
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Constructing a Decision Tree to Find the Best

Starting Hole in Indonesian Traditional Game

‘Congklak’: Maximizing the Number of Seed in

Gudang by the End of the Turn

Nicholas Reymond Sihite - 135221441

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113522144@std.stei.itb.ac.id

Abstract— Congklak is an Indonesian traditional game played by

two players where the goal is to maximize the number of seeds each

player has in gudang by the end of the game. Strategy is very

important to win this game, therefore the starting hole is crucial.

Determining the best starting move to maximize seeds count in

gudang can be done by constructing a decision tree for each hole

options. One way to efficiently construct a decision tree for this

problem is simulating the game into a C program using a type of

data structure called linked list with circular buffer. Without

limiting the amount of time a player can pick another hole after

landing the last seed in gudang, it is possible to get 73 seeds or even

higher (limit is currently unknown). However, if players are limited

to three repetitions, the maximum number of seed is 28.

Keywords— congklak, decision tree, gudang, maximizing,

starting hole.

I. INTRODUCTION

Indonesia is a country well known for its diverse

backgrounds, cultures, and heritages. One of Indonesia’s

intangible cultural heritage is a traditional game called Congklak

(congkak, dhakon). This game is played by two players on a

board with 14 small holes and 2 large holes (gudang, rumah)

where each player gets 7 small holes and 1 large hole.

Fig. 1 Congklak Board

(source: writer’s archive)

Each small hole is filled with 7 seeds/stones and the goal is to

take as many seeds as possible to each player’s gudang. By the

end of the game, the player with the most number of seed in

his/her gudang wins the game. Similar to other competitive

game, it requires strategy to win a congklak match. A lot of

congklak players have their ‘lucky hole’ to start with, which they

believe would bring them to victory. In truth, do these ‘lucky

hole’s really exist? To answer that question, the meaning of

‘lucky hole’ should first be defined. Since the goal of this game

is to take as many seeds as possible to gudang, a ‘lucky hole’

can be defined as a hole the player start with, that results in the

most possible number of seeds in Gudang by the end of that

player’s turn. This paper answers the “which hole is the luckiest

hole to start with?” question by constructing a decision tree for

each hole taken.

II. THEORETICAL BASIS

A. What is a Tree?

In the context of informatics, a tree is a connected-undirected-

graph which does not have any circuits [1], [2]. There are terms

for objects in a tree such as root, leaf, subtree, depth, etc. A root

is a vertex without any predecessor vertices. A leaf is a vertex

without any successor vertices. A subtree is a tree that can be

seen as a fraction of the main tree. Tree’s depth is a number that

represents how ‘deep’ the tree is.

Fig. 2 Tree with a depth of 2

(source: writer’s archive)

B. Decision Tree

There are a lot of different applications of trees. One of them

is called a decision tree. Exactly like its name, decision trees are

used to determine actions based on the decisions. The leaves of

this type of tree usually represent what action should be taken,

hence the name decision tree.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Fig. 3 Decision Tree to Determine What Action Should be Taken

(source: writer’s archive)

C. Rules of Congklak

Congklak is a traditional game that has been in society for a

very long time. Different areas have different conventions on

specific cases that might be encountered in the game. Putting

aside any possible differences, the following rules are the ones

used in this paper [3].

1. The board is divided into two areas.

2. Each player gets seven small holes in the area closest to

them and one gudang on the left side of the board in each

player’s perspective.

3. Seven seeds are put in each small holes.

4. Players determine which one should go first (method

used is left up to the player).

5. For each turn, the current player can pick seeds from one

of said players’ non-empty small hole(s).

6. All seeds taken should be distributed one by one in a

clockwise order for every hole (small and gudang),

except for the opposite player’s gudang.

7. There are a few conditions about what a player should do

upon finishing seed(s) distribution:

a. If the distribution ends in any non-empty small hole,

the player can take all seeds in that hole then

continue the distribution,

b. If the distribution ends in own player’s empty small

hole (before putting the final seed), the player can

take the only seed in his hole and all seeds in the

exact opposite hole then put all of it in the player’s

own gudang,

c. If the distribution ends in opponent’s empty small

hole (before putting the final seed), the player’s turn

ends, and

d. If the distribution ends in own player’s gudang, the

player can choose another small hole from his side

to start another distribution. This condition only

applies to the first three repetitions. If in the fourth

distribution the player still ends up in gudang, said

player’s turn will end.

