
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Exploring Efficient Techniques for Connected

Component Analysis in Dense Graphs: Unveiling

Practical Applications

Azmi Mahmud Bazeid - 13522109

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13522109@mahasiswa.itb.ac.id

Abstract—This study explores an efficient technique for

analyzing connected components in dense graphs. The algorithm,

developed by external researchers, addresses computational

challenges inherent in traditional methods and significantly

improves both time and space efficiency. Interestingly, the

algorithm has found applications beyond its initial scope. These

findings underscore the algorithm’s versatility and its potential to

solve complex problems across various domains.

Keywords—Connected Components, Sorting, Time Complexity,

Space Complexity, Applications.

I. INTRODUCTION

Graphs, as abstract representations of a set of objects where

some pairs of the objects are connected by links, serve as one

of the fundamental structures in the field of computer science.

They are used in various domains, from network analysis to

social media analytics, and from route planning to even

biology. The versatility of graphs stems from their ability to

model complex systems and relationships in a simplified and

intuitive manner.

One of the critical tasks in graph analysis is the study of

connected components. A connected component of an

undirected graph is a subgraph in which any two vertices are

connected to each other by a path, and which is connected to

no additional vertices in the supergraph. Identifying these

components helps in understanding the structure of the graph,

the relationship between its entities, and the overall

connectivity of the system it represents.

To facilitate this analysis, the disjoint-set data structure is

often employed. This data structure allows two crucial

operations: Union and Find. The Union operation can join two

sets so that each member in the set belongs to the same

connected component. On the other hand, the Find operation

returns the representative of the set that a particular element

belongs to. These operations can be performed in

approximately constant time (in 𝑂(𝛼(𝑛)) where 𝛼(𝑛) is the

inverse Ackermann function which is less than 5 for most 𝑛

needed since 𝐴(4, 4) = 22
265536

− 3) making the disjoint-set

data structure a powerful tool for connectivity analysis.

However, the disjoint-set data structure has a significant

limitation. While it efficiently records the connectivity

information, it loses the edge relationship between the vertices

of a graph. In other words, it can tell us if two vertices are

connected, but it cannot provide information about the specific

edges that connect them. This loss of information can be a

major drawback in scenarios where edge relationships are

important.

An alternative approach to preserving edge relationships is

to use a basic graph traversal method like Depth-First Search

(DFS) or Breadth-First Search (BFS) using any common graph

representation. These methods explore the graph by visiting its

vertices in a systematic manner, thereby preserving the edge

relationships. However, these methods work in linear time

relative to the number of nodes and edges. Repeatedly

traversing the graph conditionally can become computationally

expensive, especially for dense graphs where the number of

edges is on the order of the square of the number of vertices.

In this paper, we explore a modified DFS algorithm

designed to handle dense graphs with a large number of edges.

Our goal is to retain the benefits of preserving edge

relationships while improving computational efficiency for

many common operations. This is particularly important in the

era of big data, where graphs can have millions or even billions

of vertices and an even larger number of edges.

The modified DFS algorithm we study in this paper is not

just a theoretical construct but has practical implications as

well. It opens up new possibilities for graph analysis in various

domains, thereby bridging the gap between theory and practice.

We hope that our exploration will inspire further research in

this direction, leading to more efficient and effective methods

for graph analysis.

It’s important to note that, in contrast to the disjoint-set data

structure, our algorithm of interest does not have a specific

name. For the purpose of this study, we will refer to it as the

‘Modified DFS Algorithm’.

We will use C++ to demonstrate the algorithms instead of

pseudocode, providing a practical and accessible

representation. This choice enhances clarity in logic and

implementation steps, making it more understandable for

readers with a programming background and bridging the gap

between theory and practice.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Our exploration will commence with an in-depth study of

the DFS algorithm, particularly its role in identifying

connected components. Following this, we will conduct a

comprehensive review of the time complexity associated with

the DFS algorithm. This examination will provide the

motivation to introduce slight modifications to both the data

structure representation and the DFS algorithm itself. The aim

of these modifications is to equip the algorithm with the

capability to efficiently handle dense graphs.

