
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Graph in Web Display Optimization: Leveraging

Fitt's Law for Efficiency

Maulvi Ziadinda Maulana - 135221221

Department of Informatics Engineering
School of Electrical Engineering and Informatics

Bandung Institute of Technology, Jl. Ganesha 10, Bandung 40132, Indonesia
113522122@std.stei.itb.ac.id

Abstract—This research focuses on the integration of graph

theory and Fitts' Law in web design development to enhance user

experience. Graph theory visualizes relationships among web

elements, while Fitts' Law analyzes the access time. The program

evaluates UI changes, demonstrating its effectiveness in assessing

design modifications. The results underscore the program's ability

to calculate the Index of Difficulty and its potential for complex

web structures. It is important to note that lower ID values don't

universally mean better experiences, depending on the nature of

UX itself.

Keywords—Fitts’ Law, Graph, UX

I. INTRODUCTION

User experience used to be an extra part of a website but

nowadays it is a vital component of any website as we live in a

continuously changing digital era. Most online users today want

interfaces that are not only attractive but also fast and easy to

navigate.

User-friendliness has been added to visual attraction

regarding creating effective web interface because of changes

seen nowadays where one needs to be able to access the desired

information on the site comfortably, navigate easily, or engage

quickly with functions present. In conclusion, it is important to

understand how a variety of elements interact on a web page and

how people connect with them.

The point here should be noted that any element in a design

– visual factors, navigation, or functionality could affect the

entire user experience. Therefore, it was concluded that one of

the ways to improve the website design development is using

graph theory and Fits Law.

Deep inferences about the structure and connectivity of

elements on a web page are possible using graph theory that

requires only a visualized depiction of relations at discretion.

However, from another perspective, Fitts’ Law focuses on the

relations between the size of an element, its distance, and the

time the accessibility might demand during users’ interaction.

This is not merely a theory outlined but an exploration of the

concepts within contextual web-based user involvement and

indulgence through a responsive, sensitively designed interface.

Therefore, we endeavor to pinpoint practical design principles

that our web designers can implement using thorough analysis.

Consequently, it is expected that this study will have a real

impact on web design developing visually attractive yet

efficient, easily accessible, and user-friendly.

II. FUNDAMENTAL THEORY

A. Graph

1. Definition

A graph is used to represent discrete objects and the

relationships between these objects. According to the definition,

a graph G = (V, E), where V is a non-empty set of vertices {v1,

v2, ..., vn}, and E is a set of edges connecting pairs of vertices

{e1, e2, ..., en}. [1]

Figure 1. Simple Graph (Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-

Graf-Bagian1-2023.pdf)

Graphs are so named because they can be represented

graphically, and it is this graphical representation that helps to

understand many of their properties. Each vertex is indicated by

a point, and each edge by a line joining the points that represent

its ends. [2]

2. Types

First, based on the presence or absence of loops or multiple

edges in a graph, it is classified into two types: Simple Graph

and Non-simple Graph. A Simple Graph is a graph that does not

contain loops or multiple edges as shown in figure 1, while a

non-simple graph is a graph that has multiple edges or loops. If

a graph has multiple edges, it’s called a multi-graph. If a graph

has loops, it’s called a pseudo-graph. [1]

a) b)

Figure 2. (a) Multi-graph and (b) Pseudo-Graph (Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-

Graf-Bagian1-2023.pdf)

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-Graf-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-Graf-Bagian1-2023.pdf

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Based on the directional orientation of the edges in a graph,

the graph is classified into two types: Undirected Graph and

Directed Graph. An Undirected Graph is a graph whose edges

do not have a directional orientation, while a Directed Graph is

a graph in which each edge is given a specific direction.

a) b)

Figure 3. (a) Undirected-graph and (b) Directed-Graph (Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-

Graf-Bagian1-2023.pdf)

A graph is connected if, for every partition of its vertex set

into two nonempty sets X and Y, there is an edge with one end

in X and one end in Y, otherwise the graph is disconnected. In

other words, a graph is disconnected if its vertex set can be

partitioned into two nonempty subsets X and Y so that no edge

has one end in X and one end in Y.

a) b)

Figure 4. (a) Connected-graph and (b) Disconnected-Graph (Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-

Graf-Bagian1-2023.pdf)

3. Terminologies

The paper is underpinned by several graph terminologies.