8. After a player, A, finishes their turn, the other player, B,

takes their turn, then A, then B, and so on until there are

no more seeds in small holes in their area.

9. The player with the most number of seeds in gudang by

the end, wins the game.

Fig. 4 Congklak Game Simulation Starting from Hole 1

(source: writer’s archive)

III. CONSTRUCTING THE DECISION TREE

A. Problem Representation in the Decision Tree

Before starting the decision tree construction, defining the

representation must be done first. In this decision tree, every

vertex represents how many seeds there are in gudang and every

edge represents which hole was taken.

Fig. 5 Congklak Decision Tree Example 1

(source: writer’s archive)

As an example, in Fig. 5 the initial number of seeds in

Gudang is show in the tree’s root, which is 12. The player can

choose to take seeds from hole 1 or 3 to start in this turn. By

choosing hole 1, the number of seeds in gudang increases to 16

and by choosing hole 3, it increases to 18. Notice how there are

no options to take hole 2, 4, 5, 6, and 7. That means that there

are no seeds in those holes, therefore they do not appear as the

edges.

To handle cases mentioned in rule 7d, if the player chooses a

path that fulfils that specific condition, the vertex that the edge

leads to is highlighted as red.

Fig. 6 Congklak Decision Tree Example 2

(source: writer’s archive)

In Fig. 6, there is one vertex colored red which is a result of

taking seeds from hole 1. That means by taking seeds in hole 1,

the player ended his seed distribution in gudang. According to

rule 7d, for the first three repetitions of that condition, the

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

current player will get to choose another hole to restart the

distribution. In this example, the player can only take seed(s)

from hole 2 to continue the distribution that ends with 8 seeds in

gudang. Analyzing this example, it can be concluded that while

initially the number of seeds in gudang, if hole 1 is taken, is less

than if hole 3 is taken, because rule 7d, the final number of seeds

in gudang by the end of the turn would be maximized if hole 1

is taken.

B. Congklak First Turn Simulation in C

Calculating the number of seeds in gudang for each hole taken

would be an inconvenience if it is done manually. To check all

possible holes means resetting the seed count in the board for

every hole. While still possible, constructing the decision tree in

this manner would take a long time.

One other step that can be (and was) taken to avoid that

inconvenience is creating a program that simulates the first turn

of congklak. Notice how in a congklak match, players must

distribute the seeds one by one from one hole to the next hole

(linked) in a clockwise order (circular). This nature is similar to

that of a data structure called linked list with circular buffer,

therefore this data structure can be (and is) used in the program.

The program takes two inputs: one is how many seeds the player

wants in each small hole initially; and two is which hole would

the player want to start with. The following is the realization of

the program in C programming language as a void function.
void congklakFirstTurn(){

 /* LOCAL VARIABLES */

 List Congklak;

 Address currHole, gudang;

 int seedsPerHole, startingHole, holeContent,

currSeeds, i, j;

 boolean endofTurn;

 /* ALGORITHM */

 printf("How many seeds do you want to put in

each hole?\n");

 printf(">> "); scanf("%d", &seedsPerHole);

 createCongklak(&Congklak, seedsPerHole);

 printf("Here is a Congklak board with %d seeds

in each hole:\n", seedsPerHole);

 displayCongklak(Congklak);

 printf("Which hole do you want to start

with?\n");

 printf(">> "); scanf("%d", &startingHole);

 // find starting hole

 i = 1;

 currHole = FIRST(Congklak);

 while (i < startingHole){

 currHole = NEXT(currHole);

 i++;

 }

 holeContent = INFO(currHole);

 printf("Hole %d currently has %d seeds\n",

startingHole, holeContent);

 printf("Simulating Congklak game first turn

from hole %d...\n\n", startingHole);

 // simulate congklak first turn

 currSeeds = holeContent;

 INFO(currHole) = 0;

 endofTurn = false;

 currHole = NEXT(currHole);

 gudang = gudangAddress(Congklak);

 i++;

 while (!endofTurn){

 if (i != 16){ // if not in enemy's gudang

 // move one seed to current hole

 currSeeds--;

