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Abstract—With the ever-growing urban sprawl, efficient public 

transportation systems are crucial for the sustainability of 

metropolitan areas. Singapore's Mass Rapid Transit (MRT) stands 

as a paragon of such systems, offering swift transit across the city-

state. This paper presents a novel approach to route optimization 

within the MRT network by harnessing the computational prowess 

of graph theory and Dijkstra's algorithm. Our study delves into the 

intricacies of the MRT's infrastructure, translating it into a 

weighted graph that encapsulates the myriad of routes, transit 

times, and interchange complexities. By implementing Dijkstra's 

algorithm, we compute the most expedient paths between any two 

given stations, factoring in the dynamic nature of peak and off-

peak travel times. The results demonstrate a significant 

enhancement in route planning efficiency, providing a robust tool 

that commuters and system planners can utilize for improved 

journey planning and network management 
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I.   INTRODUCTION 

As urban populations swell and the demand for timely and 

efficient transportation escalates, the role of rapid transit 

systems becomes increasingly cardinal. In the densely woven 

urban tapestry of Singapore, the MRT is not merely a 

convenience but a lifeline that threads through the city, binding 

it together. This paper explores the application of graph theory 

and Dijkstra's algorithm to distill an optimized mapping solution 

for navigating the complex MRT network. 

Graph theory provides a natural framework for modeling the 

interconnected stations and transit lines, while Dijkstra's 

algorithm serves as a beacon, guiding commuters through the 

shortest paths amidst the labyrinthine network. The crux of this 

study lies in its adaptation of these classical theories to 

accommodate the unique operational characteristics of the MRT 

system, such as varying travel times during peak and off-peak 

hours and the strategic placement of interchange stations. 

The objective of this paper is twofold: firstly, to construct a 

comprehensive graph representation of the MRT network that 

captures the nuances of its topology; and secondly, to implement 

a refined version of Dijkstra's algorithm that accounts for 

temporal fluctuations in travel time, thereby delivering a 

pragmatic and efficient route mapping methodology. Through 

this dual-pronged approach, the paper aims to contribute to the 

domain of urban transit planning and to proffer a 

methodological blueprint for similar applications in 

metropolitan transit systems worldwide. 

II.  BASIC THEORY 

A. Graph Definiton 

A graph is a mathematical construct used to depict the 

relationships between discrete elements. It comprises vertices, 

which can be either linked or unlinked, typically denoted as dots 

or circles on the graph, and edges, which are connections 

between pairs of vertices represented as lines connecting these 

dots or circles.  

In a formal representation, a graph is denoted as 𝐺 = (𝑉, 𝐸), 

where 𝑉 is a non-empty collection of vertices, and 𝐸 is a set of 

edges. Each edge connects one or two vertices, known as its 

endpoints, establishing a connection between these vertices. 

B. Graph Types 

Based on the presence and absence of loops and multiple 

edges connecting the same vertices, the graph has two types:  

1. Simple graphs 

      A simple graph is characterized by the following 

properties: it only contains edges that connect two 

distinct vertices, and there are no duplicate edges 

connecting the same pair of vertices. In a simple 

graph, each edge is linked to an unordered pair of 

vertices, and no other edge is associated with this 

particular pair of vertices. 

 
 Fig. 1. Simple Graphs (Source: [1]) 

 

2. Unsimple graph 

Unsimple graphs are those in which loops are 

present or multiple edges connect the same vertices. 

Unsimple graphs can be further divided into two 

subcategories:  

a. Multipgraphs 

Multipgraphs are graphs that have multiple 

edges connecting the same vertices. When there 

are m different edges associated with the same 

unordered pair of vertices {𝑢, 𝑣}, then {𝑢, 𝑣} is 

an edge of multiplicity m. This feature is 

particularly useful in modeling scenarios where 

different types of connections or relationships 

between the same entities exist. 
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b. Pseudograph 

Pseudographs are graphs allow for both 

loops (edges connecting a vertex to itself) and 

multiple edges. They are useful in scenarios 

where self-connections are meaningful or when 

multiple relationship between the same entities 

need representation. 