Firstly, two nodes are considered adjacent if they are directly

connected. Additionally, e(vj, vk) is said to be incident with node

vj or incident with node vk.

Figure 5. Example of Neighboring and Incidence Terminology

(Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-

2024/19-Graf-Bagian1-2023.pdf)

In this figure, observe node 1. Node 1 is adjacent to nodes 2

and 3 but is not adjacent to node 4. Furthermore, edge (2,3) is

incident with nodes 2 and 3 but is not incident with node 1.

The next terminology to discuss is paths. A path of length n

from the initial node v0 to the destination node vn in graph G is

a sequence alternating between nodes and edges in the form v0,

e1, v1, e2, v2, ..., vn–1, en, vn, such that e1 = (v0, v1), e2 = (v1, v2),

..., en = (vn–1, vn) are the edges of the graph G. In Figure 4, the

path 1, 2, 3, 4 is a path with overlapping edges (1,2), (2,3), and

(3,4). The length of this path is 3 because there are 3 overlapping

edges. [1]

The last important terminology of the graph is weighted

graph. A weighted graph is a graph in which each edge is

assigned a value (weight). [1]

Figure 6. Weighted Graph (Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-

Graf-Bagian1-2023.pdf)

B. Dijkstra’s Shortest Path Algorithm

The shortest path refers to the most direct or economical

route between two points in a network, typically measured by

the sum of weights or costs associated with traversing the edges

or links between those points. In graph theory and network

analysis, the "path" is a sequence of edges that connect nodes

(or vertices), and the "shortest" path is the one with the

minimum cumulative cost or weight.

One algorithm for finding the shortest path from a starting

node to a target node in a weighted graph is Dijkstra’s algorithm.

The algorithm creates a tree of shortest paths from the starting

vertex, the source, to all other points in the graph. [5] The

algorithm maintains a set of vertices whose shortest distance

from the source node is known. It iteratively selects the vertex

with the smallest known distance, explores its neighbors, and

updates their distances if a shorter path is found. This process

continues until the algorithm has determined the shortest path to

all vertices from the source. The algorithm proceeds as follows:

1. While Q is not empty, pop the node v, which is not

already in S, from Q with the smallest distance (v). In

the first run, source node s will be chosen

because distance (s) was initialized to 0. In the next run,

the next node with the smallest distance value is chosen.

2. Add node v to S, to indicate that v has been visited.

3. Update dist values of adjacent nodes of the current

node v as follows: for each new adjacent node u,

if dist (v) + weight(u,v) < dist (u), there is a new

minimal distance found for u, so update dist (u) to the

new minimal distance value; otherwise, no updates are

made to dist(u).

The algorithm has visited all nodes in the graph and found

the smallest distance to each node. Dist now contains the

shortest path tree from source S. [5]

C. Fitts’s Law

Fitts’s law, a one-dimensional model of human movement,

is commonly applied to two-dimensional target acquisition tasks

on interactive computing systems. [3] Fitts’s law gives us the

relationship between the time it takes a pointer (such as a mouse

cursor, a human finger, or a hand) to move to a particular target

(e.g., a physical or digital button) to interact with it in some way

(e.g., by clicking or tapping it, grasping it, etc.). [4]

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-Graf-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-Graf-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-Graf-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-Graf-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-Graf-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-Graf-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-Graf-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-Graf-Bagian1-2023.pdf

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

According to Fitts’ law, the time (MT) to move to and select

a target of width W which lies at distance (or amplitude) A is

𝑀𝑇 = 𝑎 + 𝑏 log2(
2𝐴

𝑊
) (1)

where a and b are constants determined through linear

regression and vary depending on the type of pointer (e.g.,

mouse, finger, etc.). W corresponds to “accuracy” – the required

region where an action terminates. The quantity

𝐼𝐷 = log2(
2𝐴

𝑊
) (2)

is sometimes called an index of difficulty and is measured in

bits.