 INFO(currHole)++;

 if ((currSeeds == 0) && (currHole ==

gudang)){ // ended up in own gudang, repick hole

(not endofTurn)

 displayCongklak(Congklak);

 displayCurrentTurn(i);

 printf("you ended up in gudang,

you can repick a hole to start again\n");

 printf(">> "); scanf("%d",

&startingHole);

 j = 1;

 currHole = FIRST(Congklak);

 while (j < startingHole){

 currHole = NEXT(currHole);

 j++;

 }

 holeContent = INFO(currHole);

 printf("Hole %d currently has %d

seeds\n", startingHole, holeContent);

 printf("Continuing Congklak game

first turn from hole %d...\n", startingHole);

 currSeeds = holeContent;

 INFO(currHole) = 0;

 i = j;

 } else if ((currSeeds == 0) &&

(INFO(currHole) == 1) && (i < 8)){ // ended up in

an own empty hole, take own seeds and opposite's

seeds (endofTurn)

 displayCongklak(Congklak);

 displayCurrentTurn(i);

 displaySeeds(currSeeds);

 printf("you ended up in an empty

hole in your territory, you take your own seeds

and opposite's seeds\n");

 printf("you take %d seed(s) from

your hole number %d\n", INFO(currHole), i % 8);

 currSeeds = INFO(currHole);

 INFO(currHole) = 0;

 j = i;

 while (j != 16 - i){

 currHole = NEXT(currHole);

 j++;

 }

 printf("you take %d seed(s) from

enemy hole number %d\n", INFO(currHole), j % 8);

 currSeeds += INFO(currHole);

 displaySeeds(currSeeds);

 INFO(currHole) = 0;

 INFO(gudang) += currSeeds;

 printf("You moved %d seed(s) to

your gudang\n", currSeeds);

 currSeeds = 0;

 endofTurn = true;

 } else if ((currSeeds == 0) &&

(INFO(currHole) == 1) && (i > 8)){ // ended up in

an enemy empty hole (endofTurn)

 printf("you ended up in an empty

hole in enemy's territory, you stop\n");

 endofTurn = true;

 } else if ((currSeeds == 0) &&

(INFO(currHole) > 1)){ // ended up in a not empty

own hole (not endofTurn)

 currSeeds = INFO(currHole);

 INFO(currHole) = 0;

 }

 // display congklak board and turn

 printf("Current congklak board:\n");

 if (i > 8){

 displayCurrentTurn(i);

 }

 displayCongklak(Congklak);

 if (i <= 8){

 displayCurrentTurn(i);

 }

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

 displaySeeds(currSeeds);

 }

 if (!endofTurn){

 if (i == 16){

 printf("Skipping enemy's

gudang...");

 }

 printf("\n\n---------------------

moving on to the next hole ---------------------

\n\n");

 currHole = NEXT(currHole);

 i++;

 if (i > 16){

 i = 1;

 }

 }

 }

 printf("Congklak game first turn simulation is

finished\n");

 printf("Here is the Congklak board after the

first turn:\n");

 displayCongklak(Congklak);

 printf("The number of seeds in your gudang is

%d!\n\n", INFO(gudang));

 printf("\n\n--------------------- end of first

turn ---------------------\n\n");

}
Fig. 7 Implementation of Congklak First Turn Simulation in C

(source: writer’s archive)

Inside the congklakFirstTurn function, there are five

additional functions used, which are createCongklak,

displayCongklak, displaySeeds, displayCurrentTurn, and

gudangAddress. Implementation of those five functions are not

shown in this paper.

C. Program in Action

The simulation is implemented as a void function. To run the

program, user would need to create a simple driver shown in

Fig. 8.
int main(){

 congklakFirstTurn();

}
Fig. 8 Driver for congklakFirstTurn

(source: writer’s archive)

After compiling and starts running, the program would ask for

the number of seeds to be put in each hole (Fig. 9).

Fig. 9 congklakFirstTurn Program in Action (1)

(source: writer’s archive)

Next (Fig. 10), the program would ask for which hole does

the player want to start with (for instance, input 1). After that,

the program would show the simulation for every distribution

one by one until there are no more seeds.

Fig. 10 congklakFirstTurn Program in Action (2)

(source: writer’s archive)

Picking hole 1 at the start of the game would make the player

end up in gudang. As a result (Fig. 11), the program would ask

for another hole to start with (for instance, put 4).