II. THEORY

A. Depth-First Search (DFS)

Depth-First Search (DFS) is a crucial algorithm employed

for investigating nodes and edges within a graph. It navigates

the graph in a depth-oriented manner and utilizes a stack to

remember the vertices to which it needs to return after all

neighboring vertices have been traversed. Given that DFS

operates with a stack, it can be seamlessly implemented using

recursion in numerous programming languages, eliminating the

need for an explicit stack declaration.

In this paper, we will be using the adjacency list

representation of the graph to facilitate DFS traversal in 𝑂(𝑉 +
𝐸) where 𝑉 is the number of vertices and 𝐸 is the number of of

edges. For simplicity, we will assume that the vertices are

numbered from 0 to 𝑉 − 1. The C++ code is as follows:

This is a basic Depth-First Search (DFS) that traverses each

node in the graph. For simplicity, details are omitted. The code

can be easily adjusted to count the number of connected

components by introducing a counter in the inner loop of the

'run' procedure. Additionally, one can copy each connected

component to a new graph, forming a graph that consists

exclusively of that particular connected component.

DFS visits each vertex exactly once, and the visited boolean

array ensures that no vertex is visited more than once,

contributing 𝑂(𝑉) to the time complexity. As DFS traverses

every edge, each edge is considered twice (once for each

incident vertex). Therefore, the contribution from edge

traversal is 𝑂(2𝐸), which simplifies to 𝑂(𝐸) in terms of

overall time complexity. Hence, the total time complexity is

𝑂(𝑉 + 𝐸).

In dense graphs, the maximum number of edges

is 𝑉(𝑉 − 1)/2, leading to a time complexity of 𝑂(𝑉2) for DFS

traversal. While this poses no problem for single traversals,

certain applications may require conditional graph traversal

multiple times, resulting in potential slowness in performance.

In addition to traversal concerns, some applications may

necessitate operations other than traversal, and these operations

may not be efficiently supported using the traditional DFS

approach. This highlights the importance of considering the

specific requirements of the application and potentially

exploring alternative algorithms or optimizations tailored to the

particular tasks at hand.

B. Self-balancing Binary Search Tree

A self-balancing binary search tree (BST) is a type of binary

search tree where the structure of the tree is automatically

adjusted or balanced after each insertion or deletion operation.

The goal of this balancing act is to maintain the tree in a way

that ensures relatively uniform depths of subtrees, preventing

the tree from becoming highly skewed and degrading into a

linked list.

In a regular binary search tree, the time complexity of

operations like insertion, deletion, and search is typically 𝑂(ℎ),
where ℎ is the height of the tree. In the worst case, when the

tree is highly unbalanced, the height could be close to 𝑛, where

𝑛 is the number of elements in the tree. This worst-case

scenario would lead to operations taking 𝑂(𝑛) time, which

defeats the purpose of using a binary search tree.

To address this issue, self-balancing binary search trees use

algorithms that automatically maintain balance during

insertions and deletions. One common type of self-balancing

binary search tree is the red-black tree. In a red-black tree, each

node is assigned a color (either red or black), and the tree is

adjusted based on a set of rules that ensure its balance. These

rules include properties like ensuring that no two consecutive

red nodes exist on any path from the root to a leaf and

maintaining the same number of black nodes on all paths from

the root to the leaves.

The balancing operations are performed in such a way that

the height of the tree is logarithmic in the number of elements,

keeping the time complexity of operations like insertion,

deletion, and search at 𝑂(log𝑛), where 𝑛 is the number of

elements in the tree. This ensures that the self-balancing binary

search tree maintains efficient performance even in the face of

dynamic operations.

Note that it is possible to ensure the height is logarithmic in

the number of elements since 20 + 21 + 22 +⋯+ 2log2𝑛 ≈ 𝑛.

