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Abstract— In a tree, a hierarchical structure commonly used in 

computer science, the Extreme edge's weight in the path between 2 

arbitrary vertices can be determined. This statement gives rise to a 

crucial problem with broad applications in more complex contexts. 

There are various solutions to this problem, and the author will 

discuss the use of Lowest Common Ancestor (LCA) as an approach 

to solve this problem. 
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I.   INTRODUCTION 

In computer science, trees are essential hierarchical structures 

that are used extensively due to their computational and 

organizational efficiency. A crucial issue in the field of tree 

architectures is figuring out the weight of the minimal edge that 

connects two random vertices. This challenge has broad 

practical implications, as it can be applied to optimization issues 

across multiple fields. For example, in supply chain logistics, 

finding the path with the least amount of weight at the edge 

becomes crucial to reducing costs, optimizing efficiency, and 

expediting the movement of goods between distribution hubs. 

Examine the difficulties presented by network optimization in 

a separate but related scenario. One of the primary concerns of 

any network is the effective transfer of data, and choosing the 

best channel has a direct impact on overall performance. Under 

such circumstances, determining the lowest edge weight 

between particular vertices in a tree becomes essential to 

improving network performance. Over and beyond theoretical 

concerns, the solutions to these kinds of problems have practical 

applicability in many other domains. 

To solve this problem, the Lowest Common Ancestor (LCA) 

emerges as a powerful tool. LCA provides an elegant solution to 

the broader problem, offering computational efficiency and 

scalability. In the subsequent sections, we will explore the 

application of LCA and its role in resolving the  problem of 

calculating the Extreme edge's weight in the path between two 

vertices within the context of a tree. 

 

 

II.  FUNDAMENTHAL THEOREM.  

A. Graph  

Graph is a data structure utilized to depict relationships 

among discrete objects. In formal terms, a graph is defined by a 

tuple (V, E), where V is a non-empty set of vertices, representing 

vertices (or nodes), and E is a set of edges connecting pairs of 

vertices.   

Based on edge orientation, graphs are categorized into two 

types: 

1. Undirected graph 

An undirected graph is characterized by edges that do not 

possess directional orientation.  

2. Directed graph or digraph 

A directed graph (or digraph) (V , E) consists of a nonempty 

set of vertices V and a set of directed edges (or arcs) E. Each 

directed edge is associated with an ordered pair of vertices. The 

directed edge associated with the ordered pair (u, v) is said to 

start at u and end at v. 

 

(a) Undirected Graph 

 

 

(b)Directed Graph 

Fig.1 Directed and undirected graph (source: 

https://informatika.stei.itb.ac.id/~rinaldi.munir/) 

 

A graph can have weight on each edges. This type of graph 

called weighted graph. The weight on each edges can represent 

many things based on the need of the structure.  

 
Fig.2 Weighted  graph (source: 
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https://informatika.stei.itb.ac.id/~rinaldi.munir/) 

 

In the realm of graphs, the terms "path" and "cycle" hold 

significance. A path of length n from the initial vertex v0 to the 

destination vertex vn within graph G can be defined as an 

alternating sequence of vertices and edges, denoted as v0, e1, 

v1, e2, v2, ..., vn-1, en, where each edge, such as e1 = (v0, v1), 

e2 = (v1, v2), ..., en = (vn-1, vn), represents edges in the graph 

G. On the other hand, a cycle is a specific type of path that 

commences and concludes at the same vertex, forming a closed 

loop within the graph and creating a continuous pattern that 

returns to the initial vertex. Look at Fig. 2. The sequence a-b-c 

forms a path, while a-b-e-a forms a cycle. 

 

B. Tree  

A tree is an undirected connected graph without cycles. The 

formal definition can be observed in the following theorem. 

Suppose G = (V, E) is a simple undirected graph with n vertices. 

Then, the following statements are equivalent:  

1. G is a tree.  

2. Every pair of vertices in G is connected by a unique 

path. 

3. G is connected, and it has m = n – 1 edges.  

4. G does not contain cycles, and it has m = n – 1 edges.  

5. G does not contain cycles, and adding one edge to the 

graph will create exactly one cycle.  

