
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

A Decision Tree-Based Approach to Optimal Move Selection in

Chess Middlegame Using Minimax Algorithm with Stockfish

Engine
Ibrahim Ihsan Rasyid - 135220181

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113522018@std.stei.itb.ac.id

Abstract—The minimax algorithm in game theory serves as a

decision-making rule to maximize the minimum advantage

available. This is due to the nature of zero-sum games, where both

players strive to maximize their own gains. In a zero-sum game

like chess, when one player, say player A, seeks to maximize their

advantage, its opponent, say player B, will consistently aim to

minimize player A's advantage. This principle finds application in

chess, where players often encounter challenges in determining

the best moves, especially during the middlegame phase.

Therefore, this paper delves into the application of the minimax

algorithm in determining optimal moves in chess, discussing its

implementation, and presenting the results of testing the

implemented algorithm.

Keywords—best move, middlegame, minimax algorithm, tree.

I. INTRODUCTION

Chess is one of the most popular board games since its

discovery around the 7th century, evolving into competitive

play on the world stage for the first time in 1834 up to the

present modern era. In chess, the term “middlegame” is

recognized, referring to the phase where majority of player’s

pieces and pawns have been developed. Most of the times,

players find it challenging to determine the best next move due

to the multitude of possibilities that can unfold after each

move. Poor move calculation can have long-term effects and

lead to defeat in the end. It is not easy for humans to perform

calculations to determine the best move.

Therefore, humans strive to develop chess engines to assist

in analyzing previously completed games. Numerous chess

engines have already been developed, so many that since 2010,

the Top Chess Engine Championship (TCEC) has been held,

which is a competition among chess engines. To date, TCEC

has conducted 25 seasons, with one of the chess engines,

Stockfish, emerging victorious in 15 seasons and currently

reigning as the best chess engine.

The algorithm employed by Stockfish, eventually replaced

by NNUE (Efficiently Updated Neural Networks) due to its

widespread adoption across various chess engines, includes the

Minimax Algorithm and Alpha-Beta Pruning. This paper

focuses solely on the Minimax Algorithm and the application

of tree concepts in constructing this algorithm.

The Minimax Algorithm is a decision-making rule designed

to minimize the potential for the worst-case scenario. This

algorithm is commonly applied to zero-sum games such as tic-

tac-toe, checkers, shogi, and of course chess. In the context of

these games, minimax entails maximizing the potential for the

smallest advantages. Simply put, one player makes moves to

gain maximum advantage for themselves, while the opposing

player makes moves to diminish the advantage of their

opponent. Hence, the evaluation of the board position in a

game typically holds a positive value for one player and

negative value for their opponent. In chess, the advantage of

the white player is reflected in a positive evaluation, and vice

versa. An infinite value signifies that one player can win the

game within a few moves, usually written as M4, means there

is a checkmate in 4 moves.

II. THEORETICAL FOUNDATION

A. Graph

Graph G is defined as a pair of sets (V, E), expressed using

the notation G = (V, E), where V is a non-empty set of

vertices/nodes, and E is a set of edges connecting pairs of

nodes. Geometrically, a graph is depicted as a collection of

nodes in a two-dimensional plane connected by a set of lines

Fig. 2.1 (a) simple graph, (b) unsimple graph, (c) pseudo-graph

(Source: Matematika Diskrit Edisi 3 2010 (Dr. Rinaldi Munir))

Based on the presence or absence of loops or multiple edges

in a graph, graphs can generally be classified into two types:

a. Simple Graph

A simple graph is a graph that does not have loops or

multiple edges. Examples can be seen in Fig. 2.1 (a)

b. Unsimple Graph

An unsimple graph is a graph that can have loops and/or

multiple edges. Here we can classify an unsimple graph

into:

- Multi-graph

Multigraph is a graph that contains multiple

egdes, those are two or more edges that connect

the same pair of nodes. Examples can be seen in

Fig. 2.1 (b)

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

- Pseudo-graph

Pseudo-graph is a graph that contains loops, that

is an edge that connects a node to itself.