Fig. 11 congklakFirstTurn Program in Action (3)

(source: writer’s archive)

Taking seeds in hole 4 would not end the distribution in the

current player’s gudang, therefore ending the first turn.

Fig. 12 congklakFirstTurn Program in Action (4)

(source: writer’s archive)

Shown in Fig. 12, the final number of seeds in gudang at the

end of the first turn is 9. Therefore, taking 1-4 path would result

in ending the turn with 9 seeds in gudang.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

IV. RESULT

Using the program that has been created, the decision tree to

find the best/luckiest starting hole is created. Fig. 13 shows the

decision tree. The leaf highlighted with green shows the

maximum number of seeds a player can get by the end of the

first turn, which is 28 seeds. The route taken to get this result is

1-3-2.

However, the ‘first three repetitions’ in rule 7d does not

actually apply in real life. If a player theoretically always lands

in gudang, the player can repick another hole for as many times

as the player wants, not limited to 3. The additional rule was

added because without limitation, the decision tree would be

massive.

Fig. 14 Unfinished Rough Sketch of Decision Tree for Not Limited Repetitions

(source: writer’s archive)

Using this unlimited method, the player can even get up to 73

seeds in gudang by the end of the first turn using the following

route: 1-2-5-2-1-5-2-2-3-4-3-1-2-3-1-2-1-1-1.

Fig. 15 Usage of Current Known Maximum Number of Seeds in Gudang by

The End of The First Turn

(source: writer’s archive)

Theoretically, a player would only need 50 seeds to win

(
98

2
+ 1). The shortest found route to achieve victory condition

is: 1-2-5-2-1-5-2-2-3-4-3-1-1 which results in 54 seeds in

gudang.

Fig. 16 Usage of Current Known Minimum Route to Win in the First Turn

(source: writer’s archive)

V. CONCLUSION

The maximum number of seeds in gudang by the end of the

first player’s turn that can be achieved with ‘first three

repetitions’ rule is 28 and the route to get it is 1-3-2. Other

results can be seen in Fig. 13. Without limitations, it is currently

Fig. 13 Decision Tree to Find Number of Seeds in Gudang for Every Possible Move in The First Turn

(source: writer’s archive)

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

unknown what is the maximum number of seeds a player can get

only in the first turn, but it is possible to get 73 seeds in gudang

in only one turn.

VI. ACKNOWLEDGMENT

The writer would like to firstly thank Almighty God for His

guidance in helping the writer finish this paper. Second, the

writer would like to thank himself for gathering up the courage

to write a paper with an interesting-nonmainstream topic and

finishing it in time. Third, the writer would like to thank all

lecturers of IF2120 Discrete Mathematics, especially Dr.

Rinaldi Munir and Monterico Adrian, S.T., M.T. as lecturers of

K03 Jatinangor for guiding the writer in discovering the beauty

of the discrete world. Finally, the writer would like to thank all

other (possibly unknown) parties indirectly involved in

encouraging the writer to finish this paper.

REFERENCES

[1] Munir, R. (2023). Pohon (Bag. 1). Retrieved December 10, 2023, from
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/22-

Pohon-Bag1-2023.pdf
[2] Munir, R. (2023). Pohon (Bag. 2). Retrieved December 10, 2023, from

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/23-

Pohon-Bag2-2023.pdf
[3] Kids, S. (2022, August). Bermain Congklak | Permainan Tradisional Anak

Indonesia | Video Belajar Anak | Video Edukasi. [Video]. Retrieved

December 10, 2023, from
https://www.youtube.com/watch?v=JJAxKqjJHcQ

[4] Indonesia. Ministry of Education, Culture, Research, and Technology.

(2012). Congklak. Retrieved December 11, 2023, from
https://warisanbudaya.kemdikbud.go.id/?newdetail&detailCatat=2196

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Jatinangor, 11 Desember 2023

Nicholas Reymond Sihite 13522144

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/22-Pohon-Bag1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/22-Pohon-Bag1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/23-Pohon-Bag2-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/23-Pohon-Bag2-2023.pdf
https://www.youtube.com/watch?v=JJAxKqjJHcQ
https://warisanbudaya.kemdikbud.go.id/?newdetail&detailCatat=2196

