
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Enhancing Security in a Password Manager Using

RSA Encryption

Zaki Yudhistira Candra - 135220311

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113522031@itb.ac.id

Abstract—In this digital age, the use of passwords is deeply

engrained in our digital systems as they serve as a primary means

to prove our identity upon gaining access to personal accounts,

sensitive information, and online services. People with a high-level

of digital involvement tend to have multiple accounts, using the

same password for each account would lead to vulnerabilities, thus

a variety of unique passwords is needed. A password manager is

necessary in order to keep track of those different sets of

passwords. Traditionally, password managers store passwords as

plaintext in a text file, making them susceptible to hackers. This

paper proposes the integration of RSA Encryption into a password

manager’s database. In any case, when a hacker got hold of a

password manager’s database, the information retrieved would be

encrypted, rendering it useless to the perpetrator.

Keywords—Encryption, Number Theory, Password, RSA

Algorithm.

I. INTRODUCTION

In recent years, the rapid digitalization of the world is linear

to the involvement of people in the digital landscape. This has

led to the common practice of a person owning multiple

accounts from multiple online services. The leisure of using a

single password for all accounts comes with a significant trade-

off; these accounts are highly inclined to information leaks and

even potential theft. With those issues in mind, a unique

password for each account is necessary for security concerns.

However, memorizing a password for each account could be

troublesome, especially when managing numerous accounts.

Considering the urgency of improving online security, the

adoption of a password manager application becomes crucial in

simplifying the task of managing multiple unique passwords. By

using the password manager, a person could create a list of two

elements, one containing the account name and the other the

password to that particular account. If the person requires a

password upon logging into a specific account, the

corresponding password to that account would be returned,

saving the hassle of memorizing it.

There are multiple password managing apps that are available

at this moment of time, but since those apps manages your

private data, there are no guarantee for the data’s safety and

secrecy, hence it is highly advised to create our own tailored

password manager software. This could ensure our data’s safety

and prevent any leakage.

A general password manager software is equipped with

password storing mechanism and a database that consists of

passwords and their corresponding accounts. A password

manager serves as a storage in case a user needs to manage

multiple accounts.

This paper is all about diving into the world of password

management, specifically looking at how we can make it more

secure by using RSA (Rivest–Shamir–Adleman) encryption.

RSA is a big deal in the encryption world, known for its super-

strong protection of data[3]. By adding RSA encryption to the

mix, we want to fix the weak points in how passwords are

usually stored which we have previously explained.

We will explore what RSA encryption is all about and its

practical implementation in the realm of password management

and what it means for making things more secure. We'll also

delve into the advantages and the shortcomings, making sure we

find a good balance between super-strong security and keeping

things easy for people to use.

As we dig into making our digital identities safer, this

research aims to give useful information about password

management and keeping things secure online. The goal is to

use RSA encryption to make password keepers stronger, helping

people feel more confident and secure in the digital world.

II. FUNDAMENTAL THEOREM

I. Number Theory

Number theory is a branch of pure mathematics that deals

with the properties and relationships of numbers, particularly

integers. It has a long and rich history, dating back to ancient

times, and has applications in various areas of mathematics and

computer science.

There are several key concepts and theories in this

mathematical branch that would be used in this research which

will be discussed in the next section[1].

II. Integers

An integer is a whole number that can be positive, negative, or

zero. It does not include fractions or decimals. The set of

integers is denoted by ℤ. Examples of integers are -5, 1, 5, 8, 97,

and 3,043. Integers can be represented on a number line, and

arithmetic operations such as addition, subtraction,

multiplication, and division. Numbers such as √5, π, and 2.25

are not integers[1].

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

III. Integers Division

Suppose 𝑎 and 𝑏 are two integers that satisfy 𝑎 ≠ 0. 𝑎 is said

to divide b if there exists an integer 𝑐 such that 𝑏 = 𝑎𝑐, or it can

be denoted in mathematical notation as follows:

𝑎 | 𝑏, if 𝑏 = 𝑎𝑐, 𝑐 ∈ 𝕫, 𝑎 ≠ 0

From that theory, emerged an algorithm that utilizes the

divisibility characteristic of integers named Euclidian

Algorithm. Suppose m and n are two integers that satisfy n > 0.