Table I shows the time complexity of Red-Black tree.

 Amortized Worst Case

Search 𝑂(log𝑛) 𝑂(log𝑛)

Insert 𝑂(1) 𝑂(log𝑛)

Delete 𝑂(1) 𝑂(log𝑛)

Table I. Time complexity of Red-Black Tree

/*
We assume that the graph is already provided as input to the
adjacency list 'adj'. Otherwise, global variables, by default,
have values of zero or are set to false.
*/
const int V = 1000;
vector<int> adj[V];
bool visited[V];

void dfs(int &node) {
 visited[node] = true;
 for (const auto &neighbour : adj[node])
 if (!visited[neighbour])
 dfs(neighbour);
}

void run() {
 for (int node = 0; node < V; ++node)
 if (!visited[node])
 dfs(node);
}

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

We will use red-black tree in the modified DFS algorithm as

well as the data structure used to represent the graph. In the

modified DFS algorithm, we have incorporated the red-black

tree strategically within the data structure used for graph

representation.

The red-black tree plays a pivotal role in maintaining the

structural integrity of the graph representation. With its self-

balancing characteristics, such as logarithmic height and

balanced node distribution, the red-black tree significantly

optimizes the time complexities associated with key graph

operations, including vertex insertion, deletion, and adjacency

queries.

Importantly, the red-black tree is selectively applied within

the data structure and does not encompass the complete

representation of the graph. Rather than being a comprehensive

solution, it acts as a nuanced tool, supporting specific

operations to leverage its advantages. This careful integration

ensures that the red-black tree harmonizes with other

components of the data structure, collectively enhancing the

overall efficiency of the modified DFS algorithm.

In C++, the set container in the Standard Template Library

(STL) is typically implemented using a red-black tree. For our

algorithm, we will make use of the pre-existing set

implementation provided by C++, leveraging the efficiency

and balanced properties inherent in the red-black tree for

seamless coding of our algorithm.

C. Hash Table

A hash table is a data structure that implements an

associative array abstract data type, a structure that can map

keys to values. It achieves this mapping through a hash

function, which takes an input (or key) and produces a fixed-

size string of characters, which is usually a hash code. This

hash code is then used as an index or address into the array

where the desired value can be found.

The primary advantage of a hash table is its ability to

provide efficient insertion, deletion, and retrieval of data.

When properly implemented, these operations can have an

average time complexity of 𝑂(1). However, the efficiency

relies on the distribution and handling of hash collisions, which

occur when two different keys hash to the same index.

To handle collisions, various techniques can be employed,

such as chaining (where each array index points to a linked list

of elements that hashed to the same index) or open addressing

(where the algorithm looks for the next available slot in the

array).

Hash tables are widely used in computer science due to their

efficiency in implementing dynamic sets, caches, and

databases, among other applications. They provide a balance

between time and space complexity, making them a versatile

and essential data structure in many algorithms and software

systems.

In C++, the unordered_set container in the Standard

Template Library (STL) is commonly implemented using

hashing. For our algorithm, we will utilize the existing

unordered_set provided by C++, taking advantage of its

hashing-based implementation for efficient coding.

III. THE ALGORITHM

A. Motivation

Fig II. A graph consisting of one connected component

Traversing the graph depicted in Fig. II, vertices 0 to 4 are

assumed visited, and the current focus is on vertex 5. Upon

entering the 'for' loop to check adjacent vertices, it swiftly

detects that all adjacent vertices are already visited.

The existing inefficiency in our traversal approach stems

from a fundamental challenge: the current representation in the

adjacency list doesn't readily provide a clear distinction

between neighboring vertices that have already been visited

and those that are yet to be explored. This lack of

differentiation introduces a bottleneck in the optimization of

the traversal algorithm.

To delve deeper, when examining a vertex's adjacency list,

the absence of explicit information regarding the visitation

status of adjacent vertices necessitates additional checks during

the traversal process. This results in redundant assessments,

impacting the overall efficiency of the algorithm. The

algorithm, as it stands, lacks a mechanism to swiftly identify

previously visited vertices, and this hinders the streamlining of

the traversal process.

