
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Efficient Route Mapping in the Singapore MRT

Leveraging Graph Theory and Dijkstra's Algorithm

Filbert - 135220211

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113522021@std.stei.itb.ac.id

Abstract—With the ever-growing urban sprawl, efficient public

transportation systems are crucial for the sustainability of

metropolitan areas. Singapore's Mass Rapid Transit (MRT) stands

as a paragon of such systems, offering swift transit across the city-

state. This paper presents a novel approach to route optimization

within the MRT network by harnessing the computational prowess

of graph theory and Dijkstra's algorithm. Our study delves into the

intricacies of the MRT's infrastructure, translating it into a

weighted graph that encapsulates the myriad of routes, transit

times, and interchange complexities. By implementing Dijkstra's

algorithm, we compute the most expedient paths between any two

given stations, factoring in the dynamic nature of peak and off-

peak travel times. The results demonstrate a significant

enhancement in route planning efficiency, providing a robust tool

that commuters and system planners can utilize for improved

journey planning and network management

Keywords—Singapore MRT, Graph, Dijkstra, Effective route.

I. INTRODUCTION

As urban populations swell and the demand for timely and

efficient transportation escalates, the role of rapid transit

systems becomes increasingly cardinal. In the densely woven

urban tapestry of Singapore, the MRT is not merely a

convenience but a lifeline that threads through the city, binding

it together. This paper explores the application of graph theory

and Dijkstra's algorithm to distill an optimized mapping solution

for navigating the complex MRT network.

Graph theory provides a natural framework for modeling the

interconnected stations and transit lines, while Dijkstra's

algorithm serves as a beacon, guiding commuters through the

shortest paths amidst the labyrinthine network. The crux of this

study lies in its adaptation of these classical theories to

accommodate the unique operational characteristics of the MRT

system, such as varying travel times during peak and off-peak

hours and the strategic placement of interchange stations.

The objective of this paper is twofold: firstly, to construct a

comprehensive graph representation of the MRT network that

captures the nuances of its topology; and secondly, to implement

a refined version of Dijkstra's algorithm that accounts for

temporal fluctuations in travel time, thereby delivering a

pragmatic and efficient route mapping methodology. Through

this dual-pronged approach, the paper aims to contribute to the

domain of urban transit planning and to proffer a

methodological blueprint for similar applications in

metropolitan transit systems worldwide.

II. BASIC THEORY

A. Graph Definiton

A graph is a mathematical construct used to depict the

relationships between discrete elements. It comprises vertices,

which can be either linked or unlinked, typically denoted as dots

or circles on the graph, and edges, which are connections

between pairs of vertices represented as lines connecting these

dots or circles.

In a formal representation, a graph is denoted as 𝐺 = (𝑉, 𝐸),

where 𝑉 is a non-empty collection of vertices, and 𝐸 is a set of

edges. Each edge connects one or two vertices, known as its

endpoints, establishing a connection between these vertices.

B. Graph Types

Based on the presence and absence of loops and multiple

edges connecting the same vertices, the graph has two types:

1. Simple graphs

 A simple graph is characterized by the following

properties: it only contains edges that connect two

distinct vertices, and there are no duplicate edges

connecting the same pair of vertices. In a simple

graph, each edge is linked to an unordered pair of

vertices, and no other edge is associated with this

particular pair of vertices.

 Fig. 1. Simple Graphs (Source: [1])

2. Unsimple graph

Unsimple graphs are those in which loops are

present or multiple edges connect the same vertices.

Unsimple graphs can be further divided into two

subcategories:

a. Multipgraphs

Multipgraphs are graphs that have multiple

edges connecting the same vertices. When there

are m different edges associated with the same

unordered pair of vertices {𝑢, 𝑣}, then {𝑢, 𝑣} is

an edge of multiplicity m. This feature is

particularly useful in modeling scenarios where

different types of connections or relationships

between the same entities exist.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

b. Pseudograph

Pseudographs are graphs allow for both

loops (edges connecting a vertex to itself) and

multiple edges. They are useful in scenarios

where self-connections are meaningful or when

multiple relationship between the same entities

need representation.

