
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Advanced Itinerary Optimization in Tokyo Utilizing

the A* Algorithm and Graph Theory Principles

Wilson Yusda – 135220191

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113522019@mahasiswa.itb.ac.id

Abstract—In the dynamic and densely populated city of Tokyo,

optimizing travel time is a crucial aspect of itinerary planning for

both residents and tourists. This study introduces a

groundbreaking approach to itinerary optimization, utilizing the

computational efficiency of the A* algorithm, combined with graph

theory principles, tailored specifically for Tokyo's complex urban

environment. Our methodology is singularly focused on

minimizing travel time across the city's extensive network of streets

and public transportation systems. The system efficiently navigates

through Tokyo's urban landscape, taking into account the intricate

web of routes and connections, to deliver time-efficient travel plans.

This streamlined approach not only enhances the travel experience

by significantly reducing time spent in transit but also sets a new

benchmark in the application of advanced algorithms for urban

mobility solutions..

Keywords—Itinerary Optimization, A* Algorithm, Graph

Theory, Travel Time Efficiency.

I. INTRODUCTION

In the ever-evolving landscape of urban mobility, the

challenge of optimizing travel itineraries in densely populated

cities like Tokyo has become increasingly complex. The need

for efficient and time-sensitive travel solutions is paramount in

such an environment, where every minute counts. This paper

delves into an innovative approach to tackle this challenge:

Advanced Itinerary Optimization in Tokyo, utilizing the A*

Algorithm and Graph Theory Principles. Tokyo, a city known

for its intricate and vast transportation network, presents unique

challenges and opportunities for advanced computational

approaches to itinerary planning.

The A* algorithm, a cornerstone in the field of computer

science known for its effectiveness in pathfinding and graph

traversal, is adept at finding the most efficient route between two

points. When applied to the dense and multifaceted urban grid

of Tokyo, this algorithm has the potential to revolutionize how

individuals navigate the city. The integration of graph theory

further enhances this capability, allowing for a more nuanced

understanding and utilization of the complex networks that

make up urban landscapes. This combination promises a

significant leap in optimizing travel itineraries, particularly in

minimizing travel time, which is a critical factor for the fast-

paced life of Tokyo's residents and visitors.

This paper aims to explore the application of these advanced

computational techniques specifically in the context of Tokyo's

unique urban setting. By focusing on the optimization of travel

time, the study seeks to offer a solution that is not only

theoretically sound but also practically applicable, providing a

tool that can significantly improve the daily travel experience of

millions. The broader goal is to set a precedent for how cities

around the world can leverage technology to address the

growing challenges of urban mobility.

II. THEORETICAL BASIS

A. Graph

A graph is defined as a discrete structure consisting of a

collection of nodes (vertices) connected through a set of edges.

A graph is represented as 𝐺 = (𝑉, 𝐸), where G is the graph, V is

a non-empty set of nodes 𝑣1, 𝑣2, … , 𝑣𝑛, and E is a set of edges

𝑒1, 𝑒2, … , 𝑒𝑛, which connect pairs of nodes in the graph.

In a graph, a pair of nodes can be connected by two different

edges, known as multiple edges. There are also edges that start

and end at the same node, referred to as loops.

Graphs can be categorized into two types: simple graphs and

non-simple graphs. A simple graph is one that does not contain

any loops or multiple edges.

Fig. 1. Simple Graphs (Source: [1])

In contrast, a non-simple graph includes either multiple edges

or self-loops. Unsimple graphs can be further divided into two

sub-types: multigraphs, which contain multiple edges, and

pseudographs, which include self-loops.

Fig. 2. Unsimple Graphs (Source: [1])

Simple graphs are generally easier to process compared to

non-simple graphs because they lack repeated edges or edges

that connect a node to itself. This simplicity often makes simple

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

graphs more frequently used in various applications than their

non-simple counterparts.

Graphs can be differentiated into two types based on their

orientation: directed graphs and undirected graphs. Directed

graphs are those in which the edges connecting the nodes have

a specific direction, whereas undirected graphs are characterized

by edges that connect nodes without any directional orientation.

Fig. 3. From left to right, directed graphs, indirected graphs

(Source: [1])

Graph theory employs various terms for the analysis of

graphs, and the key terminologies include:

1. Adjacent

In an undirected graph, two vertices are considered

adjacent if connected by an edge. In directed graphs, the

initial vertex of an edge is adjacent to the terminal vertex.