In response to the inherent challenge at hand, we find

inspiration to implement a set of strategic maneuvers:

1. Acknowledging the dense nature of the graph, a pivotal

strategy involves contemplating the complement of the

graph, presumed to exhibit sparser characteristics. This

tactical shift aims to exploit the potential advantages

offered by a sparser representation, contributing to

enhanced computational efficiency.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

2. The adoption of a red-black tree emerges as a judicious

choice for the storage of unvisited vertices. This

decision is grounded in the self-balancing properties of

red-black trees, facilitating optimal insertion, deletion,

and retrieval operations. Such efficiency contributes

significantly to the streamlined performance of the

algorithm.

3. Complementing our approach, the incorporation of a

hash table is proposed for the storage of edges absent

from the original graph. This strategic use of a hash

table leverages its hashing mechanism to expedite

search and retrieval processes, providing an efficient

solution for managing edges that do not exist in the

primary graph structure.

B. Algorithm

Below, we implement the modified DFS algorithm

incorporating the three strategies mentioned earlier.

C. Time Complexity Analysis

Each node can be either skipped or visited. After a node is

visited, it cannot be revisited since it is no longer in

unvisited. This ensures that each node is visited exactly

once. Additionally, acknowledging that there are 𝑀 edges

absent from the graph, and each edge adds exactly 2 to the skip

count, the total number of skips is bounded by 2𝑀.

Consequently, the overall computational complexity is

𝑂(𝑉 log(𝑉) + 𝑀). The factor 𝑂(log 𝑉) is due to calling the

lower_bound function proportional to the number of times

the dfs function is called.

IV. APPLICATION

Currently, the algorithmic approach is clear-cut, and its

potential utility might not be immediately apparent. To

illustrate its practicality, we will introduce a problem scenario

where the modified DFS algorithm becomes valuable.

To pique interest, we'll present a problem that doesn't

revolve around a dense graph. We'll illustrate how the modified

DFS algorithm efficiently solves this problem, despite our

prior emphasis on its application in the context of dense

graphs.

Imagine a sizable grid with dimensions 𝑁 by 𝑁. The flood

fill algorithm proves valuable in navigating this grid by

treating each cell as a vertex, with adjacent cells forming edges

between corresponding vertices. This algorithm finds practical

application in various scenarios within paint software, notably

when utilizing the bucket tool.

Suppose each cell in the grid is assigned a numerical value.

In this context, a "region" is characterized by a set of cells

sharing the same number. For a group of cells to constitute a

region, each cell in the region must be directly adjacent to

another cell in the same region, considering only above, below,

left, or right directions (diagonals are not considered). The task

of identifying the largest region can be efficiently tackled using

the flood fill algorithm, employing the traditional DFS

algorithm, with an optimal time complexity of 𝑂(𝑁2).
Now, if we aim to identify the largest region formed by at

most two numbers, a naive approach would involve a time

complexity of 𝑂(𝑁6). This is because, in an 𝑁 x 𝑁 grid, there

are at most 𝑁2 numbers, resulting in 𝐶(𝑁2, 2) =
𝑁2(𝑁2−1)

2
=

𝑂(𝑁4) pairs of numbers. For each pair, we can find the largest

possible region in 𝑂(𝑁2), leading to an overall time

complexity of 𝑂(𝑁6).
An improved solution can be outlined as follows. We can

conceptualize the problem as a graph, where each vertex

denotes the locally maximum region, and edges signify

adjacency between two regions. The size of the region can be

stored as the weight of the corresponding vertex. This

transforms the problem into the quest for a path where the sum

of weights is maximized, and efficient edge traversal

algorithms become crucial for this optimization.

The core concept involves employing a modified DFS.

Instead of iteratively traversing all edges connected to a vertex

to identify traversed edges, we utilize a set data structure. This

allows us to find the untraversed edge in 𝑂(log𝑁) time, as

opposed to linear time.