If m is divided by n, then the division result is q and the rest r so

that:

𝑚 = 𝑛𝑞 + 𝑟 with 0 ≤ 𝑟 < 𝑛

IV. Greatest Common Divisor

Suppose 𝑎 and 𝑏 are two non-zero integers. The greatest

common divisor (GCD) of 𝑎 and 𝑏 is the largest integer 𝑑 such

that:

𝑑 | 𝑎 and 𝑑 | 𝑏

Then the GCD(𝑎, 𝑏) = 𝑑 is obtained. In addition, using the

Euclidian, suppose 𝑚 𝑛, and q are two integers with the

condition 𝑛 > 0 such that:

𝑚 = 𝑛𝑞 + 𝑟 with 0 ≤ 𝑟 < 𝑛

Then the GCD(m,n) = GCD(n,r)

V. Modulo Arithmetic

The modulo operation calculates the remainder when a

number is divided by another. It is represented as the mod

operator and is used to find the "leftover" value after performing

integer division.

Suppose a and m are two integers with m > 0, the “mod”

operation returns the remainder of a (r) divided by m as written

below:

𝑎 𝑚𝑜𝑑 𝑚 = 𝑟

It is interpreted as a modulo m such that a = qm + r, with 0 ≤

r < m. m is called modulus or modulo and the arithmetic result

of modulo m is located in the set {0,1,2,…, m – 1}.

VI. Congruences

Congruency describes a condition where two integers have

the same remainder when both of them are divided by a certain

non-zero integer.

Let a, b, and c be a non-negative integer and c ≠ 0. It is said

that a is congruence to b mod c if the following situation is

satisfied: 𝑎 = 𝑛𝑐 + 𝑟, 𝑏 = 𝑚𝑐 + 𝑟.

Congruency is denoted in this mathematical notation:

𝑎 ≡ 𝑏 (mod c)

.

VII. Prime Number

Let p be a positive integer that satisfies p > 1. It is concluded

that p is a prime number if and only if it could be only divided

by 1 and p. An example is the number 23.

Since a prime number has to be greater than 1, then the prime

series starts from 2, 3, 5, 7, 11, 13, … and so on.

Fermat theorem is a prime related theorem that states that if p

is a prime number and there exists an integer a such that

GCD(p,a) = 1, then this rules applies:

𝑎𝑝−1 ≡ 1 (mod p)

VIII. Relatively Prime

Let a and b be two positive integers. It is said that a and b is

relatively prime or coprime if and only if their greatest common

divisor is 1.

If a and b is relatively prime, there would exist such integers

m and n that satisfies the following condition:

𝑎𝑚 + 𝑏𝑛 = 1

IX. Modulus Inverse

If a and m are coprime, and m > 1, then there exists an inverse

of a (mod m), meaning there exists an integer x that satisfies the

condition:

𝑎𝑥 ≡ 1(mod 𝑚)

or it can be expressed in the notation a-1 (mod m) = x. The

method for determining the value of the modulo inverse is by

solving it in the 'equal to' notation as follows:

𝑎𝑥 = 1 + 𝑘𝑚 → 𝑥 =
1 + 𝑘𝑚

𝑎

Then, try values for k = 0, 1, 2, … and k = -1, -2, -3, … with

the solutions being all integers that satisfy the equation.

X. Cryptography

Cryptography, or cryptology, is the practice and study of

techniques for secure communication in the presence of

adversarial behavior. It involves constructing and analyzing

protocols that prevent third parties or the public from reading

private messages. Cryptography is derived from mathematical

concepts and algorithms, and it is used to transform messages in

ways that are hard to decipher. This field is crucial for ensuring

data privacy, secure online communication, and protection

against various types of cyberattacks. Modern cryptography

encompasses various objectives, including confidentiality,

integrity, and non-repudiation. It is used in numerous practical

applications such as electronic commerce, chip-based payment

cards, digital currencies, computer passwords, and military

communications.