If an edge forms a loop, the initial and terminal vertices

coincide.

2. Incidence

An edge (𝑢, 𝑣) connecting 𝑢 and 𝑣 is incident with both

vertices.

3. Isolated Vertex

An isolated vertex is a vertex that does not have any

adjacent edges or, in other words, lacks neighboring

vertices connected by edges.

4. Null Graph or Empty Graph

A graph whose edge set is an empty set (Nn)" in

English. It refers to a graph that has no edges, indicating

a complete absence of connections between vertices in

the graph.

5. Degree

In undirected graphs, a vertex's degree is the count of

edges incident with it. If a loop exists at a vertex, it is

counted twice. Denoted as 𝑑𝑒𝑔(𝑣), an isolated vertex has

no incident edges, and a graph of only isolated vertices is

a null or empty graph.

6. Path

A sequence of edges starting at a vertex, traversing

vertices along the graph's edges. Two vertices are

connected if a path exists between them. A graph is

connected if every vertex pair is connected. In directed

graphs, strong connectivity involves directed paths from

𝑢 to 𝑣 and vice versa, while weak connectivity relies on

replacing directed edges with undirected ones.

7. Circuit or Cycle

A path that starts and ends at the same node is called a

circuit or cycle.

8. Connected

Two vertices v1 and v2 are said to be connected if there

is a path from v1 to v2.

9. Subgraph

A subset of a graph's vertices and edges, forming a

smaller graph with retained properties and connections.

10. Spanning Subgraph

A spanning subgraph of a graph is a subgraph that

includes all the vertices of the original graph.

11. Cut Set

The cut-set of a connected graph G is a set of edges

that, when removed from G, causes G to become

disconnected.

12. Weighted Graph

A weighted graph is a graph where each of its edges is

assigned a weight.

To represent a graph, several models can be used, such as:

1. Adjacency Matrix

 In this representation, a matrix sized according to the

number of nodes in the graph is used to store information

about the edges within the graph. Each element in the

matrix indicates whether there is an edge connecting two

nodes, the indices of which correspond to the row and

column of that element.

Fig. 4. Adjacency Matrix (Source: [2])

2. Incidence Matrix

 In this matrix, rows are assumed to represent vertices,

and columns represent edges. If a vertex, say vertex A, is

adjacent to (or incident upon) an edge, say edge E, then this

relationship is marked with a 1 in the matrix. Conversely, if

there is no adjacency or incidence between the vertex and

the edge, it is marked with a 0.

Fig. 5. Incidence Matrix (Source: [2])

3. Adjacency List

 The neighbors of a vertex are represented as a list.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Fig. 6. Adjacency List (Source: [2])

B. A* Algorithm

The A* algorithm, developed by Peter Hart, Nils Nilsson, and

Bertram Raphael in 1968, stands as a cornerstone in the field of

computer science for pathfinding and graph traversal. Its

primary function is to find the shortest path in a weighted graph,

a task it accomplishes with remarkable efficiency. This

capability has made the A* algorithm an indispensable tool in

various applications, ranging from video game development to

robotics.

In the context of A* and other search algorithms, a heuristic

is a way of estimating the cost to reach the goal from a given

node. The heuristic function, often denoted as h(n), is designed

to approximate the lowest cost from node n to the goal, without

performing an exhaustive search.

In any given subgraph GU and for a chosen set of goals T,

consider the function f(n), which represents the real cost of the

best possible path that passes through a node n, starting from s

and ending at a goal that's best suited for n. We can break down

this estimated cost f(n) into two components:

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛)

Here, g(n) is the known cost from the start node to the current

node n, and h(n) is the estimated cost from n to the goal. This

combined cost function helps A* in deciding which paths are

more promising and should be explored first.

The limitation of the A* algorithm lies in its sensitivity to the

quality and informativeness of the heuristic function used for

guiding the search. While A* is admissible when provided with

a lower bound on the cost of reaching the goal, the efficiency of

the algorithm is contingent on the accuracy of this heuristic

estimate. In scenarios where the available information is

insufficient to adequately constrain the set of possible subgraphs

at each node, A* may expand more nodes than necessary,

compromising its optimality and computational efficiency. The

algorithm's performance is thus inherently dependent on the

heuristic's ability to provide meaningful guidance in the search

for an optimal solution.