6. G is connected, and all its edges are bridges. 

 

Fig.3 Tree (source: https://informatika.stei.itb.ac.id/~rinaldi.munir/) 

 

C. Rooted Tree 

A rooted tree is characterized by designating a specific vertex 

as the "root" and assigning directional edges to form a directed 

graph. As a convention, due to the commencement at the root, 

the directional information is typically omitted in visual 

representations for simplicity. 

 

Fig.4 Rooted Tree (source: 

https://informatika.stei.itb.ac.id/~rinaldi.munir/) 

 

There are some terminology in Rooted Trees  : 

1. Child and Parent: 

In the context of rooted trees, a "child" refers to a node 

directly connected to another node (the parent) in the direction 

away from the root. 

2. Path: 

A "path" in a tree signifies a sequence of nodes where each 

consecutive pair is connected by an edge. The length of a path 

is the number of edges it contains. 

3. Sibling: 

"Siblings" are nodes that share the same parent in a rooted 

tree. 

4. Subtree: 

A "subtree" of a node includes that node and all its 

descendants, forming a smaller tree within the overall tree 

structure. 

5. Degree: 

The "degree" of a node refers to the number of subtree (or 

children) it has.  

6. Leaf: 

A "leaf" is a node with a degree of zero, signifying that it 

has no children. Leaves are often referred to as terminal nodes. 

7. Internal Nodes: 

"Internal nodes" are nodes with one or more children in a 

rooted tree. They are not leaves, as they have descendants. 

8. Level: 

The "level" of a node is its distance from the root, with the 

root itself considered at level 0. 

9. Height: 

The "height" or "depth" of a tree is the length of the longest 

path from the root to a leaf. It represents the maximum level in 

the tree. 

 

D. Lowest Common Ancestor 

Lowest Common Ancestor (LCA) is a fundamental 

concept in graph theory, particularly applicable to rooted 

trees. It refers to the node that represents the closest shared 

ancestor of two given nodes in the tree structure. The LCA 

provides insight into the relationship and connectivity 

between nodes in a tree, aiding in various algorithms and 

problem-solving scenarios. 

In a rooted tree, the LCA is determined based on the paths 

from the root to the respective nodes. The LCA of nodes u 

and v is the deepest node that is a common ancestor of both  

u and v. This concept is essential for understanding 

relationships among nodes, calculating distances, and 

optimizing tree-based algorithms. 

 

Fig.5 Lowest Common Ancestor in a Tree (source : 

https://www.geeksforgeeks.org/lowest-common-ancestor-binary-tree-

set-1/) 

Calculating the LCA can be reached by traversing the tree 
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efficiently, and numerous algorithms have been developed for 

this purpose. These algorithms ensure the effective 

computation of the LCA with reasonable time complexity, 

enhancing its utility as a valuable tool in solving problems 

related to tree structures. 

Understanding the LCA in rooted trees lays the 

groundwork for resolving diverse computational challenges. 

From calculating paths to manipulating subtrees and 

assessing connectivity within the tree structure, the 

applications of the LCA reveal its importance in unraveling 

complex relationships and hierarchical arrangements inherent 

in rooted trees. This paper, in particular, focuses on effective 

methods for determining the Extreme edge weight between 

two nodes in a tree using the LCA. 

 

 

III.   IMPLEMENTATION 

A. Finding the LCA using binary lifting  

The provided code implements the Lowest Common Ancestor 

(LCA) algorithm using binary lifting for efficient retrieval of 

Extreme edge weights between two nodes in a tree. These are 

the key components :  

1. Global Variables and Initialization: 

The code initializes global variables including adjacency 

list (adj), dynamic arrays (tin, tout, up, and maxL), and integer 

variables (l for logarithmic height and timer for time-stamping). 

 
 

2. Depth-First Search (DFS) Function: 

The dfs function takes the current vertex v, its parent p, and 

the maximum length from the root to the current vertex 

(maxLen).It populates the tin and tout arrays with timestamps 

for each vertex, and computes the binary lifting tables (up and 

maxL) for LCA queries.The function then recursively calls itself 

for each child vertex (u) in the adjacency list. 

 

 
 

 

 

3. isAncestor Function: 

The isAncestor function checks whether a vertex u is an 

ancestor of vertex v based on their timestamps in the DFS 

traversal. 