Below is the complete C++ program. The initial input will

be N, followed by N x N numbers representing the values in

each cell of the grid. For example, given the input below, the

output would be 10, using region 10 and region 02.

/*
We presume that the graph is pre-supplied as input to the
adjacency list 'adj'. Additionally, we assume that the set
'unvisited' is initially populated with integers from 0 to V-1,
where V represents the number of vertices in the graph. In the
absence of explicit input, global variables, by default, hold
values of zero or are automatically set to false.
*/
const int V = 1000;
unordered_set<int> adj[V];
set<int> unvisited;

void dfs(int &node) {
 unvisited.erase(node);
 auto it = unvisited.begin();
 while (it != unvisited.end()) {
 int neighbour = *it;
 if (adj[node].count(neighbour)) {
 ++it;
 continue;
 }
 dfs(neighbour);
 it = unvisited.lower_bound(neighbour);
 }
}

void run() {
 while (!unvisited.empty())
 dfs(*(unvisited.begin()));
}

4
03 04 10 04
05 10 10 02
10 10 02 08
03 02 02 10

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Here is the complete C++ implementation of the described

approach:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;

int n;
int board[250][250];
int board_vertex_id[250][250];
int cow_id[62'500];
int vertex_size[62'500];
set<pair<int, int>> adj[62'500];
bool v[250][250];

void floodfill(int row, int col, int id, int vertex_id, int ®ion_size) {
 if (!(0 <= row && row < n && 0 <= col && col < n)) return;
 if (board[row][col] != id) return;
 if (v[row][col]) return;

 v[row][col] = true;
 ++region_size;
 board_vertex_id[row][col] = vertex_id;

 floodfill(row+1, col, id, vertex_id, region_size);
 floodfill(row, col+1, id, vertex_id, region_size);
 floodfill(row-1, col, id, vertex_id, region_size);
 floodfill(row, col-1, id, vertex_id, region_size);
}

void dfs(int vertex_id, int other_cow_id, int &total_size, set<int> &visited) {
 if (visited.find(vertex_id) != visited.end()) return;
 total_size += vertex_size[vertex_id];
 visited.insert(vertex_id);

 auto it = adj[vertex_id].lower_bound({other_cow_id, 0});
 while (it != adj[vertex_id].end()) {
 auto neighbour_vertex_id = it->second;
 if (it->first != other_cow_id) return;
 adj[vertex_id].erase(it);
 adj[neighbour_vertex_id].erase({cow_id[vertex_id], vertex_id});
 dfs(neighbour_vertex_id, cow_id[vertex_id], total_size, visited);
 it = adj[vertex_id].lower_bound({other_cow_id, 0});
 }
}
int main() {
 cin >> n;
 for (int row = 0; row < n; ++row) {
 for (int col = 0; col < n; ++col) {
 cin >> board[row][col];
 }
 }
 int vertex_id = 0;
 for (int row = 0; row < n; ++row) {
 for (int col = 0; col < n; ++col) {
 if (v[row][col]) continue;
 int region_size = 0;
 floodfill(row, col, board[row][col], vertex_id, region_size);
 vertex_size[vertex_id] = region_size;
 cow_id[vertex_id] = board[row][col];
 ++vertex_id;
 }
 }
 for (int row = 0; row < n; ++row) {
 for (int col = 0; col < n-1; ++col) {
 if (board_vertex_id[row][col] == board_vertex_id[row][col+1]) continue;
 adj[board_vertex_id[row][col]].insert({board[row][col+1], board_vertex_id[row][col+1]});
 adj[board_vertex_id[row][col+1]].insert({board[row][col], board_vertex_id[row][col]});
 }
 }
 for (int row = 0; row < n-1; ++row) {
 for (int col = 0; col < n; ++col) {
 if (board_vertex_id[row][col] == board_vertex_id[row+1][col]) continue;
 adj[board_vertex_id[row][col]].insert({board[row+1][col], board_vertex_id[row+1][col]});
 adj[board_vertex_id[row+1][col]].insert({board[row][col], board_vertex_id[row][col]});
 }
 }
 int second_answer = 0;
 for (int i = 0; i < vertex_id; ++i) {
 while (!adj[i].empty()) {
 auto it = adj[i].begin();
 int total_size = 0;
 set<int> visited;
 dfs(i, it->first, total_size, visited);
 second_answer = max(second_answer, total_size);
 }
 }