III. METHODOLOGY

A. Limitations

When applying advanced itinerary optimization techniques in

Tokyo utilizing the A* Algorithm and Graph Theory principles,

several limitations must be acknowledged and addressed:

1. The algorithm focuses solely on travel duration by car

due to the complexities associated with incorporating

multiple modes of transportation.

2. Data subjectivity is a concern, as the information is

sourced from a single provider and may not represent

diverse user perspectives.

3. Predictive analysis is reliant on API data, which can be

inaccurate in unforeseen circumstances or sudden

changes in conditions.

B. Data Sample

In this study, the dataset was developed by extracting itinerary

place options from Planetyze.com. For each selected location,

the corresponding longitude and latitude coordinates were

carefully recorded. These geographical coordinates were then

plotted in Google Maps to provide a visual representation of

each destination and its spatial relationship to others.

Fig. 7. Datasets in Map Visualization (Source: [3])

 For each corresponding point on the map gathered from the

source, a careful selection of places was made to be used in this

study. These locations, chosen based on their relevance and

representation in the dataset, form the basis of our analysis,

providing a foundation for examining route efficiency and travel

dynamics within the research scope:

Node Locations (Latitude,Longitude)

0 Haneda Airport (35.54939, 139.77983)

1 Hachikō Memorial (35.65905, 139.70062)

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Statue

2 Tokyo Skytree (35.71006, 139.8107)

3 Tokyo Tower (35.65858, 139.74543)

4 Sensō-ji (35.71476, 139.79665)

5 Tsukiji Outer

Market

(35.66532, 139.77088)

6 Imperial Palace (35.68517, 139.75279)

7 Nezu Shrine (35.72013, 139.76076)

8 Art Aquarium

Museum

(35.67136, 139.76573)

9 Harajuku Street (35.67089, 139.7077)

10 Ueno Park (35.71475, 139.77343)

11 Tokyo Dome (35.70563, 139.75189)

12 Shibuya Scramble

Crossing

(35.65948, 139.70055)

13 Chidorigafuchi

Moat

(35.69049, 139.74637)

14 Rainbow Bridge (35.63656, 139.76314)

15 Yasukuni Jinja (35.69413, 139.74384)

16 Tokyo Station (35.68123, 139.76712)

Tabel. 1.Tokyo Tourist Destination Dataset with Latitude and

Longitude (Source:[3])

In this dataset configuration, it is assumed that the itinerary

planning begins at Haneda Airport, serving as the initial point of

arrival for travelers entering Tokyo. The journey is planned to

conclude at Tokyo Station, symbolizing a common transit hub

for travelers who typically continue their journey to other cities

after visiting Tokyo. However, if a traveler wishes to customize

their journey, the dataset allows for the modification of both the

start and end locations.

C. Problem Modeling

In this problem-solving approach, we begin by adding

features to the dataset, utilizing the Graphhopper API to

determine the travel time between each pre-selected location.

The use of travel time enhances accuracy, as relying solely on

distance may overlook various on-site factors. To increase

speed, caching is enabled using pickle. If 'graph.pkl' already

exists, the system will not create a new graph, thereby ensuring

efficiency by reusing existing data.

Fig. 8. Snapshot of initialize_or_load_graph function (Source:

Primary)

Fig. 9. Snapshot of get_travel_time function (Source:

Primary)

Fig. 10. Graph Visualization of the datasets (Source:

Primary)

Fig. 11. Snippet of Graph Data with pandas (Source:

Primary)

For the graph generated in the previous process, it is

subsequently processed by a function called find_route, which

requires the parameters graph and start location. Users have the

flexibility to decide whether they wish to conclude their

itinerary at a specific place from the list or opt to generate the

most efficient route without considering the specific end

location of the trip.

To begin with, it's essential to look at the main algorithm

supporting this program. Here, the A* algorithm is

implemented, complete with its heuristic features, forming the

backbone of our system.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Fig. 12. Snapshot of a_star function (Source: Primary)

When this function is called, it initializes an 'open set' – a

collection of nodes that are to be explored, starting with the start

node. The function then enters a loop, continually exploring

nodes until it either finds the end node or exhausts all possible

paths. Within this loop, the function selects a node from the open

set that has the lowest estimated total cost, which is a

combination of the actual travel time to reach that node and an

estimated time (heuristic) to reach the end node from there. This

aligns with the heuristic theory we discussed earlier, where the

heuristic function h(n) is designed to estimate the cost from the

current node to the end node. If the selected node is the end node,

the function concludes by returning the path to this node and the

total travel time. Otherwise, it proceeds to examine the node's

neighbors, calculating the travel time for each and adding them

to the open set for further exploration. This process ensures that

the algorithm always prioritizes nodes that are more likely to

lead to the quickest path to the destination. The loop continues

until the algorithm either finds the most efficient route to the end

node or determines that no such route exists.