 
 

4. LCA Function: 

The LCA function computes the Lowest Common Ancestor 

of two vertices u and v.It checks if one vertex is an ancestor of 

the other and performs a binary lifting traversal to find the LCA 

efficiently. 

 
 

5. maxSum Function: 

The maxSum function computes the maximum edge weight 

between two vertices u and v through their LCA.It utilizes the 

binary lifting tables to efficiently traverse the tree and calculate 

the maximum edge weight. 

 
 

6. Preparation Function (prep): 

The prep function initializes necessary variables and arrays 

based on the number of vertices (sz). 

 
 

#include <bits/stdc++.h> 

#include <stdio.h> 

using namespace std; 

 

const int maxN = 1e5 + 7; 

 

// GLOBAL VARIABLE 

vector<pair<int, int>> adj[maxN];  

vector<int> tin, tout; 

vector<vector<int>> up, maxL; 

int l, timer; 

void dfs(int v, int p, int maxLen) 

{ 

    tin[v] = ++timer; 

    up[v][0] = p; 

    maxL[v][0] = maxLen; 

    for (int i = 1; i <= l; i++) 

    { 

        up[v][i] = up[up[v][i - 1]][i - 1]; 

        maxL[v][i] = max(maxL[v][i - 1], 

maxL[up[v][i - 1]][i - 1]); 

    } 

    for (auto u : adj[v]) // u.first = vertex 

u.second = weight 

        if (u.first != p) 

            dfs(u.first, v, u.second); 

    tout[v] = ++timer; 

} 

bool isAncestor(int u, int v) 

{ 

    return tin[u] <= tin[v] && tout[u] >= tout[v]; 

} 

int lca(int u, int v) 

{ 

    if (isAncestor(u, v)) 

        return u; 

    if (isAncestor(v, u)) 

        return v; 

    for (int i = l; i >= 0; --i) // greedy 

    { 

        if (!isAncestor(up[u][i], v)) 

            u = up[u][i]; 

    } 

    return up[u][0]; 

} 

int maxSum(int u, int v) 

{ 

    int LCA = lca(u, v); 

    int maxLen = 0; 

    for (int i = l; i >= 0; i--) 

    { 

        if (isAncestor(LCA, up[u][i])) 

        { 

            maxLen = max(maxLen, maxL[u][i]); 

            u = up[u][i]; 

        } 

    } 

    for (int i = l; i >= 0; i--) 

    { 

        if (isAncestor(LCA, up[v][i])) 

        { 

            maxLen = max(maxLen, maxL[v][i]); 

            v = up[v][i]; 

        } 

    } 

    return maxLen; 

} 

void prep(int sz) 

{ 

    tin.resize(sz); 

    tout.resize(sz); 

    timer = 0; 

    l = ceil(log2(sz)); 

    up.assign(sz, vector<int>(l + 1)); 

    maxL.assign(sz, vector<int>(l + 1)); 

} 
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7. Main Function: 

The main function is where we initialize the tree verticesand 

add the edges to each vertices we use. After that, we perform 

queries and print the result.  

 
 

 

B. Analyzing The Code 

For each node in the tree, we precompute its ancestors using 

the Binary Lifting technique. Specifically, we store the ancestors 

at different levels: the ancestor above the node, the ancestor two 

nodes above, the ancestor four above, and so on. This 

information is stored in the array up, where up[i][j] represents 

the 2^j-th ancestor above node i, with i ranging from 1 to N and 

j from 0 to ceil(log(N)). The use of this array enables us to 

efficiently jump from any node to any ancestor above it in O(log 

N) time. The computation of this array is performed through a 

Depth-First Search (DFS) traversal of the tree. Additionally, for 

each node, we record the time of its first visit (when discovered 

during DFS) and the time when we leave it (after visiting all its 

children and exiting the DFS function). This information aids in 

determining, in constant time, whether a node is an ancestor of 

another node. Upon receiving a query (u, v), we can quickly 

check if one node is the ancestor of the other. If u is not the 

ancestor of v and vice versa, we climb the ancestors of u until 

we find the highest node that is not an ancestor of v. This is 

achieved by iterating through the ancestors of u from 

ceil(log(N)) to 0 and checking, in each iteration, whether one 

node is the ancestor of the other. The LCA is then determined as 

up[u][0], representing the smallest node among the ancestors of 

u that is also an ancestor of v. As a result, each LCA query can 

be answered in O(log N) time. This efficient approach 

significantly reduces the time complexity for answering LCA 

queries and enhances the overall performance of the tree 

traversal algorithm. 