 cout << second_answer;
}

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

 Input Output

The code begins by taking the input 𝑁, representing the size

of the grid. Subsequently, it reads 𝑁 by 𝑁 numbers to form the

grid. Following this, a standard flood-fill algorithm is initiated.

Each connected component within the grid is treated as a

vertex, and the weight assigned to the vertex corresponds to the

number of cells within the connected component. The next step

involves establishing edges by traversing the grid, considering

every adjacent horizontal and vertical pair of cells.

Subsequently, the program navigates through the graph using a

technique akin to the modified depth-first search (DFS)

algorithm.

It's important to note that this isn't an entirely distinct

algorithm from the modified DFS algorithm. We continue to

employ the lower_bound function to determine the next

vertex to traverse, akin to the modified DFS algorithm.

Consequently, the concept behind the algorithm in the

modified DFS isn't exclusively tailored for dense graphs;

rather, it can be applied in various scenarios.

V. CONCLUSION

While we have presented the modified DFS algorithm, we

have also showcased several alternative strategies. These

include employing a balanced binary tree in place of a

conventional array to eliminate redundant checks, utilizing an

array of hash tables for efficient validation, formulating the

problem within the framework of graph theory, and exploring

various other approaches.

We have also presented an application of the idea,

demonstrating that even when the graph is not dense, the

essence of the modified DFS algorithm can still be effectively

utilized to solve the problem.

This paper explores several key concepts. Firstly, it delves

into time complexity analysis. Additionally, we employ the

concept of a tree, specifically a balanced binary search tree

using a red-black tree structure, enabling efficient 𝑂(log𝑛)
operations. Combinatorial arguments are utilized to determine

the time complexity. Moreover, the study incorporates data

structures that leverage hashing.

VI. ACKNOWLEDGMENT

The author would like to express gratitude to Allah SWT

because, by His grace and mercy, the author was able to

complete this paper titled "Exploring Efficient Techniques for

Connected Component Analysis in Dense Graphs: Unveiling

Practical Applications" successfully. Not forgetting, the author

sincerely thanks both parents who have provided unwavering

support, prayers, and love throughout the journey of writing

this paper. Their presence has been a source of inspiration and

strength for the author. Additionally, the author would like to

convey heartfelt thanks to the lecturer of the Discrete

Mathematics course, Dr. Fariska Zakhralativa Ruskanda, S.T.,

Dr. Ir. Rinaldi Munir, M. T., and Dr. Nur Ulfa Maulidevi, S. T,

M. Sc., for their guidance during the course. Last but not least,

the author would like to express gratitude to the author's

friends who have provided moral support and encouragement

during the preparation of this paper.

REFERENCE

[1] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2022).

Introduction to Algorithms, fourth edition (4th ed.). MIT Press.

[2] Skiena, S. S. (2020). The Algorithm Design Manual (3rd ed.). Springer.

[3] Rosen, K. H. (2018). Discrete Mathematics and its Applications.

McGraw hill.

[4] Problem - 920E. (n.d.). Codeforces. Retrieved December 11, 2023, from

https://codeforces.com/problemset/problem/920/E

[5] USACO. (n.d.). Usaco.org. Retrieved December 11, 2023, from

https://www.usaco.org/index.php?page=viewproblem2&cpid=836

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 3 Desember 2023

Azmi Mahmud Bazeid 13522109

4
03 04 10 04
05 10 10 02
10 10 02 08
03 02 02 10

10