Fig. 13. Snapshot of travel_time_heuristic function (Source:

Primary)

In conjunction with the a_star function and the find_route

function, the travel_time_heuristic function calculates the

distance between two nodes, utilizing the heuristic factor, which

plays a crucial role in the efficiency of the algorithm. The

heuristic factor's importance lies in its ability to estimate the cost

(in this case, time) from the current node to the destination node.

This estimation guides the algorithm in selecting the most

promising path forward, balancing between the known path and

potential future paths. The "estimated total time" is thus a sum

of two components: the actual time already spent traveling from

the start node to the current node, and the heuristic estimate of

the time required to reach the end node from the current node.

This method enables the A* algorithm to make informed

decisions at each step, optimizing the route for the shortest

possible total travel time.

The core of our calculations is centered around the find_route

function. This function takes a graph and a starting location as

inputs, along with an optional end location.

Fig. 14. Snapshot of find_route function (Source: Primary)

The find_route function serves as the primary component for

calculating the total travel time and determining the most

efficient route. This function is versatile, adapting to user

requests which can vary between selecting a specific endpoint

for the journey or opting to discover the most efficient route

without a predetermined end location.

Initially, it creates a set of all locations (unvisited) and

removes the starting location, and if provided, the ending

location. The algorithm then iteratively finds the next best node

to visit from the remaining unvisited nodes, using the

travel_time_heuristic function to determine this. This heuristic

guides the selection by estimating the travel time from the

current node to each unvisited node, choosing the one with the

minimum estimated time. Once a next node is chosen, the a_star

function is called to find the most efficient path to this next node,

updating the total route and time accordingly.

Finally, to enhance the user experience, we include an

additional feature that visualizes the route calculated by the

find_route function. This feature opens a new tab displaying a

map that highlights the chosen destinations and their respective

routes, offering users a clear and interactive overview of their

journey.

Fig. 15. Snapshot of display_route_on_map function (Source:

Primary)

In the map visualization provided by our function, the starting

point (Haneda Airport) is marked with a red marker, while the

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

end point (Tokyo Station or any selected end point for the most

efficient route) is highlighted with a green marker. Each

intermediate stop along the route is denoted by blue markers.

Additionally, the function utilizes the coordinates from the

dataset to accurately represent the actual positions of these

points. The path connecting these locations is clearly traced with

a striped blue line, offering an interactive and dynamic view on

an HTML-based website, which is a more effective and user-

friendly approach compared to static images.

IV. ALGORITHM AND METHOD ANALYSIS

To further substantiate our research, testing is conducted,

followed by analysis. In this section, two test cases will be

presented. The first case involves the user selecting Tokyo

Station as the final stop. In the second test case, the user

designates Tokyo Station as a key spot and seeks the most

efficient route without specifying an end destination.

Initially, we conduct a test on the route where Tokyo Station

is set as our final destination. To accomplish this, enter the word

'final' as the input on the provided interface.

Fig. 16. Snapshot of Test Case 1 Terminal Input (Source:

Primary)

As demonstrated in the code snippet, the program is designed

to find the most efficient route from Haneda Airport, which is

the starting point, to Tokyo Station, set as our final destination.

Multiple tests have been conducted to confirm that this indeed

represents the quickest route in terms of travel time. To further

assess the effectiveness of our algorithm, we intentionally

included nodes that are in close proximity to each other and

observed how they are connected in the route. Additionally, we

have incorporated a route visualization feature. This not only

aids in better understanding the efficiency of the proposed route

but also simplifies navigation for the users, providing them with

a more intuitive travel experience. As seen above, the total time

needed to complete the most efficient route is 1.90 hours with

the route in the order of :

[Haneda Airport] -> [Rainbow Bridge] -> [Tsukiji Outer

Market] -> [Art Aquarium museum] -> [Imperial Palace] ->

[Chidorigafuchi Moat] -> [Yasukuni Jinja] -> [Tokyo Dome] ->

[Nezu Shrine] -> [Ueno Park] -> [Sensō-ji] -> [Tokyo Skytree]

-> [Tokyo Tower] -> [Hachikō Memorial Statue] -> [Shibuya

Scramble Crossing] -> [Harajuku Street] -> [Tokyo Station]

The effectiveness of the route and the success of our research

are substantiated by anticipated viewpoints. Firstly, the absence

of repeated nodes signifies that no location is visited more than

once. Additionally, the program prioritizes minimizing loops, as

evident in the visualization below where the program endeavors

to reduce loop occurrences.