Cryptography can be categorized into three types: secret key

cryptography, public key cryptography, and hash function

cryptography. Examples of cryptographic algorithms include

the Rivest-Shamir-Adleman (RSA) algorithm and the Advanced

Encryption Standard (AES).

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

In essence, cryptography is mainly divided in two process,

encryption and decryption.

Encryption is the process of transforming plaintext

information into a coded form known as ciphertext, while

decryption is the reverse operation, converting ciphertext back

into its original plaintext form.

Both processes will require a key to generate its own unique

cyphered text and to decode a specific cyphered text. The key

often has 2 values, a public-key and private-key, the public key

is used for encryption, hence everybody could use it, whereas

the private key is used for decryption and it is kept secret.

XI. ASCII Text Encoding

ASCII, or the American Standard Code for Information

Interchange, is a 7-bit character encoding standard used for

electronic communication. It comprises 128 code points, with

95 being printable characters such as letters, digits, and

punctuation.

ASCII served as the primary character encoding for data

processing, providing a universally accepted set for basic data

communications. While still in use, modern systems often prefer

Unicode, which encompasses ASCII and supports a broader

range of characters for global communication. Unicode is

backward-compatible with ASCII, ensuring a smooth transition

between the two standards[4].

XII. RSA Cryptography Algorithm

The RSA algorithm, named after its creators Ron Rivest, Adi

Shamir, and Leonard Adleman, was introduced in 1977. It

functions as an asymmetric cryptographic algorithm, employing

public and private key pairs for data encryption and decryption.

Based on modular arithmetic, the algorithm relies on the

challenge of factoring large numbers into their prime

components. It is an asymmetric cryptography algorithm[3].

Here's how the RSA algorithm operates:

1. Key Generation: The user generates two large prime

numbers, typically more than 200 digits, p and q, and

calculates n as their product, n is not hidden.

2. Public Key: A public key e, that is relatively prime with

φ(n). GCD(e, φ(n)) = 1.

3. Private Key: A private key, represented by a number d

satisfying de ≡ 1 (mod φ(n)), is kept for decrypting data.

φ(n) is a number that is relatively prime with p and q and

is kept hidden.

4. Encryption: The sender uses the public key (n and e) to

compute a ciphertext by raising the message m to the

power of e and dividing by n.

5. Decryption: The receiver uses the private key (d) to

compute the plaintext by raising the ciphertext to the

power of d and dividing by n.

This algorithm is one of our most powerful cryptography

algorithm to date since there are no efficient ways of calculating

the factor of n, n is a very large prime number.

The value of n is open for public and same goes for the public

key (e). On the other hand, φ(n), p, q, and the private key is kept

hidden .

The encryption procedure is as follow:

Define a plain-text in a string of its corresponding ascii values

and divide those ascii text into smaller blocks (pn), for example

a 3 characters block. Then encrypt each block into a value using

the public key with the following formula:

𝑐𝑛 = 𝑝𝑛
𝑒 mod 𝑛, with cn as the encrypted block

To decrypt the cyphered text, it should follow this formula:

𝑝𝑛 = 𝑐𝑛
𝑑 mod 𝑛

The value n indicates the block index in the target plain-text.

III. PROBLEM ANALYSIS

A. Password manager implementation

A simple password manager program implementation would

take form in a command line interface (CLI) manner and built

using the python programming language. To operate and

function as a proper password manager, it would need to have

some baseline features as follows:

1. Store accounts and its corresponding password

Users could register an account and its password into

the software which will be later be saved in the

software’s database.

2. Delete an account from the database

If a user’s account is not in use anymore, a user could

easily delete it to improve the program’s readability and

save storage.

3. Save registered accounts into a database and have

multiple databases

The registered account and its password would be

saved in a database in a form of encrypted plain-text, for

the sake of simplicity, the database will be stored in a

local folder.