 Fig. 2. Unsimple Graphs (Source: [1])

Based on the direction of the edges, graphs can be divided

into two types:

1. Undirected graph

In an undirected graph, each edge does not

have any direction. They're used when the direction of

a relationship is not a concern, such as in social

network friendships.

Fig. 3. Undirected Graphs (Source: [1])

2. Directed Graph

A directed graph (𝑉, 𝐸) consists of a

nonempty set of vertices 𝑉 and a set of directed edges

𝐸. Each directed edge is associated with an ordered

pair of vertices. Edge with the ordered pair {𝑢, 𝑣} is

an edge that starts at u and ends at v. This structure is

essential in scenarios like web page links or city road

maps, where direction matters.

 Fig. 4. Directed Graphs (Source: [1])

There are also some type of special graph:

1. Complete Graph

These are graphs where every vertex is

connected to every other vertex with a unique

edge. They represent the most interconnected

scenario possible in a graph.

Fig. 5. Complete Graphs (Source: [1])

2. Circle Graph

These graphs form a continuous loop, with

each vertex connected to exactly two others,

 forming a circular structure. They are a

special case of regular graphs.

Fig. 6. Circle Graphs (Source: [1])

3. Regular Graph

A graph where each vertex has the same

degree, meaning the same number of edges

connected to each vertex. This uniformity can be

crucial in network design and symmetry analysis.

Fig. 7. Regular Graphs(Source: [1])

4. Bipartite Graph

These can be split into two distinct sets of

vertices with edges only running between vertices

of different sets. They are particularly useful in

scenarios like job assignments or matching

problems, where two distinct types of entities are

involved.

Fig. 8. Bipartite Graphs (Source: [1])

C. Graph Terninologies

In graph theory, there are several terms used when

analyzing graphs. The terminologies that will be used are

as follows:

1. Adjacent

In an undirected graph, two vertices are

considered adjacent if they are connected by an edge.

In a graph with directed edges, the vertex at the

beginning of the edge is considered adjacent to the

vertex at the end of the edge. When (𝑢, 𝑣) is an edge

of the graph 𝐺, 𝑢 is the initial vertex of an and 𝑣 is the

terminal or end vertex. If an edge forms a loop, the

initial and terminal vertices are the same.

2. Incidence

An edge (𝑢, 𝑣) that connects 𝑢 and 𝑣 is

called an incident with the vertices 𝑢 and 𝑣.

3. Degree

In an undirected graph, the degree of a vertex

is defined as the number of edges that are incident

with it. If a loop is present at a vertex, it is counted

twice in the degree of that vertex. The degree of a

vertex is represented by the notation 𝑑𝑒𝑔(𝑣). A vertex

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

with no incident edges is referred to as an isolated

vertex. When the entire graph consists solely of

isolated vertices, it is called a null or empty graph.

4. Path

A path is a sequence of edges that begins at a

vertex of a graph and travels from vertex to vertex

along the edges of the graph. As the path progresses,

it passes through the vertices that are the endpoints of

these edges. Two vertices are considered connected if

there is a path between them. A graph is said to be

connected if every pair of vertices is connected. In the

case of a directed graph, strong connectivity refers to

a directed Makalah IF2120 Matematika Diskrit –

Sem. I Tahun 2023/2024 path from 𝑢 to 𝑣 and a

directed path from 𝑣 to 𝑢 for every pair of vertices 𝑢,

𝑣. Weak connectivity, on the other hand, refers to a

directed graph that produces a connected graph only if

all of its directed edges are replaced with undirected

ones.

5. Cycle

A cycle is a sequence of vertices and edges

that starts and ends at the same vertex. In other words,

it is a path that does not have a specific starting or

ending point but instead forms a closed loop. The

length of a cycle is the number of edges it contains,

and a graph can have multiple cycles of varying

lengths.

6. Subgraph

A subgraph is a subset of the vertices and all

the edges of a larger graph. This subset forms a

smaller graph that maintains the same properties and

connections as the original graph.