Technically, Fitts’s law equation uses the width of the target

in the direction of the movement, but for most rectangular

targets that are common in user interfaces, it can be replaced

with the smallest of the target dimensions, whether it’s height or

width (as shown by Scott MacKenzie and Bill Buxton in 1992).

[4]

The main idea of this equation is captured by the following

two statements. The bigger the distance to the target, the longer

it will take for the pointer to move to it. In other words, closer

targets are faster to acquire. The larger the target, the shorter the

movement time to it. In other words, bigger targets are better.

[4]

Figure 7. Fitts’ Law Illustrations (Source: Author’s Documentation)

Fitts’s law says that the time to reach Target A is shorter than

the time to reach any of the other targets. Although Targets A

and B have the same size, the distance from the cursor to A (D1)

is shorter than the distance to B (D2), so movement to A will be

faster. Target C is placed at the same distance (D1) from the

cursor as Target A, but it’s smaller, so it will take longer to move

the cursor to it than to A. [4]

This paper mainly focuses on using the Index of Difficulty

(ID) from Fitts' law, represented by equation (2). This decision

comes from the fact that the constants ‘a’ and ‘b’ in Fitts’s law

depend on the type of pointer used, like a mouse or a finger.

Because these constants can vary based on the pointer, the

decision is taken to simplify things by concentrating on the

Index of Difficulty. This not only makes the analysis more

straightforward but also aligns with practical considerations in

designing user interfaces, especially when dealing with common

rectangular targets.

III. METHODOLOGY

A. Graph Representation of a Webpage

A graph representation of a webpage describes different

parts of the webpage using graphs. This method presents a

pictorial and structural depiction of the relation of different

aspects on the web page. Two primary examples illustrate this

concept: the layout of this interface menu button, and the user

interaction flow.

This includes components such as menu buttons, clicking on

which leads to the reveal of sub-components or child elements.

The hierarchical relations may easily be represented as a graph

by linking such menu points and connected nodes. For instance,

a menu button:

Figure 8. Menu Example (Source: Author’s Documentation)

can be expressed as a weighted graph as follows:

Figure 9. Graph Representation of Menu (Source: Author’s

Documentation)

This way, the hierarchy of the menus and their different

components are presented visually as graphs. Thus, it is possible

to make conclusions about the ease to navigate and to organize

the content on the page while analyzing it by Fitts’ law.

The flow of the users’ interaction with the web page may

also be depicted using graphs. For instance, take a scenario

where users want to log out. First, if a person wants to log out,

he or she clicks on the profile button. Next, they click on

“logout.” The user interaction flow can be drawn as a graph with

nodes representing clickable elements (buttons) and edges

denoting how far one element is from another. For example, the

user flow:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-Graf-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-Graf-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-Graf-Bagian1-2023.pdf

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Figure 10. The user flow when a user wants to log out (Source:

Author’s Documentation)

can be expressed as a weighted graph as follows:

Figure 11. Graph Representation of the User Flow (Source:

Author’s Documentation)

In this case, the plot pictures the path traveled by the user

beginning with a ‘start’ label, moving on to the profile button,

and ending at log out. It is also referred to as the “Start” node

where either the cursor or users touch down on the site for the

first instance. This usually takes place on the right thumb side

for mobile devices and on the middle section between the top

and of the screen for desktop users. In this, there is mention of

how the entrance point of the user has been acknowledged,

which prepares the way for following the route that the user may

have taken while performing various options on the interface.

It has a high degree of flexibility with adjustability for

displaying many website structures. The diagram can be used

for illustration purposes depicting anything from simple items

such as the menu buttons, to more elaborate components and

user flows.

The spaces between various components of the graph should

be calculated by hand. For instance, there are some extensions

or apps that allow users to measure the distance between two

points on the screen, an example is Measure Rope on macOS.

Figure 12. Measuring Distance between Components(Source:

Author’s Documentation)

B. Fitt’s Law Implementation

The Author chose to implement Fitts' Law using Python

because it is easy to use. There is also a library called NetworkX

that is available for handling graphs which will make the process

easier when implementing Fitts’ Law. Moreover, this library is

an easy way of doing complicated tasks like making graphs or

using shortest-path algorithms like Dijkstra.