4. Encrypt database

Before saving the registered accounts into the database,

the texts that hold such information in the memory will

firstly be encrypted using the RSA Algorithm. Each

database will have its own public key and private key for

the encryption-decryption process.

The program would have a structure as follows:

Figure 1. Program structure (Source: writer’s Archive)

Folder

|----src

| |-main.py

| |-encryption.py

| |-extra.py

| |-passwordManager.py

|

|----files

| |----database1

| | |-AccData

| | |-Key

| |----database2

| |-AccData

| |-Key

|

|----run.bat

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

B. RSA Database Encryption

The plain-text encryption would have a process

implementation as follow:

1. User registers a particular account

2. The accounts would be saved in the system’s memory

3. If the user wants to exit the program, the temporary

database would be written into a text file in an encrypted

format by using the public key generated

4. The encrypted database is saved in the local folder

By following the procedure above, the plain-text would never

be written and would only exist in the local memory, thus

making it harder for a data leak.

Subsequently, loading a database will have these following

procedures:

1. User would be asked to prompt a database folder

2. User would be asked to prompt a private key

3. The database would be decrypted and the result would

only be stored inside the system memory

IV. IMPLEMENTATION

As mentioned in the previous section, the program will be

implemented using the programming language python. The

program has a main function that would be executed upon

starting the program. The main function will call all the

necessary function to complete a certain task.

This implementation uses the python 3.10.0 version.

There are several libraries used in implementing the main

RSA Algorithm: sympy and random.

Sympy is a python library that allows user to manipulate

mathematical expressions. In this implementation, Sympy is

used to generate the prime numbers.

Random is a python library that is used to generate random

integers from a designated value. In this implementation,

Random is used to generate a random number for finding the th

prime number.

All the functions regarding the encryption algorithm, its

implementation, and its purpose will be listed in the following

section:

1. gcd

Is a function that is used find the greatest common

divisor between 2 given integers. It uses the Euclidian

algorithm recursively.

Figure 4.1. gcd function (Source: writer’s Archive)

2. get2Prime

Is a function that returns two different prime integers.

These integers would later be used in finding the n value

and the m value.

Figure 4.2. get2Prim function (Source: writer’s Archive)

This function only uses the first 1000 prime numbers

due to the lack of computing powers, ideally it should at

least use the 10^15th prime number (200 digits).

3. getPub

Is a function that returns a public key value of the

encryption algorithm. The value of the public key in

capped between 1 to 200 due to the lack of computing

power.

Figure 4.3. getPub function (Source: writer’s Archive)

4. inverseMod

Finds an inverse of a given modulo equation, the

inverse would later be used as the hidden private key. The

minimum number of the inverse returns is 10 for

complexity purposes.

Figure 4.4. getPub function (Source: writer’s Archive)

5. rsaAlgorithm

This is the main implementation of the RSA algorithm.

It first takes p and q as its two main prime numbers, then

a public key (pub) would be retrieved followed by its

private counterparts. Lastly it will return the public key,

private key, and the modulus n as a 3 elements tuple.

Figure 4.5. rsaAlgorithm function (Source: writer’s Archive)

6. encrypt

This function encrypts a single ASCII character using

the public key into an integer value that could be

def gcd(a, b):

 if (b == 0):

 return a

 else:

 return gcd(b, a % b)

def get2Prime():

 p = rd.randint(100,1000)

 q = rd.randint(100,1000)

 while p == q:

 q = rd.randint(100,1000)

 return sy.prime(p),sy.prime(q)

def getPub(m):

 while(True):

 e = rd.randrange(1,200)

 if (gcd(e,m) == 1):

 return e

def inverseMod(pub,m):

 for i in range(10,m):

 if((pub*i)%m == 1):

 return i

def rsaAlgoritm():

 p,q = get2Prime()

 n = p*q

 m = (p-1)*(q-1)

 pub = getPub(m)

 while pub == 1:

 pub = getPub(m)

 priv = inverseMod(pub,m)

 return pub,priv,n

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

decrypted using its private complement. It encode a

character into its ASCII value and modify its literal

value.