7. Weighted Graph

A weighted graph is a graph that assigns

weights, or numerical values, to each of its edges.

These weights can represent a variety of things, such

as distance, price, cost, or queue. A weighted graph

can be implemented in both directed and undirected

graphs.

8. Isolated Vertex

Isolated Vertex means a vertex with no

connections (edges) to other vertices. It's significant in

identifying outliers or standalone nodes in a network.

9. Null Graph or Empty Graph

Null Graph is a graph without any edges. It's

a theoretical concept, representing the most

disconnected scenario.

10. Cut set

Cut set is a group of edges whose removal

increases the graph's disconnected components. It's a

critical concept in network reliability and

vulnerability analysis.

11. Connected

A graph is said to be connected if there is a

path between every pair of vertices. This property is

crucial in ensuring network coherence and

accessibility.

D. Dijkstra

Dijkstra's algorithm is a well-established

computational procedure for finding the shortest paths

between nodes in a graph, which can be either weighted or

unweighted. It is particularly efficient for graphs with non-

negative edge paths, making it ideal for applications in

routing and navigation systems where the shortest or

quickest route is desired. The algorithm operates by

iteratively selecting the nearest unvisited vertex,

calculating the distance through it to each of its

neighboring vertices, and updating the path if it yields a

shorter distance. For the Singapore MRT, the algorithm's

implementation considers the transit time between

stations, with peak and off-peak hours influencing the

weights of the edges.

Enhancing its application, the study employs

Dijkstra's algorithm to traverse the graph model of the

MRT, seeking the time-efficient route for commuters. A

notable augmentation in this study is the algorithm's

dynamic adjustment of edge weights, mirroring real-time

variations in peak and off-peak travel times. This

adaptability injects a layer of realism into the model,

acknowledging and addressing the temporal dynamics that

play a crucial role in influencing commuter decisions and

route preferences. By integrating these temporal factors,

the algorithm transcends its traditional application,

offering a more nuanced and realistic navigation solution

for complex urban transit systems.

III. METHODOLOGY

A. Limitations

When it comes to analyzing the most optimized route within

the Singapore MRT system, several challenges and limitations

must be considered to make the calculation more manageable

and less complex. These limitations are essential for

understanding the methodology employed in this study:

1. Dummy Scale for Distance/Time

To represent the travel distance or time between MRT

stations, the author employs a simplified scale ranging

from 1 to 5. This scale is used as a proxy for actual time

or distance values, which can vary considerably in real-

world scenarios. The use of this dummy scale allows for

a more straightforward mathematical model but may not

capture the precise nuances of travel times in the MRT

system.

2. Static Data

It's important to note that all the data used in this

analysis is static and does not consider dynamic changes

that occur in the real Singapore MRT system. In reality,

MRT schedules, station conditions, and travel times can

be subject to change due to factors such as maintenance,

construction, or unforeseen events. Therefore, the

analysis is based on a snapshot of the MRT system at a

specific point in time and does not account for potential

alterations in the future.

B. Location Data

Singapore is a relatively small country with a well-

developed transportation network. Currently, it has

more than 140 MRT stations. This can be both

confusing and convenient for people when it comes to

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

getting to their destinations quickly or even potentially

taking longer routes because they are not using the

shortest or most optimal distances, which can be

disadvantageous in terms of both time and money.

To facilitate the calculation of the most optimal and

shortest routes within the Singapore MRT network, it

is crucial to represent MRT stations as nodes in a graph.

This representation serves as the foundation for

applying algorithms like Dijkstra's to find the best

paths. Here's a closer look at how the author

accomplishes this in the paper:

Fig. 9. Singapore MRT map (Source: Primary)

In this paper, the author compiles a comprehensive list of all

MRT stations based on data obtained from the official Singapore

MRT map. This list includes the names of each station and their

unique identifying information. To construct the graph

representation, each MRT station is connected to every other

station within the network using edges. These edges signify the

possible routes between stations and are essential for route

optimization. The author determines the "distance" or "cost"

associated with each edge, utilizing the previously mentioned 1-

5 scale. These values represent the perceived ease or difficulty

of traveling between stations and guide the route-finding

algorithm.

