, and it can’t move to 

any other position. Everytime we turn a layer, the center would 

also turn in the same direction. 

The only pieces that could move to another position are the 

edges. Edges consist of 2 colors each, corresponding to faces it 

should be in. Everytime a layer is rotated, all the edges on that 

layer would permute in a 3-cycle. Not only it can permute, edges 

orientation should also be considered. 

The last pieces are the tip, which is as it’s named, tips located 

at every tip of the 4 vertices. A tip consists of 3 different colors, 

corresponding to the center it’s next to. That tip shares an axis 

with the center, but tips could be rotated independently without 

interrupting any other pieces. Due to this reason, the tip will be 

ignored in this paper, since it could be considered to just be 

combined with it’s center as a same piece. Calculation using the 

tip is deemed unnecessary and would take too much space at 

implementation. Even adjustment to the actual god’s number 

could easily be done at the end. 

 

B. Notation 

Notation for the moves of Pyraminx should be defined clearly 

early on. This is due to the fact that we will be using the moves 

as edges in our graph, bridging between states of the puzzle. 

Throughout this paper, we will assume that the puzzle is hold in 

a way such that the red face is up front, and the blue face at the 

bottom.  

Rotation in twisty puzzles is usually notated by a letter [1]. In 

the Pyraminx, there are 4 different axis that can be turned, which 

is shown by the location of the center pieces. Each rotation in a 

clockwise manner is notated by a capital letter, signified by the 

first letter of the axis turned (up, right, back, left). The axis can 

be turned the other way around too, such counter clockwise 

moves is notated with an apostrophe (‘) after the letter. 

 So far we have defined 8 different possible moves from any 

state. It should be noted that since the tip could be rotated 

independently, they have their own moves that affects no other 

pieces. The rules are not much different than the usual rotation, 

however we use non-capital letters instead. As stated before, tip 

would be ignored, so we would eliminate the 8 possible moves 

from consideration for the rest of the paper. Thus, we are only 

using 8 moves to work with the Pyraminx, as viasualized below. 

 
Fig 3.2. Pyraminx move notations 

(Taken from solitairelaboratory.com) 

 

 

 

IV.   ALGORITHM 

There are several algorithms that we will use to search for the 

God’s Number. The concepts and time complexity will be 

elaborated below, while the implementation for this paper will 

be described in later chapters. 

 

A. Hashing 

Hashing is a process of generating a fixed and small size 

output from a large and variably sized input [4]. This is done 

with a specially chosen function called the Hash function. In 

computer science, hash is usually used to determine the first  

index to store our data in a data structure. The index is optimized 

to be hashed as small as possible such it’s not using as much 

space, yet also leaves as many space as possible for the data to 

fit. 

A data that is hashed usually paired with a key, which is 

unique and would be use to recognize a single data. The selected 

hash function will convert the key into a number or address in 

the size small enough for the data structure. Hash is also utilized 

to optimize the retrieval process of data. Since the hash function 

return the address of the data, we can also determine whatever 

data is paired with a certain key just by inserting the key into the 

function. Optimally, a perfect hash function would run in O(1) 

time, which speeds up memory look up significantly. 

However, hashes is not without it’s complication, since a 

collision might occur. Collision is a condition where a different 

key value returns a same hash value instead. There are several 

method for collision resolution policy, such as open addressing 

or double hashing. Fortunately in our case, selecting a perfect 

hash function could avoid collisions completely. Thus, we won’t 

delve further into collisions and their problems.  

 

B. Breadth First Search (BFS) 

Breadth First Search, or more commonly abbreviated as BFS, 

is an efficient algorithm to traverse complexly connected data 

structures such as graphs [5]. This algorithm will start at a 

starting vertex called a root, and visits vertex at increasing order 

of distances. Different from it’s sibling, the Depth First Search 

(DFS), which traverse the graph such that we get to the end of 

the path before we backtrack, BFS is the opposite manner. We 



Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024 

 

will be walk through a path 1 step at a time, moving on into the 

next path instead of continuing our current path. This is why the 

algorithm is called Breadth first, a representation of our 

approach to walk through said graph. 