To implement Fitts' Law on a graph in Python, the following

steps will be taken:

1. Firstly, a graph is constructed to represent the

components to be evaluated for their Fitts' Law ID

values. Each edge in the graph is assigned a weight,

representing both the width and distance between the

connected components.

import networkx as nx

G = nx.Graph()

G.add_nodes_from(['A','B','C'])

G.add_edge('A','B', weight={'width': 3,

'distance': 5})

G.add_edge('B','C', weight={'width': 2,

'distance': 7})

2. The user is prompted to specify the start and end nodes

for which the ID will be calculated. If a path from node

A to C requires passing through B first, the ID for AC is

calculated as the sum of ID for AB and BC.

def calculate_id(graph, path):

 id_value = math.log2(2*distance /

width)

 return id_value

3. To manage complex graphs where nodes can be

accessed through multiple paths, Dijkstra's algorithm is

used to find the shortest path. The final ID is determined

as the total ID calculated in step 2, considering the

components along the resulting Dijkstra's path.

shortest_path = nx.shortest_path(G,

source='A', target='C',

weight='weight')

These steps ensure the implementation of Fitts' Law on a

graph, considering user-defined start and end nodes and

handling the complexities of graphs with multiple access paths.

Below is the final program.

import networkx as nx

import math

class WebGraph:

 def __init__(self):

 self.graph = nx.Graph()

 def add_node(self, node, width):

 self.graph.add_node(node,

width=width)

 def add_edge(self, node1, node2, weight):

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-Graf-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-Graf-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-Graf-Bagian1-2023.pdf

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

 self.graph.add_edge(node1, node2,

weight=weight)

 def id_difficulty(self, src, dest):

 shortest_path = nx.shortest_path

(self.graph, source=src, target=dest,

weight='weight')

 total_id = 0

 for i in range(len(shortest_path) -

1):

 current_node, next_node =

shortest_path[i], shortest_path[i + 1]

 distance =

nx.shortest_path_length(self.graph,

source=current_node, target=next_node,

weight='weight')

 width =

self.graph.nodes[next_node]['width']

 id_value = math.log2(2*distance /

width)

 total_id += id_value

 return total_id

To test whether the program is working or not, a sample web

graph has been created that includes five nodes labeled A, B, C,
D, and Z with the corresponding width value of 100 for each

one. Edges illustrate the distances between them that are

indicated within the respective weight values. Thus, this edge

goes from A to B, and weight 300 implies that there is 300 pixels

spacing for that node pair. Similarly, edges connect B to C

(weight: 200), C to D scale (weight: 100), and a D to Z scale

(weight: 50).

web_graph = WebGraph()

web_graph.add_node("A", width=100)

web_graph.add_node("B", width=100)

web_graph.add_node("C", width=100)

web_graph.add_node("D", width=100)

web_graph.add_node("Z", width=100)

web_graph.add_edge("A", "B", weight=300)

web_graph.add_edge("B", "C", weight=200)

web_graph.add_edge("C", "D", weight=100)

web_graph.add_edge("D", "Z", weight=50)

src_node, dest_node = "A", "Z"

total_id = web_graph.id_difficulty(src_node,

dest_node)

And below is the result of the test:

Figure 12. Program result (Source: Author’s Documentation)

C. Program Testing

In the first program testing phase, the program is going to be

used to compare the Index of Difficulty (ID) between two types

of menu buttons: linear menu and pie menu. A linear menu has

option buttons that are vertically organized. The second type

called the pie menu, utilizes a circular arrangement in which

elements spiral outward from the center point. This explains

about whether the two menu architectures are better or worse

concerning Fitts’ Law.

Figure 13. Pie Menu Example (Source: Author’s Documentation)

For the linear menu, each menu option is defined as a square

with dimensions of 100 px x 100 px. These options are arranged

in a straightforward, horizontal alignment, positioned closely to

one another for easy access.

On the other hand, in the pie menu, where each option is also

considered a square with dimensions of 100 px x 100 px, a

circular layout is employed. In this arrangement, each menu

option is deliberately positioned at an equal distance of 100 px

from the central menu label. Below is the result of the test that

is computed by the program.