Examples can be seen in Fig 2.1 (c)

Another way to categorize graphs is based on the orientation

of their edges. Using this approach, graphs are generally

classified into two types:

a. Undirected Graph

A graph whose edges have no directional orientation is

referred to as an undirected graph. In an undirected

graph, the order of the pairs of nodes connected by an

edge is not considered. Thus, for an edge connecting

two nodes u and v in a graph, (u, v) is equivalent to (v,

u). Examples can be seen in Fig 2.1.

b. Directed Graph

A graph in which each edge is given a directional

orientation is termed as a directed graph. In a directed

graph, for an edge connecting two nodes u and v, (u, v)

and (v, u) represent distinct pairs. In the case of the edge

(u, v), node u is referred to as the origin node, and node

v is termed the terminal node. Examples can be seen in

Fig 2.2.

Fig. 2.2 Examples of directed graph

(Source: Matematika Diskrit Edisi 3 2010 (Dr. Rinaldi Munir))

There are several terminologies related to graphs. Below are

some terms that will be used in this paper.

a. Path

A path of length n from the initial vertex v0 to the

destination vertex vn in the graph G is a sequence

alternating between vertices and edges in the form v0,

e1, v1, e2, …, vn-1, en, vn, such that e1 = (v1, v2), …, en =

(vn-1, vn) are the edges of the graph G.

If the graph under consideration is a simple graph, then

we only need to express the path as a sequence of

vertices. For example, refer to Fig. 2.3. We can express

the path for graph G1 as 1, 2, 3, 4 instead of 1, 12, 2, 23,

3, 34.

b. Circuit

A path that starts and ends at the same vertex is called a

circuit. Refer to Fig 2.3 for an example. Note that graph

G1 has a path 1, 2, 4, 3, 1. Because the path starts and

ends at the same vertex, graph G1 is considered has a

circuit. Similarly in graph G2, we can see that G2 has a

path 1, e2, 2, e4, 3, e3, 1 that starts and ends at the same

vertex. It means that G2 has a circuit.

Fig. 2.3 Two graphs G1 and G2

(Source: Matematika Diskrit Edisi 3 2010 (Dr. Rinaldi Munir))

c. Connected

An undirected graph G = (V, E) is called connected if,

for every pair of vertices u and v within the set V, there

exists a path from u to v. If not, G is referred to as a

disconnected graph. For example, in Fig. 2.4 below, we

can see that there is no path from vertex 1 to 5. It means

that the graph below is a disconnected graph.

Fig. 2.4 Example of disconnected graph

(Source: Matematika Diskrit Edisi 3 2010 (Dr. Rinaldi Munir))

B. Tree

A tree is defined as a connected undirected graph that does

not contain any circuits. In this definition, we can observe two

essential properties of a tree: connectedness and absence of

circuits. Notice the examples in Fig. 2.5 below. We can see

that both graphs G1 and G2 are trees, as they are both connected

graphs and do not contain any circuit. While graph G3 is not a

tree because it contains a circuit a, d, f, a, graph G4 also not a

tree because it is not a connected graph

Fig. 2.5 Examples of tree (G1 and G2) and not-tree (G3 and G4)

(Source: Matematika Diskrit Edisi 3 2010 (Dr. Rinaldi Munir))

A tree in which one of its vertices is treated as the root, and

its edges are directed away from the root, is called a rooted

tree. In many applications of trees, a specific vertex is

designated as the root, forming a rooted tree. Any arbitrary

unrooted tree can be transformed into a rooted tree by selecting

a vertex as the root. Refer to the example in Fig. 2.6 for

illustration. Here we can transform the tree into a rooted tree

by selecting vertex b or vertex e as the root.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Fig. 2.6 A tree and its rooted tree produced by choosing a vertex as

the tree root

(Source: Matematika Diskrit Edisi 3 2010 (Dr. Rinaldi Munir))

There are several terminologies related to rooted tree. We

will discuss some terms that used in this paper.

a. Child and Parent

Let x be a node in a rooted tree. Node y is said to be the

child of x if an edge from x to y exists. Therefore, x is

parent of y. As an example, in Fig. 2.7, node d is a child

of node a, and node a is the parent of node b, c, and d.

Fig. 2.7 A rooted tree

(Source: Matematika Diskrit Edisi 3 2010 (Dr. Rinaldi Munir))

b. Path

Path from vertex v1 to vertex vk is a series of vertices v1,

v2, …, vk such that vi is the parent of vi+1 for 1 <= i < k.