Fig. 10. Stations Data used in Program (Source:

Primary)

All station names and their corresponding edge weights (on

the 1-5 scale) are organized and stored in a data structure,

typically an array or a similar data container. This structured

data provides the algorithm with the necessary information to

navigate the network efficiently.

 Fig. 11. Interchanges Stations data (Source: Primary)

Additionally, the author identifies and maintains a list of

interchange stations. Interchanges are crucial points within the

MRT network where passengers can switch between different

lines or routes. These interchange stations are saved in a set,

which includes both station names and station codes, ensuring

that the algorithm can identify and optimize routes through these

key hubs.

C. Dijkstra Algorithm

The Dijkstra's algorithm is employed here to find the shortest

path between two points in a weighted graph. It operates on a

graph represented as an adjacency list, where each node is

connected to other nodes by edges with associated weights. In

my dijsktar algorithm, it accepts 3 parameters, graph, start which

is the starting mrt stations code and end is the end of mrt stations

code. The algorithm starts with initializing data structures to

keep track of the shortest path information.

Fig. 12. Djikstra Algortihm Implementation (Source:

Primary)

It begins at a designated starting point and sets its distance to

Zero. Visited is used to keep track of visited nodes to avoid

revisiting them. Current node variable is set to starting node to

initiate the traversal.

The loop will continues until current_node reaches the end of

the destination. Within each iteration, the algorithm marks the

"current_node" as visited, retrieves neighboring nodes and their

associated edge weights from the graph, calculates new

distances through the "current_node," and updates the shortest

path if a shorter route is identified. Unvisited neighboring nodes

and their corresponding shortest paths are stored in the

"next_destinations" dictionary. If no unvisited nodes remain in

"next_destinations," signifying an absence of a valid path from

the start to the destination, the algorithm returns "Route Not

Possible." Otherwise, it proceeds by selecting the node with the

shortest distance among the unvisited nodes as the new

"current_node." This process repeats until the destination is

reached or until it is determined that no valid route exists.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

After reaching the ending node, create an empty list called

"path". We need to trace back from the ending node to the

starting node using the "shortest_paths" dictionary, appending

each node to the "path". Reverse the "path" list to obtain the

correct order of nodes from start to end and return the shortest

path as a list.

This is the example of the list of the mrt codes process from

Punggol to Orchard :

Fig. 13. Output Result (Source: Primary)

D. Most Optimal Route Analysis

In the theoretical framework and problem modeling

conducted by the author, the optimized Singapore MRT route

was achieved using the Python programming language.

Implementation began with sourcing data from Wikipedia,

which provides a list of the newest MRT stations. This data was

manually input into the code editor, as no API was used for data

retrieval. Upon determining the shortest path, users have the

option to visualize the graph—though it should be noted that the

graph layout may not reflect the actual physical layout of the

Singapore MRT stations.

Before proceeding further, the author will outline the program

flow. Initially, all station data, stored in a list, generates

respective station codes that correlate with the actual MRT

identifiers. Subsequently, the graph is constructed, albeit

utilizing only MRT station codes. The main function then call

Dijkstra's algorithm to calculate the shortest path and presents

the output with both station names and codes for an improved

user interface.

Fig. 14. Generate codes for each Stations (Source: Primary)

Fig. 15. Build Graph Implementation (Source: Primary)

Fig. 16. Create Graph (Source: Primary)

For the first case study, it was conducted with the source

station set as Bukit Panjang and the destination as Tampines

West. Although a direct route exists, spanning 29 stops on the

same line, the program is designed to identify a more efficient

path. Remarkably, the suggested route reduces the journey by

nearly ten stops, albeit with two line changes. This optimization

exemplifies the program's capability to enhance travel

efficiency. Below are the details of the identified optimal route,

alongside an option for graphical visualization:

Fig. 17. First Study Case (Source: Primary)

Fig. 18. Graph visualtion (Source : Primary)

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

The network graph, composed using NetworkX and Plotly,

delineates all connections between nodes with black lines, while

the computed shortest path is highlighted in red. This

visualization is not a replica of the actual Singapore MRT

layout, as such fidelity would require precise geographic

coordinates or API access to station location data. Nonetheless,

the graphical representation is instrumental in illustrating the

algorithm's function and the route's practical application.