Table 1. Linear Menu Index of Difficulty

Option Distance from menu label (px) ID

1 50 1,0

2 150 1,58

3 250 2,32

4 350 2,80

5 450 3,16

6 550 3,45

Average 2,39

Table 2. Pie menu Index of Difficulty

Option Distance from menu label (px) ID

1 100 1,0

2 100 1,0

3 100 1,0

4 100 1,0

5 100 1,0

6 100 1,0

Average 1,0

Based on the result, in the pie menu, the ID remains

consistently low at 1.0 for each option, resulting in an average

ID of 1.0. On the other hand, the linear menu shows an increase

in ID as the distance from the menu label expands. The

calculated average ID for the linear menu is 2.39. This

comparison underscores the efficiency of a pie menu layout,

where options maintain a constant level of difficulty.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-Graf-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-Graf-Bagian1-2023.pdf

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

The second program testing phase, the program designed for

testing UI changes on a website aims to evaluate whether these

alterations result in improvements in terms of user interaction

and experience. Specifically considering Fitts's Law principles,

the evaluation focuses on how well the new UI design

accommodates ergonomic principles, particularly regarding the

size and distance of interactive elements.

Firstly, the program measures and compares the Index of

Difficulty (ID) of interactive elements before and after the UI

changes. The ID is calculated based on Fitts's Law formula,

incorporating the size of elements and the distance between

them. By comparing IDs, the program can determine whether

the UI changes have led to an increase or decrease in usability.

Below is an example of UI changes.

a) b)

Figure 14. (a) Before and (b) after UI change (Source: Author’s

Documentation)

The navigation section which has a size of 400x800 px will

guide users to a new page that has a Call-to-Action (CTA) button

located at the top left corner of the screen, with dimensions set

at 100 px x 100 px. By measuring the Index of Difficulty (ID)

using Fitts' Law, the program will provide insights, into whether

the changes are good or bad. Below is the graph representation

of the changes.

a) b)

Figure 15. (a) Before and (b) after UI change graph representation

(Source: Author’s Documentation)

Here is the ID for each condition that is computed by the

program:

Table 3. Index of Difficulty for each condition

Condition ID

Before 1,99

After 0,41

In the final testing phase, the program will be used to evaluate

the Index of Difficulty (ID) within a more complex user flow,

using tokopedia.com as a test case. In this phase, the graph is

representing the process a user takes when attempting to make a

purchase. Below is the picture of the webpage and its

corresponding graph representation.

Figure 16. Tokopedia.com Web Interface (Source: Tokopedia.com)

Figure 17. Graph representation of purchasing a product process in

tokopedia.com (Source: Author’s Documentation)

This graph shows distinct processes a buyer might navigate,

exemplified by varied paths, such as those marked in red or blue

in the figure below.

Figure 18. Different purchase a product (Source: Author’s

Documentation)

The program will examine and find shortest path using

Dijkstra’s Algorithm for this user flow complexities since they

are many in number. Then, the program will calculate their ID

based on the shortest path. Below is the preparation to run the

program. All measurements listed (width and distance) have

been adjusted directly from the tokopedia.com.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

web_graph = WebGraph()

web_graph.add_node("HOME", width=100)

web_graph.add_node("SEARCH", width=550)

web_graph.add_node("CART", width=25)

web_graph.add_node("PRODUCT", width=175)

web_graph.add_node("ADD TO CART", width=215)

web_graph.add_node("CATEGORY", width=64)

web_graph.add_node("CATEGORY OPTION",width =

180)

web_graph.add_node("BUY", width = 215)

web_graph.add_node("PRODUCT IN CART", width =

670)

web_graph.add_edge("HOME","SEARCH", weight =

380)

web_graph.add_edge("HOME", "CART", weight =

670)

web_graph.add_edge("HOME", "PRODUCT", weight

= 530)

web_graph.add_edge("HOME", "CATEGORY", weight

= 505)

web_graph.add_edge("PRODUCT", "ADD TO CART",

weight = 700)

web_graph.add_edge("PRODUCT", "BUY", weight =

695)

web_graph.add_edge("PRODUCT", "CATEGORY

OPTION", weight = 400)