From Fig. 2.7, the path from a to h is a, b, e, h.

c. Descendant and Ancestor

If there exists a path from vertex x to vertex y, then x is

an ancestor of y, and y is a descendant of x. In Fig. 2.7,

d is an ancestor of m and therefore m is a descendant of

d.

d. Subtree

Let x be a node in a tree T. A subtree with x as the root

is a subgraph T’ = (V’, E’) such as V’ contains x and its

descendant and E’ contains the edges of every path that

starts from x. As an example, in Fig. 2.7, we can take

node b as the root of our subtree so that we have subtree

T' = (V’, E’) with V’ = {b, e, f, h, i, j} and E’ = {(b, e),

(b, f), (e, h), (e, i), (e, j)}.

e. Degree

The degree of a node x in a rooted tree is the number of

children of x. In Fig. 2.7, node d has a degree of 1, and

node b has a degree of 3.

f. Leaf

A node that has a degree of zero, meaning it has no

children, is called a leaf. In Fig. 2.7, node h, i, j, l, m are

leaves.

g. Level and Height

The root of a tree is at level 0, while the level of any

other node is defined as 1 plus the length of the path

from the root to that node, while height of a tree is the

maximum length of the path from the root to a leaf. In

Fig. 2.7, the height of the tree is 4.

A rooted tree in which each node has at most n children is

called an n-ary tree. A binary tree is an n-ary tree with n = 2. In

a binary tree, the children of a node are referred to as the left

child or the right child. A subtree that is the left child of a tree

is called the left subtree, and a subtree that is the right child of

a tree is called the right subtree.

Fig. 2.8 A different binary tree

(Source: Matematika Diskrit Edisi 3 2010 (Dr. Rinaldi Munir))

C. Minimax Algorithm in Game Theory

A strategic game is a model of interactive decision-making,

where each participant selects their course of action

definitively, and these decisions occur simultaneously. The

model includes a finite set N of players, and for each player i,

there exists a set Ai of actions along with a preference relation

on the set of action profiles. An outcome is referred to as an

action profile a = (aj)j∈N, and the set of outcoumes xj∈NAj is

denoted as A.

A strategic game ({1, 2}, (Ai), (⧽A)) is strictly competitive if

for any a ∈ A and b ∈ A we have a ⧽1 if and only if b ⧽2. A

strictly competitive game is sometimes called zero-sum

because if player 1’s preference relation ⧽1 is represented by the

payoff function u1 then player 2’s preference relation is

represented by u2 with u1+u2 = 0.

A player i is said to maxminimizes if he chooses an action

that is best for him on the assumption that whatever he does,

player j will choose her action to hurt him as much as possible.

Let ({1, 2}, (Ai), (ui)) be a strictly competitive game. The

action x* ∈ A1 is a maxminimizer for player 1 if

min 𝑢1(𝑥 ∗, 𝑦) ≥ min 𝑢1(𝑥, 𝑦)

for all x ∈ A1. Similarly, the action y* ∈ A2 is a

maxminimizer for player 2 if

min 𝑢2(𝑥, 𝑦 ∗) ≥ min 𝑢2(𝑥, 𝑦)
for all y ∈ A2. In words, a maxminimizer for player i is an

action that maximizes the payoff that player i can guarantee.

Next on we will refer this as minimax algorithm.

Below is an illustration of a simple example of the minimax

algorithm depicted in a decision-tree

Fig. 2.9 Illustration of minimax algorithm tree

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

(Source: https://en.wikipedia.org/wiki/Minimax)

D. Chess

Chess is a board game which is played between two

opponents (light-colored/white and dark-colored/black) who

move their pieces alternately, with the objective is to place the

opponent’s king in “under attack” in such a way that the

opponent does not have any legal move. The player who

achieves this goal is said to have “checkmated” the opponent’s

king and to have won the game, while the opponent king

whose king has been checkmated has lost the game.

The middlegame in chess is the phase between the opening

and the endgame. Typically, the middlegame begins when

players have developed a significant portion of their pieces,

brought their king to safety, and concludes when only a few

pieces remain on the board. Middlegame theory is considered

less developed compared to opening and endgame theories.

This is because the positions of pieces in the middlegame often

vary significantly from one to another, making it much more

challenging to memorize the various variations compared to

openings and endgames.