Figure 4.6. encrypt function (Source: writer’s Archive)

7. decrypt

Contrary to the encrypt function, the decrypt function

as it name suggests, decrypt an integer value using the

private key into a readable ASCII character.

Figure 4.7. decrypt function (Source: writer’s Archive)

8. encryptString

Processes each individual character in a string into an

encrypted data, used to convert a database and save it in

its encrypted state.

Figure 4.8.encryptString function (Source: writer’s Archive)

9. decryptString

Works in similar fashion with the encryptString

function, only this time it acts as a decryptor of an

encrypted database.

Figure 4.9.decryptString function (Source: writer’s Archive)

10. strToKeys

Used to convert a string into keys.

Figure 4.10. strToKeys function (Source: writer’s Archive)

11. keysToStr

Used to convert keys into a string for storing its values.

Figure 4.11. strToKeys function (Source: writer’s Archive)

The rest of the implemented functions revolves around

building a proper password manager with its features that

supports its ease of use. For readability purpose, it would only

be partially listed in this paper. The following figure describes

the main implementation of the program:

Figure 4.12. the main program (Source: writer’s Archive)

The program starts by asking the user to choose a database

from the available ones. Users will be asked to create a database

def encrypt(char,pub,n):

 return int(pow(ord(char),pub,n))

def decrypt(value,priv,n):

 return int(pow(value,priv,n))

def encryptString(stringInput,pub,n):

 result = ""

 first = True

 for c in stringInput:

 if(c == '\n'):

 result += c

 else:

 if first:

 result +=

str(encrypt(c,pub,n))

 first = False

 else:

 result += '!' +

str(encrypt(c,pub,n))

 return result

def decryptString(stringInput, priv, n):

 result = ""

 stringInput = stringInput.split('\n')

 for line in stringInput:

 parse = line.split('!')

 for num in parse:

 if(num != ''):

 result +=

chr(decrypt(int(num),priv,n))

 result += '\n'

 return result

def strToKeys(strKey):

 strKey = strKey.replace('\n',"")

 strKey = strKey.split(';')

 return int(strKey[0]),

int(strKey[1]), int(strKey[2])

def keysToStr(pub, priv, n):

 return

str(pub)+";"+str(priv)+";"+str(n)

import encryption as enc

import passwordManager as pwd

import extra as ex

import os

ex.writeBanner("misc/ascii.txt")

accName = "AccData"

keyName = "Key"

param, path = ex.getListDir("database")

if not param:

 pubKey, privKey, nKey = enc.rsaAlgoritm()

 accMatrix = []

 catArray = []

else:

 try:

 keyString = ex.loadFile(path,keyName)

 pubKey, privKey, nKey =

enc.strToKeys(keyString)

 mainString = ex.loadFile(path,accName)

 mainString = enc.decryptString(mainString,

privKey, nKey)

 catArray, accMatrix =

pwd.stringToDat(mainString)

 except FileNotFoundError:

 print("File is either corrupted or doesnt

exist, terminate program")

 exit()

print("\nThe program has been sucessfully loaded !\n")

userInput = -1

while(userInput != "4"):

 ex.writeMenu()

 userInput = str(input("|-> Please input your

command : "))

 if userInput == "1":

 pwd.addAccount(accMatrix, catArray)

 elif userInput == "2":

 pwd.deleteAccount(accMatrix, catArray)

 elif userInput == "3":

 pwd.printAccount(accMatrix, catArray)

 elif userInput == "4":

 print("")

 else:

 print("Invalid Command!")

mainString = pwd.datToString(accMatrix, catArray)

mainString = enc.encryptString(mainString, pubKey,

nKey)

ex.saveFile(path,accName,mainString)

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

if there are none present. Next, it would try to load its content,

decrypt its database, and obtain the important account and

password data. When closed, it will encrypt its temporary

database which is stored in the memory, and then write and

update them into the existing database folder and files. For

simplicity, even though private keys are meant to kept hidden,

its value is stored in a “Keys” file in the database folder.