 

IV.   TEST CASE 

To assess the effectiveness of the Lowest Common Ancestor 

(LCA) implementation, we conducted several test cases on 

trees of varying sizes and structures. The goal was to evaluate 

the algorithm's performance in different scenarios and verify its 

ability to handle diverse tree configurations. 

 

1. Balanced Tree  

In the first test case, we examined the algorithm's 

performance on a balanced tree. This scenario aimed to assess 

its efficiency when dealing with a tree structure where each 

level has approximately the same number of nodes. The 

queries involved random pairs of vertices within the tree. 

 

 

Fig.6 Balanced Tree (source: writer’s archive) 

 

  

In this balanced tree structure, we attempt to find the 

query results for vertices 4 with 6 and also 5 with 2. It is 

evident that the Lowest Common Ancestor (LCA) for 4 and 6 

is 1, and the corresponding maximum edge weight is 8. 

Similarly, for the vertices 5 and 2, the LCA is identified as 2, 

with a maximum weight of 7 along the path. The result of the 

program provide below. 

 

 

Fig.7 Test Case for balanced Tree (source: writer’s archive) 

 

2. Skewed Tree  

 

 

Fig.8 Skewed Left Tree (source: writer’s archive) 

int main() 

{ 

    // Initialize the tree with 20 vertices 

    prep(20); 

 

    // Adding edges to the tree (example) 

    adj[1].push_back({2, 5});  // Edge from vertex 1 

to vertex 2 with weight 5 

 

    // Perform queries 

    int u, v; 

    // Example Query 1 

    u = 4, v = 6; 

    int lcaResult = lca(u, v); 

    int maxSumResult = maxSum(u, v); 

    cout << "Lowest Common Ancestor of " << u << " 

and " << v << ": " << lcaResult << endl; 

    cout << "Maximum Edge Weight between " << u << " 

and " << v << ": " << maxSumResult << endl; 

 

    return 0; 

} 
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In this skewed tree structure, we attempt to find the 

query results for vertices 4 with 2 and also 4 with 6. It is evident 

that the Lowest Common Ancestor (LCA) for 4 and 6 is 2, and 

the corresponding maximum edge weight is 9. Similarly, for the 

vertices 4 and 5, the LCA is identified as 5, with a maximum 

weight of -1 along the path. The result of the program provide 

below. 

 

 

Fig.9 Test Case for balanced Tree (source: writer’s archive) 

 

3. Random Tree 

For the third test case, we introduced a tree with a random 

structure, including a mix of balanced and skewed subtrees. 

This more unpredictable scenario aimed to mimic real-world 

tree structures commonly encountered in practical applications. 

The LCA algorithm was subjected to diverse query scenarios 

to assess its adaptability and reliability. 

 

 

 

Fig.6 Random Tree (source: writer’s archive) 

 

In this random tree, we want to find the query for vertices 9 

with 10, vertices 3 with 7, and also 13 and 19. The result 

shown in the figure below. 

 

 

Fig.11 Test Case for Random Tree (source: writer’s archive) 

 

 

V.   CONCLUSION 

 

In conclusion, this paper has explored the implementation of 

the Lowest Common Ancestor (LCA) algorithm in the context 

of a tree to efficiently calculate the extreme edge's weight along 

the path between two vertices. The fundamental concepts of 

trees, paths, and cycles in graph theory were introduced to 

provide a comprehensive foundation for understanding the 

significance of determining the minimum and maximum edge 

weights. 

The focus of the paper was on utilizing the LCA algorithm as 

a powerful tool to address the problem of finding the lowest 

common ancestor between two arbitrary vertices in a tree that 

used to find the extreme weight of the edge. The algorithm's 

efficiency stems from its ability to reduce the time complexity 

of ancestor queries, crucial for optimizing various applications 

across different domains. 

Furthermore, the implementation of the LCA algorithm with 

binary lifting was discussed, emphasizing its role in achieving a 

time complexity of O(log n) for both building the tree and 

answering queries. The binary lifting technique, along with the 

Depth-First Search (DFS) traversal, contributes to the 

algorithm's effectiveness in handling large trees. 
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