                
  Fig. 2. Unsimple Graphs (Source: [1]) 

 

Based on the direction of the edges, graphs can be divided 

into two types:  

1. Undirected graph  

In an undirected graph, each edge does not 

have any direction. They're used when the direction of 

a relationship is not a concern, such as in social 

network friendships. 

 
Fig. 3. Undirected Graphs (Source: [1]) 

 

2. Directed Graph 

A directed graph (𝑉, 𝐸) consists of a 

nonempty set of vertices 𝑉 and a set of directed edges 

𝐸. Each directed edge is associated with an ordered 

pair of vertices. Edge with the ordered pair {𝑢, 𝑣} is 

an edge that starts at u and ends at v. This structure is 

essential in scenarios like web page links or city road 

maps, where direction matters. 

 
  Fig. 4. Directed Graphs (Source: [1]) 

 

There are also some type of special graph: 

1. Complete Graph 

These are graphs where every vertex is 

connected to every other vertex with a unique 

edge. They represent the most interconnected 

scenario possible in a graph. 

 
Fig. 5. Complete Graphs (Source: [1]) 

2. Circle Graph 

These graphs form a continuous loop, with 

each vertex connected to exactly two others, 

 forming a circular structure. They are a 

special case of regular graphs. 

 
Fig. 6. Circle Graphs (Source: [1]) 

 

3. Regular Graph 

A graph where each vertex has the same 

degree, meaning the same number of edges 

connected to each vertex. This uniformity can be 

crucial in network design and symmetry analysis. 

 
Fig. 7. Regular Graphs(Source: [1]) 

 

4. Bipartite Graph 

These can be split into two distinct sets of 

vertices with edges only running between vertices 

of different sets. They are particularly useful in 

scenarios like job assignments or matching 

problems, where two distinct types of entities are 

involved. 

 
Fig. 8. Bipartite Graphs (Source: [1]) 

 

C. Graph Terninologies 

In graph theory, there are several terms used when 

analyzing graphs. The terminologies that will be used are 

as follows: 

1. Adjacent 

In an undirected graph, two vertices are 

considered adjacent if they are connected by an edge. 

In a graph with directed edges, the vertex at the 

beginning of the edge is considered adjacent to the 

vertex at the end of the edge. When (𝑢, 𝑣) is an edge 

of the graph 𝐺, 𝑢 is the initial vertex of an and 𝑣 is the 

terminal or end vertex. If an edge forms a loop, the 

initial and terminal vertices are the same. 

2. Incidence 

An edge (𝑢, 𝑣) that connects 𝑢 and 𝑣 is 

called an incident with the vertices 𝑢 and 𝑣. 

3. Degree 

In an undirected graph, the degree of a vertex 

is defined as the number of edges that are incident 

with it. If a loop is present at a vertex, it is counted 

twice in the degree of that vertex. The degree of a 

vertex is represented by the notation 𝑑𝑒𝑔(𝑣). A vertex 
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with no incident edges is referred to as an isolated 

vertex. When the entire graph consists solely of 

isolated vertices, it is called a null or empty graph. 

4. Path 

A path is a sequence of edges that begins at a 

vertex of a graph and travels from vertex to vertex 

along the edges of the graph. As the path progresses, 

it passes through the vertices that are the endpoints of 

these edges. Two vertices are considered connected if 

there is a path between them. A graph is said to be 

connected if every pair of vertices is connected. In the 

case of a directed graph, strong connectivity refers to 

a directed Makalah IF2120 Matematika Diskrit – 

Sem. I Tahun 2023/2024 path from 𝑢 to 𝑣 and a 

directed path from 𝑣 to 𝑢 for every pair of vertices 𝑢, 

𝑣. Weak connectivity, on the other hand, refers to a 

directed graph that produces a connected graph only if 

all of its directed edges are replaced with undirected 

ones. 