The main functions of the password manager are as follows:

1. Storing account and passwords

2. Deleting accounts

3. Displaying accounts and their corresponding password

The program consists of two main data structure which are an

array of categories and a matrix of accounts. each registered

account has 4 main sub elements: its account name, username,

password, and category for better managing. The existing

categories are stored in an array.

V. TESTING AND ANALYSIS

The program could be executed by simply running the batch

executable or clicking the “run.bat” file, make sure that the

required python and its libraries are installed. Here is the sample

database that is going to be used in the testing of this program.

Figure 5.1. Sample Uncrypted Database (Source: writer’s Archive)

Note that in practice, the database would be encrypted, here

is the example of the encrypted database using the public key

“183”, the private key “5684407”, and the n modulus

“16013551”.

Figure 5.2. Sample Encrypted Database (Source: writer’s Archive)

As we can see, it could be almost impossible to read the

encrypted database using the naked eye.

The following set of figures demonstrates the execution of the

password manager program as a whole, note that all of the

unencrypted texts are only stored in the memory:

Figure 5.3. Choosing a database (Source: writer’s Archive)

Figure 5.4. Displaying the accounts (Source: writer’s Archive)

Figure 5.5. Account deletion (Source: writer’s Archive)

Google;Gaming;Entertainment {Existing categories}

Steam;steamUsername1;steamPassword1;Gaming {Accounts}

Uplay;ubiHard1;passUbi;Gaming

Google;anEmail90@gmail.com;emailPass1;Google

Spotify;bestSong@gmail.com;spotJuked;Entertainment

OnlineShop;ImABuyer;buyer555;E-Commerce

11626207!661998!661998!3276739!7615300!15935780!9330872!11626207!15270737!

15703646!7541054!12118223!3276739!9330872!2589233!12118223!13639187!159357

80!5943667!13639187!15270737!7541054!12118223!15703646!15935780!12118223!1

3639187!2102464!5221045!2589233!1489821!7541054!587294!13639187!7541054!12

118223!3276739!2102464!1111605!15270737!13639187!15935780!3276739!661998!5

943667!7541054!15935780!587294!6720756

!12627805!13639187!15935780!15270737!15703646!9330872!587294!13639187!1593

5780!15270737!15703646!7341682!587294!15935780!5943667!12118223!15270737!1

5703646!15935780!11710804!9330872!587294!13639187!15935780!15270737!157036

46!7629877!15270737!587294!587294!14459421!661998!5943667!9144584!11710804

!9330872!11626207!15270737!15703646!7541054!12118223!3276739!2102464!52210

45!7128817!1111605!1111605!661998!449858!12118223!13639187!587294!6720756

!7341682!957058!7615300!15270737!4848718!9330872!449858!3706281!7541054!15

855359!15270737!5943667!9144584!11710804!9330872!957058!15270737!587294!58

7294!7341682!3706281!7541054!9330872!11626207!15270737!15703646!7541054!12

118223!3276739

!11626207!661998!661998!3276739!7615300!15935780!9330872!15270737!12118223

!2589233!15703646!15270737!7541054!7615300!2614196!11812759!4254291!327673

9!15703646!15270737!7541054!7615300!2664596!1111605!661998!15703646!933087

2!15935780!15703646!15270737!7541054!7615300!7629877!15270737!587294!58729

4!11710804!9330872!11626207!661998!661998!3276739!7615300!15935780

!12627805!957058!661998!13639187!7541054!7012639!4848718!9330872!3706281!1

5935780!587294!13639187!12627805!661998!12118223!3276739!4254291!3276739!1

5703646!15270737!7541054!7615300!2664596!1111605!661998!15703646!9330872!5

87294!957058!661998!13639187!9850367!449858!12526026!15935780!9144584!9330

872!2589233!12118223!13639187!15935780!5943667!13639187!15270737!7541054!1

2118223!15703646!15935780!12118223!13639187

!3662525!12118223!7615300!7541054!12118223!15935780!12627805!4723026!66199

8!957058!9330872!1897970!15703646!7128817!15068923!449858!4848718!15935780

!5943667!9330872!3706281!449858!4848718!15935780!5943667!11575397!11575397

!11575397!9330872!2589233!4552316!6987153!661998!15703646!15703646!1593578

0!5943667!1111605!15935780

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Figure 5.6. Account Addition (Source: writer’s Archive)

Through the testing, it can be inferred that the encryption and

decryption processes for the database have proven successful.