III. IMPLEMENTATION METHOD

In this section, I will demonstrate the approach I took to

implement the minimax algorithm to determine the best move

in chess middlegames. The implementation is done with

Python, utilizing chess module available in Python

A. A View on Python Chess Module

Python language provides a module for chess computations

called the chess module. Documentation is available on the

following link. This module offers various features utilized in

this paper, such as Board, Move, Portable Game Notation

(PGN) parsing and writing, Game model, and engine analysis

1. Board

Board is a Python class that, upon initialization,

generates the starting position of a standard chess game.

An object of the Board class can be manipulated by

making moves or by copying it to another variable.

Player is represented as a boolean, meaning that white is

true and black is false. Fig.3.1 shows the output when

we print a board object. Uppercase letters represents

white’s pieces, vice versa.

Fig. 3.1 Example of Board print output

2. Move

The Move class represents a move from one square to

another using the Universal Chess Interface (UCI)

notation. For example, "e3e5" denotes a move of a piece

from square e3 to e5.

3. PGN

PGN (Portable Game Notation) is a standard text format

for representing a chess game. Parsing a PGN file can

be performed, and it will return a Game object

representing the chess game.

4. Game

A game is represented as a tree of various moves, with

each node being a state or position on the board. The

GameNode is a class that represents a node in the game

tree.

5. Engine analysis

In this module, there is a function available to analyze a

position on the board and return a numerical

representation of the analysis result. The analysis is

performed by an external chess engine such as

Stockfish, Torch, and others.

B. Implementation of Minimax Algorithm

In the implementation of the minimax algorithm, a Python

class named MinimaxEngine is created, featuring a method

called minimax. The minimax method takes inputs such as a

Board object, a boolean value, an integer, and

engine.SimpleEngine, then returns a list of integers and Move

objects. The following is an excerpt of the code.

def minimax(self, board: Board, player: bool,

depth: int, evaluator: engine.SimpleEngine,

alpha=-inf, beta=inf):

 if depth == 0 or board.is_checkmate() or

board.is_stalemate():

 if player:

 return [evaluator.analyse(board,

engine.Limit(depth=15))["score"].white().score(ma

te_score=MATE_SCORE), None]

 else:

 return [evaluator.analyse(board,

engine.Limit(depth=15))["score"].black().score(ma

te_score=MATE_SCORE), None]

 moves = list(board.legal_moves)

 if board.turn == player:

 maxScore, bestMove = -inf, None

 for move in moves:

 test_board = board.copy()

 test_board.push(move)

 score = self.minimax(test_board,

player, depth-1, evaluator, alpha, beta)

 alpha = max(alpha, score[0])

 if beta <= alpha:

 break

 if score[0] >= maxScore:

 maxScore = score[0]

 bestMove = move

 return [maxScore, bestMove]

https://en.wikipedia.org/wiki/Minimax
https://python-chess.readthedocs.io/en/latest/

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

We can observe that in minimax method, the function is

called recursively with the base cases being when depth equals

0, the game is in a checkmate state, or the game is a stalemate.

If the base cases are not met, the program proceeds with the

search based on the current state of the board. If it is the

player's turn, the program looks for the maximum value among

each move from the board node; otherwise, it looks for the

minimum value. The search returns a list of integers

representing the maximum or minimum value and a Move

object as the best move.

In evaluating the position when it reaches the base case, it

uses a chess engine. In this paper, we use Stockfish engine

with depth of 15.

IV. IMPLEMENTATION TESTING AND RESULT DISCUSSION

In this section, the test results from 3 samples will be

displayed. Each test is conducted using a depth of 4. Then, we

will discuss about the result on the test.

A. Unit Testing

We use a game between Hikaru Nakamura against Liam

Vrolijk as our first test to our program.

Fig. 4.1 Hikaru Nakamura (Hikaru) vs Liam Vrolijk (LiamVrolijk),

13 October 2020

(Source: chess.com)

In this game, Hikaru finds the best move Bb5 (e2b5). We

save the PGN file as test-2.pgn.

Fig. 4.2 Test 1 Result

In above figure, we see that the minimax’s best move is

Qxb7 (a6b7)

Next, we do another test from my own game online in

chess.com.

Fig. 4.3 r0drig0r0sa vs sunegoo, 5 December 2023

(Source: chess.com)

Here, I honestly felt confused while I am playing. In game

review, I figured out that the best move for me is Rxg2 (g6g2).

We save the PGN file as test-3.pgn

Fig. 4.4 Test 2 Result

In above figure, minimax evaluates that the best move is Kf7

(g8f7).

