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Abstract—Matrix multiplication algorithms that we generally 

know has a computational worst-case complexity of O(N3). This is 

generally a non-issue for smaller matrices, but as the complexity 

grows cubically, it starts to show how unsuited it is for larger 

matrices, which in turn slows work down in practical uses, e.g., 

linear transformations in graphical applications. This paper 

analyzes common matrix multiplication algorithms and find ways 

to optimize such algorithms. 
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I.   INTRODUCTION 

Matrices are rectangular multi-dimensional arrays that can 

hold numbers, symbols, or expressions. Matrices play a huge 

role in graphics, such as linear transformations of images, even 

the images itself are represented in matrices. Machine learning 

uses matrices to determine the weighted sums of their inputs. 

[
2 3 5
1 4 1

] 

Figure 1 - A 2x3 matrix holding 6 numbers 

Matrix multiplication is a binary operation that produces a 

single matrix from two matrices. The number of columns of the 

first matrix must be equal to the number of rows of the second 

matrix. The product of the matrix has the number of rows of the 

first matrix and the number of columns of the second matrix. For 

example, a matrix A with dimensions I x J multiplied by a matrix 

B with dimensions N x M produces a matrix denoted as AB with 

dimensions I x M. Matrix multiplication can be chained to do a 

matrix chain multiplication to multiply several matrices. 

Matrix multiplication has several properties. It is generally 

non-commutative (AB ≠ BA), distributive (A(B+C) = AB + 

AC), associative (A(BC) = (AB)C). Matrices can be multiplied 

by a scalar, in which the product is a matrix with its entries 

multiplied by the scalar. The transpose of a product is the 

multiplication in the reverse order of the transposes of the 

factors ((AB)T = BTAT). 

The naïve way to do matrix multiplication is as follows: 

[
2 3
1 4

] [
3 7
3 1

] = [
15 17
15 11

] 

Figure 2 - Example of a matrix multiplication 

Elements of a matrix is denoted by aij, i and j being the row 

and column respectively. aij of the product matrix is the result of 

multiplying term-by-term the entries of the ith row of the first 

matrix and the jth column of the second matrix and summing 

these n products. In this example for element a11, 2 ∗ 3 +  3 ∗

3 =  15. The same operation is applied for other elements of 

the matrix. 

 

II.  THEORETICAL BASIS 

This approach in matrix multiplication (for square matrices) 

results in a computational complexity of 𝒪(𝑁3), which means 

that the complexity grows cubically. As such, when matrices get 

larger, the time required to calculate the product matrix grows 

cubically. This is not ideal for larger matrices, as practical 

applications of matrix multiplications do so with large matrices 

in large quantities. 

For reference, the naïve approach to matrix multiplication is 

written as such in Python and C++: 
for i in range(len(A[0])): 

# Columns of A 

    for j in range(len(B)): 

    # Rows of B 

        C[i][j] = 0 

        for k in range(len(B)): 

 # Either the columns of A or rows 

of B 

            C[i][j] += A[i][k] * B[k][j] 

# Or use Python's built-in matrix multi-

plication operator (Only for NumPy matri-

ces) 

C = A @ B  

Figure 3 - Python code 

for (i = 0; i < 3; i++) { 

    for (j = 0; j < 3; j++) { 

        c[i][j] = 0; 

        for (k = 0; k < 3; k++) { 

            c[i][j] += a[i][k] * b[k][j]; 

        } 

    } 

}  

Figure 4 - C++ code 
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This is an example of matrix multiplication operations over 

100.000 iterations to put into scale on how fast it grows: 
# 2x2 matrix multiplication 

0.3101429 seconds 

# 3x3 matrix multiplication 

0.6165339 seconds 

# 4x4 matrix multiplication 

1.1084627 seconds 

# 5x5 matrix multiplication 

1.9727168 seconds 

# 6x6 matrix multiplication 

3.1422739 seconds  

Figure 5 - Elapsed time for each operation in Python 

 

 

Figure 6 - Chart for elapsed time 

Having 3 nested loops is a recipe for disaster when dealing 

with large matrices. It may not look like an issue at first, 

especially since we are dealing with such small matrices that it 

only starts to creep into the seconds territory after we 

deliberately repeat the same operation 100.000 times. How 

about a 256 x 256 matrix with just 10 iterations? 
# 256x256 matrix multiplication 

17.3352191 seconds  

Figure 7 - Time required for a naive 256 x 256 matrix multiplication in Python 

With just 10 iterations, a 256x256 matrix multiplication takes 

around 17.33 seconds, taking 1.73 seconds every iteration, 

making it unsuitable for real world use. The slowdown is even 

more apparent with larger matrices, both in size and in quantity, 

which is to be expected in work such as image processing. 