 
Fig 4.1. Breadth First Search Illustration 

(Taken from tutorialspoint.com) 

 

The Breadth First Search algorithm utilizes a first in first out 

(FIFO) structure. Queue is an excellent choice for this algorithm 

since it’s implementation is usually efficient enough. The queue 

will be used to store the order of vertex exploration, at each step 

the front of the queue is processed. Another structure needed for 

storing the truth value of whether a vertex has been visited 

before. A Boolean typed array sized exactly the number of 

vertices works fine. We also need to store the distance of a 

vertex from the root, where an integer typed array is sufficient. 

Below is a pseudocode explaining how the algorithm works. 

 

 
 

Fig 4.2. Breadth First Search Pseudo Code 

 

For a graph 𝐺 = (𝑉, 𝐸), the time complexity for Breadth First 

Search on graph G is O(V+E). 

 

 

V.   LOWER BOUND 

To set a standard for the solution we will look for later, it is a 

good idea to know the lower bound of the God’s Number first. 

Using a naive approach with combinatorics is sufficient. 

 

A. Number of Combinations 

We will look for the number of all possible shuffle of the 

Pyraminx. As stated before, the tip won’t be accounted in this 

paper. Notice that for each center, their position is always fixed 

on an axis, but they can be rotated up to 3 faces. Since there are 

4 independent centers, the number of combinations are 34. The 

edges would have more combinations since we won’t only count 

it's orientation, but also it’s permutation. Each edge have 2 

stickers, meaning there are 26 possible orientation. While we 

have 6! ways to permute the edges location within the Pyraminx. 

 However, limitations on the structure of the puzzle needs us 

to consider parity cases for both permutation and orientation. 

The problem is due to the 3-cycle nature of pyraminx edges 

permutation, it is impossible to have a 2-cycle edges. Thus, we 

must eliminate it by dividing the final calculation by 2. The same 

thing applies for orientation too. Note that due to the nature of 

the puzzle, it is impossible to have a single flipped edge on a 

Pyraminx. This case can also be eliminated by dividing by 2. 

Therefore, the actual number of combinations possibly achieved 

on a Pyraminx is 

34 × 26 × 6!

2 × 2
 = 933120  

 

B. Important Assumption 

Consider that at every state of the puzzle we may use 8 

different moves (U, U’, R, R’, B, B’, L, L’). Assume that every 

time we do a move we will guaranteed to discover a new, 

unvisited before state. This assumption is obviously not always 

true, since there might be a cycle in the graph of possibility 

we’re making, bringing us back into a state visited before 

instead. But on the other hand, this assumption results int the 

overcalculation of states we visit at every number of moves, 

which is important for the following calculation.  

Starting from the solved state, we have 8 possible turns to 

move into a different state. For the next move, we only have 7 

choices, since one of the moves here is just the inverse of what 

we just done, making our effort before useless. We will keep on 

moving to a new state every round, in each we have 7 choices of 

turns. Based on our assumption above, we will at one point reach 

a round where the number of states visited is actually more than 

what’s possible (remember that we will overshoot the number 

of visited states). This is our lower bound, since in actuality we 

might need more rounds to finally visited all of them. We  

arrived at this inequality. 

8 × 7𝑛−1 ≥ 933120 

Where n is the number of moves made. Therefore, the lower 

bound of the God’s Number is the lowest possible n. Which 

turns out to be 7 moves. 

 

 

VI.   PROPOSED METHOD 

The proposed method to search for Pyraminx’s God’s number 

would involve hash and breadth first search. Further details 

about the approach is as follows.  

 

A. State Notation 

Every state of the puzzle will be notated by a string of 16 



Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024 

 

integers. The notation is made with specific rules such that every 

possible state of the Pyraminx is uniquely notated. Each integers 

representing a single piece independently. Informations about 

center orientations, edge orientation, and edge permutation are 

included in this string. 

The first 4 integers of the string represents orientation of each 

center. Numbered from 0 until 2, it’s informing us how many 

clockwise rotation it is currently from the correct orientation. 