Additionally, the written database exhibits a notable level of

resistance to interpretation, rendering it effectively

incomprehensible without the appropriate decryption keys.

However, this testing also uncovers some notable drawbacks

that should be considered:

Firstly, the system shows a drawback in terms of speed when

computing large prime numbers. This could potentially impact

performance, especially when dealing with extensive database.

Secondly, the password manager lacks certain features,

indicating room for improvement. Enhancing the password

manager's capabilities could contribute to a more

comprehensive security infrastructure.

Lastly, there is a recognized need for a more reliable way to

store encryption keys. The current method may pose a

vulnerability, and implementing a more secure key storage

solution is essential to fortify the overall integrity of the

encryption system.

To implement this to its fullest potential, the database should

be kept in the cloud and its public key displayed. When the

password manager program is called, it would store a set of data

locally and when the user is done using it, it would send the

database to the cloud with its encryption. The user’s private key

would be stored locally.

Another improvement is to create a hash function to encrypt

the private key, assuming the keys are stored locally.

VI. CONCLUSION

In conclusion, implementing the RSA algorithm to enhance

security in a password managing app offers significant

advantages by providing a sturdy encryption and decryption

system. The successful testing of encryption and decryption

processes showcases its effectiveness in safeguarding sensitive

data. However, it is crucial to address potential drawbacks, such

as the algorithm's speed when computing large prime numbers

and the need for improvements in the password manager's

features. Additionally, enhancing the reliability of key storage is

essential to fortify the overall safety of the encryption system.

Despite these considerations, the RSA algorithm remains a

valuable tool for improving the security of a password managing

app, and ongoing improvements can further optimize its

performance and usability.

VII. ACKNOWLEDGEMENTS

The completion of this paper could not have been possible

without the aid of all IF2120 lecturers, especially Dr. Nur Ulfa

Maulidevi, S.T., M.Sc whom has taught the K01 for the discrete

mathematics lecture. The writer has learned a hefty amount of

information in the process of developing this paper. A debt of

gratitude is also owed to Dr. Ir. Rinaldi Munir for providing a

great amount of learning resources for the students to study

from.

REFERENCES

[1] Z. I. Borevich, I. R. Shafarevich, Number Theory, Newcomb Greenleaf,

translator. New York: Academic Press, 1966, pp. 1–18, 155–170 .

[2] K. C. Chowdhury, A First Course in Number Theory, 2nd Edition. New
Delhi: Asian Books Private Limited, 2007, pp. 1–86.

[3] Z. J. Luo, R. Liu, A. Mehta, Understanding the RSA Algorithm, Vol. 1, No.

1, Article. New Jersey: Rider University, 2023.

[4] Brytan, O’ Hallaron, Computer Systems : A Programmer’s Perspective, 2nd

Edition. Boston : Pearson, 2011, pp. 46–69.
[5] https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-

2021/TeoriBilangan-2020-Bagian1.pdf, diakses pada 3 Desember 2023

[6] https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-
2021/TeoriBilangan-2020-Bagian2.pdf, diakses pada 3 Desember 2023

[7] https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-

2021/TeoriBilangan-2020-Bagian3.pdf, diakses pada 3 Desember 2023
[8] https://linuxhint.com/generate-prime-numbers-in-pythonJ.

STATEMENT

Hereby, I declare that this paper I have written is my own

work, not a reproduction or translation of someone else's paper,

and not plagiarized.

Bandung, 11 Desember 2023

Zaki Yudhistira Candra 13522031