Fig. 17. Map Visualization of Results Route For Test Case 1

(Source: Primary)

Fig. 18. Closer Map Inspection on Test Case 1 (Source:

Primary)

The image presented above, though initially appearing

somewhat ambiguous, effectively demonstrates the program's

objective to minimize travel time as much as possible. This is

evident in the way the program strategically avoids unnecessary

loops within the Japanese terrain. While some looping may be

observed, these are primarily attributed to specific route

planning requirements and the terrain's characteristics. To

further illustrate this point, consider the proximity between the

Hachikō Memorial Statue and the Shibuya Scramble Crossing.

The presence of a direct edge between these nodes in the

program's output substantiates that the algorithm efficiently

connects close locations. This example is representative of the

program's approach to every node in the dataset, showcasing the

effective application of the A* algorithm across all points.

Now, let's shift our focus to scenarios where users seek a

comprehensive exploration of Japan, desiring to experience the

best of all itineraries without a specific end destination in mind.

In such cases, the program meticulously calculates the most

optimal routes covering all planned stops. This approach is also

rooted in the A* algorithm, where for each node, the program

aims to find the most efficient route based on travel time and the

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

applied heuristic. This ensures that users experience a well-

rounded journey, seamlessly connecting the highlights of Japan

in a manner that prioritizes both time efficiency and the richness

of the travel experience. To accomplish this, enter the word 'stop'

as the input on the provided interface

Fig. 19. Snapshot of Test Case 2 Terminal Input (Source:

Primary)

As observed, the program generates a faster travel time when

the end destination is left undefined, as compared to situations

where the end point is predetermined. This makes intuitive

sense, considering that a specified end destination is often more

about personal preference than route efficiency. However, when

the focus is shifted to maximizing route effectiveness, the

program excels in delivering the most efficient path, thereby

saving travel time for the user. This approach allows travelers to

spend less time in transit and more time enjoying the various

attractions included in their tour. We can now determine that the

most efficient route for our dataset concludes at Harajuku Street.

This route has been proven to be the most time-effective, with a

total travel time of 1.825 hours with the route in the order of:

[Haneda Airport] -> [Rainbow Bridge] -> [Tsukiji Outer

Market] -> [Art Aquarium museum] -> [Tokyo Station] ->

[Imperial Palace] -> [Chidorigafuchi Moat] -> [Yasukuni Jinja]

-> [Tokyo Dome] -> [Nezu Shrine] -> [Ueno Park] -> [Sensō-

ji] -> [Tokyo Skytree] -> [Tokyo Tower] -> [Hachikō Memorial

Statue] -> [Shibuya Scramble Crossing] -> [Harajuku Street]

Fig. 20. Map Visualization of Results Route For Test Case 2

(Source: Primary)

Fig. 21. Closer Map Inspection on Test Case 2 (Source:

Primary)

We can also clearly observe that the route adapts accordingly

while still striving to minimize unnecessary loops. This

demonstrates the program's efficiency in route optimization.

Furthermore, our standing hypothesis which imply that closely

situated nodes would be connected sequentially is also validated

in these scenarios. This consistency in the program's behavior

further reinforces the reliability and effectiveness of our routing

algorithm, showcasing its capability to adapt to different user

preferences while maintaining optimal travel efficiency.

As we draw this testing and analysis phase to a close, it's

important to reflect on the insights gained and the potential areas

for further development. Throughout our rigorous examination

of the program, we've uncovered valuable data that not only

validates the effectiveness of the A* algorithm in practical

scenarios but also highlights areas where improvements can be

made.

Our analysis also brought to light certain limitations. These

include the need for greater adaptability in dynamic

environments and the potential for integrating real-time data to

enhance route accuracy. Future iterations of the program could

benefit from incorporating live traffic updates, weather

conditions, and user preferences to provide even more tailored

and responsive route suggestions.