5. Cycle 

A cycle is a sequence of vertices and edges 

that starts and ends at the same vertex. In other words, 

it is a path that does not have a specific starting or 

ending point but instead forms a closed loop. The 

length of a cycle is the number of edges it contains, 

and a graph can have multiple cycles of varying 

lengths. 

6. Subgraph 

A subgraph is a subset of the vertices and all 

the edges of a larger graph. This subset forms a 

smaller graph that maintains the same properties and 

connections as the original graph. 

7. Weighted Graph 

A weighted graph is a graph that assigns 

weights, or numerical values, to each of its edges. 

These weights can represent a variety of things, such 

as distance, price, cost, or queue. A weighted graph 

can be implemented in both directed and undirected 

graphs. 

8. Isolated Vertex 

Isolated Vertex means  a vertex with no 

connections (edges) to other vertices. It's significant in 

identifying outliers or standalone nodes in a network. 

9. Null Graph or Empty Graph 

Null Graph is a graph without any edges. It's 

a theoretical concept, representing the most 

disconnected scenario. 

10. Cut set 

Cut set is a group of edges whose removal 

increases the graph's disconnected components. It's a 

critical concept in network reliability and 

vulnerability analysis. 

11. Connected 

A graph is said to be connected if there is a 

path between every pair of vertices. This property is 

crucial in ensuring network coherence and 

accessibility. 

 

D. Dijkstra 

Dijkstra's algorithm is a well-established 

computational procedure for finding the shortest paths 

between nodes in a graph, which can be either weighted or 

unweighted. It is particularly efficient for graphs with non-

negative edge paths, making it ideal for applications in 

routing and navigation systems where the shortest or 

quickest route is desired. The algorithm operates by 

iteratively selecting the nearest unvisited vertex, 

calculating the distance through it to each of its 

neighboring vertices, and updating the path if it yields a 

shorter distance. For the Singapore MRT, the algorithm's 

implementation considers the transit time between 

stations, with peak and off-peak hours influencing the 

weights of the edges. 

Enhancing its application, the study employs 

Dijkstra's algorithm to traverse the graph model of the 

MRT, seeking the time-efficient route for commuters. A 

notable augmentation in this study is the algorithm's 

dynamic adjustment of edge weights, mirroring real-time 

variations in peak and off-peak travel times. This 

adaptability injects a layer of realism into the model, 

acknowledging and addressing the temporal dynamics that 

play a crucial role in influencing commuter decisions and 

route preferences. By integrating these temporal factors, 

the algorithm transcends its traditional application, 

offering a more nuanced and realistic navigation solution 

for complex urban transit systems.  

 

III.   METHODOLOGY 

A. Limitations 

When it comes to analyzing the most optimized route within 

the Singapore MRT system, several challenges and limitations 

must be considered to make the calculation more manageable 

and less complex. These limitations are essential for 

understanding the methodology employed in this study: 

1. Dummy Scale for Distance/Time 

To represent the travel distance or time between MRT 

stations, the author employs a simplified scale ranging 

from 1 to 5. This scale is used as a proxy for actual time 

or distance values, which can vary considerably in real-

world scenarios. The use of this dummy scale allows for 

a more straightforward mathematical model but may not 

capture the precise nuances of travel times in the MRT 

system. 

2. Static Data 

It's important to note that all the data used in this 

analysis is static and does not consider dynamic changes 

that occur in the real Singapore MRT system. In reality, 

MRT schedules, station conditions, and travel times can 

be subject to change due to factors such as maintenance, 

construction, or unforeseen events. Therefore, the 

analysis is based on a snapshot of the MRT system at a 

specific point in time and does not account for potential 

alterations in the future. 

 

B. Location Data 

Singapore is a relatively small country with a well-

developed transportation network. Currently, it has 

more than 140 MRT stations. This can be both 

confusing and convenient for people when it comes to 
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getting to their destinations quickly or even potentially 

taking longer routes because they are not using the 

shortest or most optimal distances, which can be 

disadvantageous in terms of both time and money. 