In this program, the total time consumed from Bukit Panjang

to Tampines West is roughly 55 minutes. However, the trade-

off is that the user will later need to change lines twice, which

some people may not prefer to do. If the user chooses to take

only one line, it will take about 71 minutes to reach Tampines

West, which is 16 minutes slower. Dijkstra's algorithm

prioritizes the cumulative "weight" of the journey, where the

weight is a measure of time rather than distance. This weight

takes into account various factors, including the number of stops

and interchange penalties, to calculate the most time-effective

route. Consequently, the algorithm may suggest a route with

more interchanges if it results in a lower overall travel time.

The times the author considers are as follows: for example,

from Bukit Panjang to Cashew, it is set to only 2 minutes, while

from Sixth Avenue to Tan Kah Kee, it is set to 3 minutes. These

times increment as the routes taken from one station to another

become longer.

For the second case study, it was conducted with the source

station set as Jurong East and the destination as Esplanade.

There are two ways to go. The longest route might be from

Jurong East, where users transfer only once to the Buona Vista

CC line and then directly proceed to Esplanade. However, of

course, this route takes significantly more time compared to the

other option which is 55 minutes and is slower 17 minutes than

the fastest route.

Fig. 19. Second Study Case (Source: Primary)

Fig. 20. Graph visualtion (Source : Primary)

The shortest route involves transferring to Outram Park,

changing from EW to NE line and then, after only a few stops,

users need to transfer lines again at Dhoby Ghaut CC line,

finally arriving at Esplanade in just 3 stops. This may be

inefficient for users who prioritize convenience within the MRT

system and want to minimize line transfers. However, to find the

most optimized route, there is always a trade-off. Even though

it requires changing lines multiple times, as long as it is the

shortest and most optimal route in terms of time, the algorithm

will always select it because it offers the most efficient travel

time.

For the final case study, the route from Pasir Ris to Tuas Link

was assessed. Contrary to the previous cases, this journey is

optimally served by a direct line, making it an apparent

exception within the context of the algorithm’s complexity. The

Singapore MRT map indicates that a straightforward route

exists, and the program corroborates this by not suggesting any

transfers, which would inevitably increase travel time.

Fig. 21. Third Study Case (Source: Primary)

Fig. 22. Graph visualtion (Source : Primary)

The potential alternative involving transfers at Paya Lebar

and Buona Vista, despite initially seeming like a viable option,

is ultimately inefficient. The program’s calculations confirm

that the direct route is superior, with transfers adding

unnecessary complexity and time due to waiting periods at

interchange stations.

This scenario underscores the algorithm’s capability to

discern not just the shortest path by distance, but the most time-

effective route. It affirms the program’s utility in offering not

just any route, but the most pragmatic option for the commuter.

Even in seemingly straightforward scenarios, the algorithm

validates the expected human judgment, reinforcing its

reliability.

In summarizing the results of the three case studies, we

observe the intricate balance between the number of stops, the

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

necessity of line transfers, and the overall travel time — a

balance that is adeptly managed by the application of Dijkstra's

algorithm within the Singapore MRT context.

Case Study 1 (Bukit Panjang to Tampines West): Here, the

algorithm proved its efficacy by proposing a route that

significantly reduced the number of stops when compared to the

direct line, showcasing its strategic prowess in optimizing travel

routes. The computed path, although involving line changes,

exemplified a significant reduction in travel time, affirming the

algorithm's superiority over conventional route planning.

Case Study 2 (Jurong East to Esplanade): This scenario

highlighted the algorithm's nuanced approach, as it negotiated

multiple transfers to curtail the journey's duration. Despite the

apparent inconvenience of line changes, the suggested route was

validated as the most time-efficient, demonstrating the

algorithm's capacity to leverage the complexity of the MRT

network to the commuter's advantage.