However, our testing and analysis have laid a solid foundation

for future enhancements. By leveraging the A* algorithm, we've

demonstrated that it's possible to significantly improve how we

navigate our world. This isn't just about reaching a destination;

it's about doing so in the most efficient manner possible,

ensuring that every journey is not only well-planned but also a

delightful and smooth experience. The insights gained from this

project pave the way for more advanced and user-friendly travel

planning tools, making every trip an optimized and enjoyable

adventure.

V. CONCLUSION

In conclusion, our project 'Advanced Itinerary Optimization

in Tokyo Utilizing the A* Algorithm and Graph Theory

Principles' has not only showcased the robust capabilities of

these advanced computational methods in enhancing urban

travel planning but also illuminated a pathway for future

enhancements. While the current system adeptly navigates

Tokyo's complex network of destinations, delivering optimized

routes and significantly improving travel efficiency, we

acknowledge certain limitations that present opportunities for

further development.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

One of the main opportunities for improvement is to better

understand what users really want. This means considering

things like how they prefer to travel, what they like to do, and

how much time they have. This involves tailoring our system to

better align with individual needs, thereby offering a more

customized travel experience. Plus, we know that having better

and more data is key to making our system more accurate and

trustworthy. So, we'll focus on expanding and improving our

dataset to get even better results.

Looking ahead, the potential to enhance and expand our

itinerary optimization system using the A* algorithm is vast.

Our aim is to integrate user feedback and the latest technological

advances to better understand urban travel dynamics. This will

allow us to refine our system, making it not just a tool for finding

efficient routes, but one that fully considers each individual's

travel preferences and the unique character of different

cityscapes. We're committed to evolving beyond basic route

optimization, envisioning a system that enriches every aspect of

travel planning, turning every journey into an efficient, yet

deeply personal and unforgettable experience.

VI. APPENDIX

The complete A* algorithm and many other functions can be

found below.

https://github.com/Razark-Y/RouteFinder-for-Travel-Itinerary-

in-Tokyo

VII. ACKNOWLEDGMENT

The author expresses deep gratitude to God Almighty for His

grace and guidance, which have been instrumental in the

successful completion of this paper titled “Advanced Itinerary

Optimization in Tokyo Utilizing the A* Algorithm and Graph

Theory Principles.” The author would like to thank everyone

involved in the preparation of this paper, namely:

1. Dr. Nur Ulfa Maulidevi, S.T., M.Sc., Dr. Rinaldi Munir,

M.T., and Dr. Fariska Zahra Zakhralativa Ruskanda,

S.T., M.T., the lecturers of the IF2120 Discrete

Mathematics course, for their guidance and knowledge

imparted during the lectures,

2. The author's parents, for their constant encouragement

and support,

3. Friends and peers, for their support and contributions in

the drafting and refining of this paper.

Finally, the author thanks the readers. Apologies are extended

for any errors in writing or content. It is the author's sincere hope

that this paper proves beneficial to its readers.

REFERENCES

[1] R. Munir, “Graf Bagian 1,” IF2120 Matematika Diskrit. [Online].

 Available:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-
Graf-Bagian1-2023.pdf [Accessed 9 December 2023]

[2] R. Munir, “Graf Bagian 2,” IF2120 Matematika Diskrit. [Online].

Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/20-

Graf-Bagian2-2023.pdf [Accessed 9 December 2023]
[3] Planetyze, “The best 50 places to visit in Tokyo,” [Online].

Available:

https://planetyze.com/en/japan/tokyo/blog/the-best-50-places-to-visit-in-

tokyo [Accessed 9 December 2023]

[4] Hart, Nilsson dkk. 1968. A Formal Basis for the Heuristic Determination
of Minimum Cost Paths. IEEE Transactions of Systems Science and

Cybernetics, Vol. 4.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 11 Desember 2023

Wilson Yusda 13522019

https://github.com/Razark-Y/RouteFinder-for-Travel-Itinerary-in-Tokyo
https://github.com/Razark-Y/RouteFinder-for-Travel-Itinerary-in-Tokyo
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-Graf-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-Graf-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/20-Graf-Bagian2-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/20-Graf-Bagian2-2023.pdf
https://planetyze.com/en/japan/tokyo/blog/the-best-50-places-to-visit-in-tokyo
https://planetyze.com/en/japan/tokyo/blog/the-best-50-places-to-visit-in-tokyo