To facilitate the calculation of the most optimal and 

shortest routes within the Singapore MRT network, it 

is crucial to represent MRT stations as nodes in a graph. 

This representation serves as the foundation for 

applying algorithms like Dijkstra's to find the best 

paths. Here's a closer look at how the author 

accomplishes this in the paper: 

 

 
Fig.  9. Singapore MRT map (Source: Primary) 

 

In this paper, the author compiles a comprehensive list of all 

MRT stations based on data obtained from the official Singapore 

MRT map. This list includes the names of each station and their 

unique identifying information. To construct the graph 

representation, each MRT station is connected to every other 

station within the network using edges. These edges signify the 

possible routes between stations and are essential for route 

optimization. The author determines the "distance" or "cost" 

associated with each edge, utilizing the previously mentioned 1-

5 scale. These values represent the perceived ease or difficulty 

of traveling between stations and guide the route-finding 

algorithm. 

 

 
Fig. 10. Stations Data used in Program (Source: 

Primary) 

 

All station names and their corresponding edge weights (on 

the 1-5 scale) are organized and stored in a data structure, 

typically an array or a similar data container. This structured 

data provides the algorithm with the necessary information to 

navigate the network efficiently. 

 

 
     Fig. 11. Interchanges Stations data (Source: Primary) 

Additionally, the author identifies and maintains a list of 

interchange stations. Interchanges are crucial points within the 

MRT network where passengers can switch between different 

lines or routes. These interchange stations are saved in a set, 

which includes both station names and station codes, ensuring 

that the algorithm can identify and optimize routes through these 

key hubs. 

 

C. Dijkstra Algorithm 

The Dijkstra's algorithm is employed here to find the shortest 

path between two points in a weighted graph. It operates on a 

graph represented as an adjacency list, where each node is 

connected to other nodes by edges with associated weights. In 

my dijsktar algorithm, it accepts 3 parameters, graph, start which 

is the starting mrt stations code and end is the end of mrt stations 

code. The algorithm starts with initializing data structures to 

keep track of the shortest path information.  

 

 
Fig. 12. Djikstra Algortihm Implementation (Source: 

Primary) 

It begins at a designated starting point and sets its distance to 

Zero. Visited is used to keep track of visited nodes to avoid 

revisiting them. Current node variable is set to starting node to 

initiate the traversal. 

The loop will continues until current_node reaches the end of 

the destination. Within each iteration, the algorithm marks the 

"current_node" as visited, retrieves neighboring nodes and their 

associated edge weights from the graph, calculates new 

distances through the "current_node," and updates the shortest 

path if a shorter route is identified. Unvisited neighboring nodes 

and their corresponding shortest paths are stored in the 

"next_destinations" dictionary. If no unvisited nodes remain in 

"next_destinations," signifying an absence of a valid path from 

the start to the destination, the algorithm returns "Route Not 

Possible." Otherwise, it proceeds by selecting the node with the 

shortest distance among the unvisited nodes as the new 

"current_node." This process repeats until the destination is 

reached or until it is determined that no valid route exists. 
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After reaching the ending node, create an empty list called 

"path". We need to trace back from the ending node to the 

starting node using the "shortest_paths" dictionary, appending 

each node to the "path". Reverse the "path" list to obtain the 

correct order of nodes from start to end and return the shortest 

path as a list.  

This is the example of the list of the mrt codes process from 

Punggol to Orchard :  

 
Fig. 13. Output Result (Source: Primary) 

 

D. Most Optimal Route Analysis 

In the theoretical framework and problem modeling 

conducted by the author, the optimized Singapore MRT route 

was achieved using the Python programming language. 

Implementation began with sourcing data from Wikipedia, 

which provides a list of the newest MRT stations. This data was 

manually input into the code editor, as no API was used for data 

retrieval. Upon determining the shortest path, users have the 

option to visualize the graph—though it should be noted that the 

graph layout may not reflect the actual physical layout of the 

Singapore MRT stations. 