Another aspect worthy of noting is computational or 

asymptotic complexity. Big O notation is a mathematical 

notation, but in computer science it is used to classify algorithms 

according to how their run time or even space requirements 

grow as the input size grows. Big O notation is also called worst-

case complexity, as it describes the upper bound on the 

algorithm’s growth rate. Examples of big-O notation include 

𝒪(𝑁3)  which grows cubically, 𝒪(𝑁2)  which grows 

quadratically. Generally, the smaller the growth, the faster and 

better, although it is not the whole picture. 

 

III.   APPROACHES TO MATRIX MULTIPLICATION 

A. Tensor Decomposition 

A matrix multiplication operation is bilinear, so it can be 

represented by a 3-dimensional tensor. A tensor is an object that 

describes a multilinear relationship between sets of objects 

related to a vector space, just like scalars and vectors. In fact, 

scalars are essentially tensors of rank 0 (or 0-dimensional 

tensor), while vectors are tensors of rank 1 (or 1-dimensional 

tensor). Tensors are used extensively in physics because of its 

importance in solving physics problems in areas such as 

mechanics, electrodynamics, and others. See Fig. 8a for a 

representation of a 2 x 2 matrix multiplication operation as a 3-

dimensional tensor with the size of 4 x 4 x 4. 

 

Figure 8 - Tensor decomposition of a 2x2 matrix multiplication operation 

Source: https://www.nature.com/articles/s41586-022-05172-4 

The matrices are decomposed into tensors to represent a 

matrix multiplication operation, which is denoted by 𝒯𝑛 with n 

being the size of the matrix. In general, and this also applies to 

non-square matrices, it is represented by 𝒯𝑛,𝑚,𝑝 as an operation 

between an n x m matrix and an m x p matrix. By tensor 

decomposition, 𝒯𝑛 is decomposed to: 

𝒯𝑛 = ∑ 𝑢(𝑟)

𝑅

𝑟=1

⊗ 𝑣(𝑟) ⊗ 𝑤(𝑟), 

where u, v, and w are vectors. 

Fig. 8a shows a tensor 𝒯2 that represents the multiplication of 

two 2 x 2 matrices. The opaque blocks represent tensor entries 

equal to 1, while the semi-transparent blocks represent entries 

equal to 0. As an example, tensor entries in (a1, b2, c1) and (a2, 

b3, c1) are set to 1 as per the following equation for matrix 

multiplication: 

𝑐1 = 𝑎1𝑏1 + 𝑎2𝑏3 

Fig. 8b is Strassen’s algorithm, which will be explained in the 

Section III B. Strassen’s algorithm is used for multiplying 2 x 2 

matrices with 7 multiplications. Fig. 8c is the tensor factor 

representation of Strassen’s algorithm, with u, v, and w 

highlighted in green, purple, and yellow respectively. It is a 

rank-7 decomposition of 𝒯2 . The correspondence between 8b 

and 8c is shown by the colors. 

This way, the computational worst-case complexity is 

reduced to 𝒪(𝑁log𝑛 𝑅), with N being the size of a square matrix, 

and the tensor rank R. However, there is a catch. 

Matrix rank decomposition is relatively easy to compute 

using techniques such as SVD (Singular Value Decomposition) 

and RRQR factorization (rank-revealing QR factorization). 

Unlike matrix rank decomposition, tensor rank decomposition is 

NP-complete. NP-complete is short for “non-deterministic 

polynomial-time complete,” meaning that the problem is not 
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solvable in realistic, polynomial time, but the solution can be 

verified in polynomial time. In other words, it is not 

algorithmically and thus programmatically possible to 

determine tensor rank without a non-deterministic Turing 

machine or an AI/neural network. 