Lastly, we do another test from another own game I recently

played online.

 else:

 minScore, bestMove = inf, None

 for move in moves:

 test_board = board.copy()

 test_board.push(move)

 score = self.minimax(test_board,

player, depth-1, evaluator, alpha, beta)

 beta = min(beta, score[0])

 if beta <= alpha:

 break

 if score[0] <= minScore:

 minScore = score[0]

 bestMove = move

 return [minScore, bestMove]

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Fig. 4.5 Silvio371 vs sunegoo, 10 December 2023

(Source: chess.com)

In this position, my opponent made a mistake by taking the

pawn on 12. Bxe4, leads to a loss in material after 12. .. Qxd1

13. Rxd1 Nxe4. For my opponent, the best move is to check

the king with Bc4+ (d3c4). We save the PGN file of this

position as test-4.pgn

Fig. 4.6 Test 3 Result

In above figure, we can see that minimax’s best move is

Nxe5 (f3e5).

B. Result Discussion

It can be observed that several experiments have been

conducted, and the results do not align with the expected

optimal moves. When each result of the experiments is tested

using an analysis board available on various websites like

lichess.org, the outcomes significantly deviate from the best

moves. For Test 1, the evaluation drops from +5.0 to -2.7. In

Test 2, the evaluation decreases from +1.8 to +3.8. Finally, in

Test 3, the evaluation drops from +0.6 to -3.9. It is important to

note that in Test 2, the calculations were performed

considering the perspective of the black pieces, so a positive

value indicates a disadvantage for the black side.

Many aspects may affect this result, including:

1. Game complexity

Chess is highly complex, especially during the

middlegame phase. The Minimax algorithm, while

powerful, may struggle to accurately model all potential

game scenarios.

2. Limitations in heuristic evaluation

The heuristic evaluation used in the Minimax algorithm

might not be sophisticated enough to identify optimal

moves, particularly if there is a lack of knowledge about

specific strategies or positions.

3. Limited search depth

If the Minimax algorithm only searches a few moves

ahead (limited search depth), it might be unable to

assess the long-term consequences of a move

accurately.

4. Time and resource constraints

Optimal searching in Minimax requires significant

computation time, especially for a large decision tree.

Time and resource constraints may force the algorithm

to make rough estimations.

5. Lack of parameter tuning

The algorithm has parameters that need fine-tuning, and

inadequate parameter tuning can lead to inaccurate

evaluations.

V. CONCLUSION

Finding the best move in chess middlegame using Minimax

Algorithm is a possible task to do and tends to be effective as it

can compare many possibilities of moves in a certain depth. It

searches every possible move from a position until a certain

depth, calculates every single position reached by the moves,

and returns the best move possible in that position.

Some flaws are encountered in the implementation, such as

bad analysis and the algorithm time complexity. Despite the

weaknesses in the implementation, we can see the

implementation of tree in finding the best move in chess.

VI. APPENDIX

Program used in this paper can be seen here

VII. ACKNOWLEDGMENT

All Praise and gratitude to Allah Subhanahu wa Ta’ala, for

by His mercy, the paper titled “A Decision Tree-Based

Approach to Optimal Move Selection in Chess Middlegame

Using Minimax Algorithm with Stockfish Engine” has been

successfully completed. Also, gratitude is extended to the

lecturer for IF2120 Discrete Mathematics course, Dr. Nur Ulfa

Maulidevi, S.T, M.Sc., for the guidance and motivation

provided throughout her tenure in teaching the students.

REFERENCES

[1] handbook.fide.com. 2023. FIDE Laws of Chess. [online] Available at:

<https://handbook.fide.com/chapter/E012023> [Accessed 7 December
2023 21:08]

[2] Munir, Rinaldi. 2010. Matematika Diskrit Edisi 3. Bandung: Penerbit

INFORMATIKA Bandung.
[3] Osborne, Martin J., Ariel Rubenstein. 1994. A Course in Game Theory.

Cambridge, Massachusetts: The MIT Press

STATEMENT OF ORIGINALITY

I hereby declare that this paper is my own writing, not an

adaptation, or translation of someone else's paper, and not

plagiarized.

https://github.com/ibrahim-rasyid/MatDis-Minimax
https://handbook.fide.com/chapter/E012023

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Bandung, 11 Desember 2023

Ibrahim Ihsan Rasyid - 13522018