Before proceeding further, the author will outline the program 

flow. Initially, all station data, stored in a list, generates 

respective station codes that correlate with the actual MRT 

identifiers. Subsequently, the graph is constructed, albeit 

utilizing only MRT station codes. The main function then call 

Dijkstra's algorithm to calculate the shortest path and presents 

the output with both station names and codes for an improved 

user interface. 

 
Fig. 14. Generate codes for each Stations (Source: Primary) 

 
Fig. 15. Build Graph Implementation (Source: Primary) 

 

 
Fig. 16. Create Graph (Source: Primary) 

 

For the first case study, it was conducted with the source 

station set as Bukit Panjang and the destination as Tampines 

West. Although a direct route exists, spanning 29 stops on the 

same line, the program is designed to identify a more efficient 

path. Remarkably, the suggested route reduces the journey by 

nearly ten stops, albeit with two line changes. This optimization 

exemplifies the program's capability to enhance travel 

efficiency. Below are the details of the identified optimal route, 

alongside an option for graphical visualization: 

 

 
Fig. 17. First Study Case (Source: Primary) 

 

 
Fig. 18. Graph visualtion (Source : Primary) 
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The network graph, composed using NetworkX and Plotly, 

delineates all connections between nodes with black lines, while 

the computed shortest path is highlighted in red. This 

visualization is not a replica of the actual Singapore MRT 

layout, as such fidelity would require precise geographic 

coordinates or API access to station location data. Nonetheless, 

the graphical representation is instrumental in illustrating the 

algorithm's function and the route's practical application. 

In this program, the total time consumed from Bukit Panjang 

to Tampines West is roughly 55 minutes. However, the trade-

off is that the user will later need to change lines twice, which 

some people may not prefer to do. If the user chooses to take 

only one line, it will take about 71 minutes to reach Tampines 

West, which is 16 minutes slower. Dijkstra's algorithm 

prioritizes the cumulative "weight" of the journey, where the 

weight is a measure of time rather than distance. This weight 

takes into account various factors, including the number of stops 

and interchange penalties, to calculate the most time-effective 

route. Consequently, the algorithm may suggest a route with 

more interchanges if it results in a lower overall travel time. 

The times the author considers are as follows: for example, 

from Bukit Panjang to Cashew, it is set to only 2 minutes, while 

from Sixth Avenue to Tan Kah Kee, it is set to 3 minutes. These 

times increment as the routes taken from one station to another 

become longer. 

 

For the second case study, it was conducted with the source 

station set as Jurong East and the destination as Esplanade. 

There are two ways to go. The longest route might be from 

Jurong East, where users transfer only once to the Buona Vista 

CC line and then directly proceed to Esplanade. However, of 

course, this route takes significantly more time compared to the 

other option which is 55 minutes and is slower 17 minutes than 

the fastest route. 

 
Fig. 19. Second Study Case (Source: Primary) 

 

 
Fig. 20. Graph visualtion (Source : Primary) 

 

The shortest route involves transferring to Outram Park, 

changing from EW to NE line and then, after only a few stops, 

users need to transfer lines again at Dhoby Ghaut CC line, 

finally arriving at Esplanade in just 3 stops. This may be 

inefficient for users who prioritize convenience within the MRT 

system and want to minimize line transfers. However, to find the 

most optimized route, there is always a trade-off. Even though 

it requires changing lines multiple times, as long as it is the 

shortest and most optimal route in terms of time, the algorithm 

will always select it because it offers the most efficient travel 

time. 

 

For the final case study, the route from Pasir Ris to Tuas Link 

was assessed. Contrary to the previous cases, this journey is 

optimally served by a direct line, making it an apparent 

exception within the context of the algorithm’s complexity. The 

Singapore MRT map indicates that a straightforward route 

exists, and the program corroborates this by not suggesting any 

transfers, which would inevitably increase travel time. 