For this example, a 2 x 2 matrix with predetermined tensor 

rank and vectors are used. 
Tensor Decomposition Algorithm: 2.5e-06s 

Naive Algorithm 2: 5.85e-05s  

Figure 9 - Tensor decomposition compared to the naive algorithm 

In this example, tensor decomposition is over 20x faster than 

the naïve algorithm, although the results may vary wildly 

depending on the compiler, the computer configuration, CPU 

usage, among others. For example, setting the compiler flag -O3 

can increase the performance boost from over 20x to 43x. 
Tensor Decomposition Algorithm: 9e-07s 

Naive Algorithm 2: 3.82e-05s  

Figure 10 - By setting the -O3 flag, tensor decomposition is 43x faster 

Tensor decomposition is more restrictive than other 

algorithms due to how it is programmed. Since tensor rank 

decomposition is inherently NP-complete, it is not simple to 

implement. With other algorithms being just as fast or only ever 

so slightly slower, tensor decomposition is not feasible for the 

time being, as the origin of this algorithm comes from an AI 

called AlphaTensor, specifically designed to discover new, 

efficient, and provably correct algorithms for matrix 

multiplication. 

 

B. Strassen Algorithm 

The Strassen algorithm, named after Volker Strassen, is a fast 

algorithm for matrix multiplication with better asymptotic 

complexity than the naïve algorithm for larger matrices. Below 

a certain point, the naïve algorithm is preferable. The Strassen 

algorithm uses a divide-and-conquer approach to reduce the 

number of multiplications needed. For example, in a 2 x 2 

matrix, there are 8 multiplications needed when using the naïve 

approach, while only 7 multiplications are needed for the 

Strassen algorithm. The benefits of Strassen’s algorithm are 

much more apparent in larger matrices, such as in this example 

where a 1024 x 1024 is used: 
Strassen Time: 2.15946s 

Normal Time: 6.28819s  

Figure 11 - 1024 x 1024 matrix multiplication operation in C++ 

In this example, Strassen’s algorithm is 2.912x faster than the 

naïve algorithm. C++ is used as opposed to Python because 

Python has underlying optimizations for certain operations, 

where it calls operations written in C to speed up certain 

operations in which will result in inconsistent and essentially 

incomparable elapsed time. 

Strassen’s algorithm works wonders on large N x N matrices 

with N being the power of 2. On non-square matrices and square 

matrices where N is not a power of 2, padding with zeroes is 

needed for the algorithm to work. The matrices are padded with 

zeroes up to P with P being the smallest power of 2 larger than 

N, e.g., if N is 27 then the matrix will be padded to 32. For non-

square matrices, it will be padded to a square matrix. 

[
𝐴 0
0 0

] [
𝐵 0
0 0

] = [
𝐴𝐵 0
0 0

] 

Figure 12 - An example of a matrix multiplication with padded zeroes 

 

Figure 13 - Strassen's algorithm 

Source: https://www.geeksforgeeks.org/strassens-matrix-multiplication/ 

The time complexity of Strassen’s algorithm is 

approximately: 

𝒪(𝑁log2 7)  =  𝒪(𝑁2.8074) 

While Strassen’s algorithm is fast and accurate, it is generally 

not preferred for practical applications for various reasons, such 

as the algorithm itself inherently using recursion, which takes 

extra space in the stack. The source code used for Strassen’s 

algorithm can be found in the Appendix section. 

Strassen’s algorithm utilizes the naïve algorithm to a certain 

degree. Depending on the leaf size, or the size of the matrix 

where it defaults to the naïve algorithm, it can be faster or slower 

than the naïve algorithm. The leaf size is dependent on the 

architecture of the computer, there is no way to determine 

without trial-and-error. In this instance, the best leaf size has 

been determined to be 64 x 64. Strassen’s algorithm is relatively 

easy to parallelize using available instructions in the CPU, 

which will be discussed in the next section. 