The centers are ordered from up, right, back, and left. 

The next 6 integers are the orientation of the edges, which is 

either a 0 or 1. The following idea is borrowed from a lecture by 

Zachary Stillman & Bowen Shan [6], and expanded further to 

improve the handling for purposes of this paper. For each edge 

piece, a certain sticker is selected and labeled as by a special 

symbol ‘+’. The integers corresponding to an edge position is 

‘1’ if the edge located here has it’s ‘+’ on the correct orientation 

as the ‘+’ symbol of this position. At the solved state, all 6 

integers are ‘0’ since every edge is in it’s correct orientation. 

Notice that the number of 1’s here should be even, which is an 

effect of the orientation parity. The scheme of the special 

stickers is illustrated below. 

 

 
 

Fig 6.1. Special stickers scheme 

 

The last integers of the string depicts the permutation of 

edges. Once again, this idea is adopted from the lecture “Group 

Theory and the Pyraminx” [6]. The integers are from the range 

of 0-5, which is analogous to the number of edges. Each edges 

are given a number, and each number in the strings shows what 

number is the edge located here. In the solved state, the string is 

simply “012345”.  

In simple terms, the last 6 numbers is a permutation of 

numbers from 0-5, with a little adjustment. One important thing 

is the fact that Pyraminx edges can only permute in 3-cycles. 

This means a single 2-cycle is impossible to be achieved, same 

as a 4-cycle and 5-cycle. Thus, the last 6 numbers must be 

constrained such that it satisfies the cycle condition. This can be 

done by swapping the last 2 numbers if the cycle condition is 

violated. The numbering scheme for the edges as follows 

 

 
 

Fig 6.2. Edges Numbering scheme 

 

For better understanding, the solved state would is notated 

“0000000000012345” 

 

B. Hash Function 

Hash is not only needed as a simpler representation of the 

states, it’s also crucial for space optimization in our 

implementation. The hash function in this paper is perfected 

such that no collision would ever happen. This function converts 

the state notation string described above into an integer in the 

range of 0-933119, which is the number of all possible state of 

Pyraminx. 

The first 4 integers are converted into an integer using the 

concepts of Base 3, which becomes a number between 0-80, 

assume it’s A. The next 4 are 6 digits of 0’s and 1’s. Remember 

that the parity of the number of 1’s should be even, so we can 

ignore the last digit and only look at the first five. This string of 

5 can be assumed as a binary and converted easily into a number 

between 0-31, For example B. 

Lastly we need to convert a permutation of numbers between 

0-6 into an integer in the range 0-360, call it C. As stated before, 

the last 2 numbers could’ve been swapped to satisfy the 3-cycle 

condition. Therefore, we only need to focus at the first 4 

numbers (since the last 2 are determined from them). To convert 

these 4 numbers into a single integer is analogous to finding out 

what order a permutation is if all are sorted lexicographically.  

All these steps results into 3 integers as stated before. We can 

combine them all into one number using the equation 

𝐻𝑎𝑠ℎ 𝑉𝑎𝑙𝑢𝑒 =  2592 ×  𝐶 +  81 ×  𝐵 +  𝐴 

this hash value is guaranteed to be between 0-933119. To 

retrieve a state string from the hash value, we can create a new 

function which is the inverse of the hash function, the steps are 

similar as above but reversed. Pseudo code for this algorithm 

provided below 

 



Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024 

 

 
 

Fig 6.3. Hash Function Pseudo Code 

 

C. Graph Representation 

The graph used is a simple directed graph that represents 

every possible scramble which can be achieved from a solved 

state, meaning there are 933120 vertices. All vertex 

fundamentally stores 4 values. The hashed value of the state 

represented which used for identification, a mark on whether 

this vertex is visited before, the distance from the solved state, 

and the last move done by it’s neighbor to reach this state. 

On the other hand, the directed edges connects a vertex to 

other states it can reach using only a move. In theory, each 

vertex must have out-degree 8 since there are 8 possible moves. 