 

 
Fig. 21. Third Study Case (Source: Primary) 

 

 
Fig. 22. Graph visualtion (Source : Primary) 

 

The potential alternative involving transfers at Paya Lebar 

and Buona Vista, despite initially seeming like a viable option, 

is ultimately inefficient. The program’s calculations confirm 

that the direct route is superior, with transfers adding 

unnecessary complexity and time due to waiting periods at 

interchange stations. 

This scenario underscores the algorithm’s capability to 

discern not just the shortest path by distance, but the most time-

effective route. It affirms the program’s utility in offering not 

just any route, but the most pragmatic option for the commuter. 

Even in seemingly straightforward scenarios, the algorithm 

validates the expected human judgment, reinforcing its 

reliability. 

 

In summarizing the results of the three case studies, we 

observe the intricate balance between the number of stops, the 
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necessity of line transfers, and the overall travel time — a 

balance that is adeptly managed by the application of Dijkstra's 

algorithm within the Singapore MRT context. 

Case Study 1 (Bukit Panjang to Tampines West): Here, the 

algorithm proved its efficacy by proposing a route that 

significantly reduced the number of stops when compared to the 

direct line, showcasing its strategic prowess in optimizing travel 

routes. The computed path, although involving line changes, 

exemplified a significant reduction in travel time, affirming the 

algorithm's superiority over conventional route planning. 

Case Study 2 (Jurong East to Esplanade): This scenario 

highlighted the algorithm's nuanced approach, as it negotiated 

multiple transfers to curtail the journey's duration. Despite the 

apparent inconvenience of line changes, the suggested route was 

validated as the most time-efficient, demonstrating the 

algorithm's capacity to leverage the complexity of the MRT 

network to the commuter's advantage. 

Case Study 3 (Pasir Ris to Tuas Link): Contrasting with the 

previous examples, this case affirmed the algorithm's 

discernment in endorsing a direct route without any transfers, as 

it was unambiguously the most expedient option. This outcome 

reinforced the algorithm's versatility — its ability to not only 

recognize when to minimize stops but also when to endorse a 

straightforward path. 

Across all cases, the algorithm consistently delivered routes 

that either saved time or confirmed the expected optimal path, 

thereby showcasing its effectiveness as a route optimization 

tool. It navigated the intricacies of the MRT network with 

precision, substantiating the benefit of algorithmic assistance in 

urban transit systems. 

 

The results of these case studies contribute to a broader 

understanding of how computational algorithms can be applied 

to enhance the efficiency of public transportation systems. By 

meticulously calculating the quickest routes and presenting 

them in a user-friendly manner, the program not only serves as 

a testament to the practical applications of graph theory and 

Dijkstra's algorithm but also sets a precedent for future 

innovations in the field of transit planning and management. 

 

IV.   CONCLUSION 

This study successfully demonstrated the application of graph 

theory and Dijkstra's algorithm in optimizing MRT routes in 

Singapore. The developed program transcends the limitations of 

manual route planning by considering a multitude of factors 

such as interchange stations, peak and off-peak hours, and wait 

times. The case studies presented within this paper illustrate the 

program's efficacy in providing the most time-efficient travel 

routes, a testament to the power of algorithmic solutions in 

urban transportation planning. 

The program could be further enhanced by integrating real-

time data, which would allow it to adapt to dynamic conditions 

such as service disruptions, track maintenance, or even real-time 

traffic conditions. Such advancements could transform the 

program from a static route optimizer into a dynamic travel 

assistant, catering to the evolving needs of a modern 

metropolis's inhabitants. 

In conclusion, the exploration of the Singapore MRT system 

through this program has provided valuable insights into the 

practical application of theoretical computational concepts. It 

has set a foundation for further research and development in the 

field of urban transportation efficiency, potentially impacting 

millions of commuters by saving time and improving travel 

experiences. 

 

 

V.   APPENDIX 

The complete program of this paper can be found below. 

https://github.com/Filbert88/Graph-and-Dijkstra-

SingaporeMRTLine 
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