web_graph.add_edge("PRODUCT", "SEARCH",

weight=630)

web_graph.add_edge("SEARCH", "CART",

weight=630)

web_graph.add_edge("ADD TO CART", "CART",

weight=430)

web_graph.add_edge("PRODUCT IN CART", "CART",

weight=580)

web_graph.add_edge("PRODUCT IN CART", "BUY",

weight=680)

web_graph.add_edge("BUY", "CART", weight=380)

web_graph.add_edge("CATEGORY", "CART",

weight=740)

web_graph.add_edge("CATEGORY", "CATEGORY

OPTION", weight=190)

Here is the result from the program:

Figure 19. Different purchase a product (Source: Author’s

Documentation)

IV. RESULT & ANALYSIS

Based on the first phase of testing, the program is giving a

great result, which the pie menu will have a lower ID. But while

a lower ID, suggests uniform ease of interaction, it's essential to

recognize that a lower difficulty level may not always defined

as an optimal design. Certain functionalities, like a logout or exit

button, may intentionally require a higher ID, making it harder

for users to access. For example, implementing a higher ID for

the logout button is a good design choice to prevent accidental

logouts. This perspective emphasizes that the ideal user

interface design depends on the specific goals and user

experience considerations of the application, where intentional

increases in difficulty may serve specific functions. In the

second phase of testing, the program also gives a correct result.

The result of the test itself is positive, indicating that the

implemented changes have proven beneficial because the CTA

button is easier to reach. In the final testing phase, the program

demonstrated excellent proficiency in assessing user flow ID

within a sufficiently complex graph.

V. CONCLUSION

In conclusion, the developed program effectively computes

the Index of Difficulty (ID) based on Fitts's Law for a given path

in a graph. The program demonstrates its functionality in

calculating the ID considering the effective distance and width

of targets. While the program currently operates well for

relatively simple graphs, its design suggests its capability to

handle more complex structures that sadly has not been explored

in this paper. Additionally, it is important to recognize that lower

ID values do not always same as better experience. The

interpretation of ID's effectiveness depends on specific user

needs and the context of the interaction.

VII. ACKNOWLEDGMENT

Praise and gratitude are only to Allah Swt., for it is through

His blessings and abundant grace that the author has been able

to complete this paper successfully. Special thanks are also

extended to Mr. Dr. Ir. Rinaldi Munir, M.T., and Mr. Monterico

Adrian, S.T., M.T., as the lecturer for the IF2120 Discrete

Mathematics course, Class K-03, for the knowledge imparted to

the author, enabling the successful completion of this paper.

Additionally, heartfelt thanks are conveyed to the parents for

their constant support and motivation provided to the author.

REFERENCES

[1] R. Munir. Matematika Diskrit edisi ketiga. Bandung, 2009.
[2] Bondy, J. A., & Murty, U. S. R. (2008). Graph Theory. Springer.

[3] Mackenzie, I. S., & Buxton, W. (Year). Extending Fitts’ Law to Two-

Dimensional Tasks. Conference on Human Factors in Computing Systems,

Volume (92), 219-226.

[4] Budiu, R. 2022. Fitts's Law and Its Applications in UX. Nielsen Norman
Group. Retrieved from https://www.nngroup.com/articles/fitts-law/ on 8

December 2023.

[5] Abiy, T., Pang, H., & Williams, C. Dijkstra's Shortest Path Algorithm.

Brilliant.org. Retrieved from https://brilliant.org/wiki/dijkstras-short-path-

finder/ on 9 December 2023.

STATEMENT

I hereby declare that this paper I have written is my work, not a

translation or reproduction of someone else's paper, and it is

not plagiarized.

Bandung, December 3rd, 2023

Maulvi Ziadinda Maulana

13522122

https://www.nngroup.com/articles/fitts-law/
https://brilliant.org/wiki/dijkstras-short-path-finder/
https://brilliant.org/wiki/dijkstras-short-path-finder/

	I. Introduction
	II. Fundamental Theory
	III. Methodology
	IV. Result & Analysis
	V. Conclusion
	VII. Acknowledgment
	References
	Statement