But notice that doing moves in the same axis as the one did last 

is useless, since we are either cancelling the last move or going 

to a neighbor of the last state (which is guaranteed to have been 

visited before). Thus, for every vertex we only create 6 edges 

which is every moves in axis other than the last. 

 

D. Breadth First Search 

Set the solved state as the root of our search. The algorithm is 

no different than the pseudo code for BFS provided before, 

except for the process that we do for each vertex. Essentially, 

the process that we do to each visited vertex is we hash a state 

created by a valid move, then we would update the distance of 

that vertex to be 1 more than the vertex we’re in.  

At one point, we will visit every state and the search is 

stopped. Since we started from the solved state, and visited 

every possible scramble of the puzzle, we can finally find the 

answer. The God’s Number for the Pyraminx is the highest 

distance value of all vertex.  

Reminder that we are excluding the tips at our calculation, 

which means the number resulted is not exactly the god’s 

number. Fortunately it is quite easy to calculate, since the tips 

are independent from any other pieces. We can assume the worst 

case scenario of each tip is wrongly oriented. This is needs at 

most 4 moves, where each tip can be fixed with just 1 move. 

Therefore, the final answer found from the Breadth First Search 

must be increased by 4 to return the actual God’s Number. 

 

E. Time Complexity Analysis 

The hash function is made to run as fast as possible. In fact 

this hash function complexity is simply O(1). This is true since 

every part of the answer is determined with calculation, and 

every loop size is constant.  

Since every vertex essentially has 6 neighbors, and we won’t 

visit any visited vertex again, we can say we visit each vertex 

only once. Noticed that we also visited every edges in our graph. 

In our graph 𝐺 = (𝑉, 𝐸), we have |𝑣| = 933120 and |𝑒| =
|𝑣| × 6. Thus we must have 

𝑇(𝑛) = |𝑣| + |𝑒| = 7 × |𝑣| 
and implies that the complexity of the search is O(|v|). Which in 

theory should run in mere seconds even for a graph that big. 

 

 

VII.  PROGRAM  IMPLEMENTATION 

I used C++ for the implementation of this program since I 

want the program to have a fast runtime. But it turns out that the 

available memory for this language is quite limited. Therefore, 

space optimization is heavily needed for the implementation. 

Such as the use of smaller data types like short and deallocating 

used structure as fast as possible. The program simply utilizes 

command line interface. The full source code could be viewed 

at my git repository [7]. 

 

A. Pyraminx Data Type 

The Pyraminx is basically implemented as an Abstract Data 

Type (ADT) called Node. This structure holds 2 values, first of 

which is the hash value called id, and the other is distance to 

record the number of moves it took to reach this state. Another 

structure used is Address, a pointer to a node. The function 

createNode is used to allocate and initialize a new node 

 

 
 

Fig 7.1. Pyraminx ADT 

 

B. Moves.h 

This header file is used to define all the moves and hash 

function. The matrix orientationUpdate is used to store every 



Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024 

 

edge orientation change due to a move, while permuationUpdate 

is handling edge permutation. The function scrambleToInt is 

essentially the hash function, converting any scramble notation 

into a hash value. While intIntoScramble is it’s inverse hash 

function. doMove is used to apply a move to a state notation, 

then return the hash value of the resulting state. 

 

 
 

Fig 7.2. Moves header file 

 

C. Search.h 

This file contains the implementation of the Breadth First 

Search algorithm. One important thing to note is the queue data 

structure used is the one provided in the standard library. 

However, the element type it accepts is a bit different. For this 

queue, I construct it such as it accepts a pair of Node and short. 

The node at the top of the queue is the state that will be 

processed. While the short is used to store the last move done to 

reach this said node, such that we won’t do moves at the same 

axis anymore. 

 

 
 

Fig 7.3. Search header file 

 

D. Main.cpp 

This file is the driver file for the program. This file contains 

all the I/O displayed to the command line. Here is also where the 

bfs function is executed. The main program also prints several 

useful information such as the runtime of the program, also the 

amount of nodes found at each depth. 