Case Study 3 (Pasir Ris to Tuas Link): Contrasting with the

previous examples, this case affirmed the algorithm's

discernment in endorsing a direct route without any transfers, as

it was unambiguously the most expedient option. This outcome

reinforced the algorithm's versatility — its ability to not only

recognize when to minimize stops but also when to endorse a

straightforward path.

Across all cases, the algorithm consistently delivered routes

that either saved time or confirmed the expected optimal path,

thereby showcasing its effectiveness as a route optimization

tool. It navigated the intricacies of the MRT network with

precision, substantiating the benefit of algorithmic assistance in

urban transit systems.

The results of these case studies contribute to a broader

understanding of how computational algorithms can be applied

to enhance the efficiency of public transportation systems. By

meticulously calculating the quickest routes and presenting

them in a user-friendly manner, the program not only serves as

a testament to the practical applications of graph theory and

Dijkstra's algorithm but also sets a precedent for future

innovations in the field of transit planning and management.

IV. CONCLUSION

This study successfully demonstrated the application of graph

theory and Dijkstra's algorithm in optimizing MRT routes in

Singapore. The developed program transcends the limitations of

manual route planning by considering a multitude of factors

such as interchange stations, peak and off-peak hours, and wait

times. The case studies presented within this paper illustrate the

program's efficacy in providing the most time-efficient travel

routes, a testament to the power of algorithmic solutions in

urban transportation planning.

The program could be further enhanced by integrating real-

time data, which would allow it to adapt to dynamic conditions

such as service disruptions, track maintenance, or even real-time

traffic conditions. Such advancements could transform the

program from a static route optimizer into a dynamic travel

assistant, catering to the evolving needs of a modern

metropolis's inhabitants.

In conclusion, the exploration of the Singapore MRT system

through this program has provided valuable insights into the

practical application of theoretical computational concepts. It

has set a foundation for further research and development in the

field of urban transportation efficiency, potentially impacting

millions of commuters by saving time and improving travel

experiences.

V. APPENDIX

The complete program of this paper can be found below.

https://github.com/Filbert88/Graph-and-Dijkstra-

SingaporeMRTLine

VI. ACKNOWLEDGMENT

First and foremost, the author expresses gratitude to

their Discrete Mathematics lecturer, Dr. Nur Ulfa Maulidevi,

S.T., M.Sc., for generously sharing knowledge with fellow

students, including the researcher, whose successful completion

of this research owes much to their guidance. Additionally, the

researcher extends thanks to the other lecturers who contributed

to and were part of the IF2120 Discrete Math class, as their

dedication played a crucial role in motivating the researcher to

write this research paper. Lastly, the researcher acknowledges

their friends for their unwavering support throughout the

Discrete Math class, fostering a collaborative learning

environment that has contributed to personal growth and

development over time.

REFERENCES

[1] R. Munir, “Graf Bagian 1,” IF2120 Matematika Diskrit. [Online].
Available: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-

2024/Graf-Bagian1-2023.pdf. [Accessed Dec. 8, 2023]

[2] K. H. Rosen, Discrete Mathematics and Its Applications Seventh Edition.
New York, America: McGraw-Hill, 2017.

[3] “LTA | Land Transport Authority,” lta.gov.sg. [Online]. Available:

https://www.lta.gov.sg/content/ltagov/en/getting_around/public_transport
/rail_network.html/. [Accessed: Dec. 9, 2023].

[4] Navone, Estefania Cassingena. 2020. [Online]. Available:

https://www.freecodecamp.org/news/dijkstras-shortest-path-
algorithmvisual-introduction/. [Accessed: Dec 9, 2023].

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 11 Desember 2023

Filbert 13522021

https://github.com/Filbert88/Graph-and-Dijkstra-SingaporeMRTLine
https://github.com/Filbert88/Graph-and-Dijkstra-SingaporeMRTLine
https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithmvisual-introduction/
https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithmvisual-introduction/