 

 
 

Fig 7.4. Main Program file 

 

E. Test Run 

 
 

Fig 7.5. Test Run Result 

 

Above is what the program displays when it is run. Clearly 

the program runs quite fast, averaging at about 1.56 s every run. 

The program also gives consistent results, printing out that the 

gods number is 14. Based on a sequence in Sloaine’s database 

[9] (also known as Online Encyclopedia of Integer Sequences), 

there are 32 cases in the Pyraminx that needs 11 moves to solve. 

This implies that the actual God’s Number is 15, and my 

implementation missed by 1.  

As it could be seen below, the number of nodes at depth 3 on 

my program and the ones in the database differ by 1, and it 

would differ further more until it left no more nodes in the depth 

11. This is a bug in my implementation that I suspect is due to 

my bfs implementation, since I had double checked that my hash 

function won’t deliver any wrong results. 

 

 
 

Fig 7.6. Sequence of positions at depth n 

(Taken from oeis.org) 

 

VIII.   CONCLUSION 

Breadth First Search and Hashing could also be used as an 

alternative to find God’s Number in a twisty puzzle. Although 

my implementation didn’t quite give the exact answer, it was 

just close enough that it’s safe to say the method is proven to be 



Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024 

 

successful.  The error on the final answer is not to be looked on 

as a failure, but rather a room for improvement in the future. It 

could finally be concluded that the actual God’s Number for the 

Pyraminx is exactly 15. 

 

 

IV.   ACKNOWLEDGMENT 

I would like to thank first of all, to God for giving me all the 

ability and chance to finish this paper. I would also like to thank 

Mrs. Ulfa Nur Maulidevi, S.T, M.Sc as discrete mathematics 

lecturer for the knowledge shared in class throughout this 

semester and the guidance as I am writing my first paper. A 

special appreciation for all puzzle designers especially Uwe 

Mèffert for their work and innovation in creating puzzle that’s 

also worth as variable study material. Appreciation also extends 

to the community of twisty puzzle community For their passion 

and dedication, especially in the interest of studying such 

puzzle’s which shared so insight for me. In addition, I would 

also thank my family, friends, and everyone providing support 

while writing this paper. 

 

REFERENCES 

[1] Denes Ferenc., "Pyraminx," Ruwix. Available: https://ruwix.com/twisty-

puzzles/pyraminx-triangle-rubiks-cube/. [Accessed: December 8, 2023]. 
[2] Herbert Kociemba et al., "God’s Number is 20,” cube20. Available: 

https://cube20.org/. [Accessed: December 8, 2023]. 

[3] K. H. Rosen, "Discrete Mathematics and Its Applications," 8th ed. New 
York, NY: McGraw Hill, 2019. 

[4] R. Johnsonbaugh, "Discrete Mathematics," 8th ed. Upper Saddle River, 

NJ: Prentice Hall, 2018. 
[5] J. Wengrow, "A Common-Sense Guide to Data Structures and 

Algorithms," New York.  

[6] Zachary Stillman, Bowen Shan (2016). Group Theory and the Pyraminx. 
Cornell University.  

[7] https://github.com/Farhannr28/God-s-Number-for-Pyraminx. 

[8] Neil Sloane., "A079744," OEIS Foundation Inc. Available: 
https://oeis.org/A079744. [Accessed: December 11, 2023]. 

 

 

 

PERNYATAAN 

Dengan ini saya menyatakan bahwa makalah yang saya tulis 

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan 

dari makalah orang lain, dan bukan plagiasi. 

 

Bandung, 11 Desember 2023    

 

 
 

Farhan Nafis Rayhan - 13522037 

https://ruwix.com/twisty-puzzles/pyraminx-triangle-rubiks-cube/
https://ruwix.com/twisty-puzzles/pyraminx-triangle-rubiks-cube/
https://ruwix.com/twisty-puzzles/pyraminx-triangle-rubiks-cube/
https://cube20.org/
https://github.com/Farhannr28/God-s-Number-for-Pyraminx.
https://oeis.org/A079744