 

C. Multithreaded Approach to Multiplication, SIMD, 

and Compiler Optimizations 

In current times, it’s common to have more than two cores in 

a computer. Even the cheapest of computers have at least two 

cores with HyperThreading/SMT (Simultaneous 

Multithreading), in which a core has two execution threads to 

increase multithreaded performance. Most algorithms can be 

parallelized to take advantage of a multicore processor, and 

matrix multiplication algorithms are no exception. Here is an 

example of a 2048 x 2048 matrix multiplication. 
Strassen's Algorithm: 5.80621s 

Naive Algorithm: 10.955s  

Figure 14 - Multithreaded 2048 x 2048 matrix multiplication 

Strassen's Algorithm: 15.6666s 

Naive Algorithm: 67.0843s  

Figure 15 - Single-threaded 2048 x 2048 matrix multiplication 

The calculation is done on an Intel Core i7-10750H CPU with 

6 cores and 12 threads in total. Multithreaded processing has 

improved the speed of each algorithm by 2.70x and 6.124x 

https://www.geeksforgeeks.org/strassens-matrix-multiplication/
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respectively. Non-linear increase in the performance boost is 

caused by the nature of the code and how parallelization works. 

Not every part of the algorithm can be parallelized, which in turn 

means that not every algorithm benefits the same from 

multithreading. 

By adding a simple compiler flag for auto-parallelization 

allows the compiler to automatically parallelize the code 

whenever possible and increase the speed of each calculation, 

with the only drawback being increased power consumption. 

Multithreaded processing is not always applicable to every 

situation, as there is an overhead in starting each thread 

corresponding to the number of logical threads available on the 

computer, processing data, and joining the result from each 

thread into one. One example of such condition where it may be 

counter-intuitive to utilize multiple threads is with small 

matrices. 

Multithreading is not the only trick that can speed up matrix 

multiplications. Modern CPUs support SIMD instructions, short 

for Single Instruction Multiple Data, which can be used to 

further improve the performance of matrix multiplications by 

operating pieces of multiple data with only a single instruction 

(hence Single Instruction Multiple Data) instead of every single 

element in the matrices, greatly improving efficiency. SIMD 

instructions are an extension of the x86 ISA (Instruction Set 

Architecture) named SSE (Supplementary SIMD Extensions). 

SSE operates using 16 128-bit XMM registers. 

 
Strassen's Algorithm: 1.99301s 

Naive Algorithm: 5.17092s  

Figure 16 - Compiler optimization with SSE SIMD instructions to boost 

performance 

But it does not end there. Intel and AMD CPUs from 2011 

onwards support an extension to the x86 ISA named AVX 

(Advanced Vector Extensions). AVX uses 16 256-bit YMM 

registers comprised of 2 128-bit registers (YMM is to XMM as 

x86_64 is to x86 registers), with XMM registers as the lower 

half of their respective YMM registers, to perform SIMD 

operations. Both SSE and AVX are specifically made for vector 

operations, including but not limited to matrices. This approach 

speeds up matrix multiplication significantly, even by some 

orders of magnitude compared to the naïve algorithm, although 

it requires tinkering with the code and having low-level 

knowledge on how processor cache and memory alignment 

works. There is the more advanced and newer AVX2, but most 

of it is irrelevant in this example, as it is mainly focused on 

floating point arithmetic. Regardless, this example utilizes perks 

from both AVX and AVX2. Utilizing AVX works on non-

power-of-two, non-square matrices. 

Since AVX operates on 256-bit registers, the asymptotic 

computational complexity of the algorithm does not change, but 

rather the constants that do change, as now the computer 

processes 8 integers at once, cutting down a considerable 

amount of operations from N3 to 0.125N3. Cache misses are also 

reduced, as the algorithm does not load columns to the registers 

(C++ is a row-major order language, so contiguous blocks in 

memory are the elements per row).  

Strassen's Algorithm: 1.89657s 

Naive Algorithm: 5.19158s 

AVX Algorithm: 0.222756s  

Figure 17 - Compiler optimizations + AVX operations + low-level knowledge 

on how cache works greatly improve efficiency 

The only downsides are that AVX operations are slightly 

heavier on the CPU—it hammers the CPU more than any other 

operation, and compatibility issues may arise, but only if we are 

dealing with decades-old computers. 

The compiler used for this paper is G++ and the compiler 

flags that were used are as follows: 

“-O3 -fopenmp -march=native -mtune=native -mavx2 -

mfma.” 

-O3 enables compiler optimization level 3, which allows the 

compiler to optimize the underlying assembly/machine code to 

run things faster. It also allows the compiler to take use of AVX 

registers. 

-fopenmp allows multithreading by using OpenMP, a library 

for multiprocessing, and it allows the compiler to automatically 

parallelize pieces of code that the compiler thinks are 

parallelizable without rewriting the code. 

-march=native and -mtune=native tunes the compiler to 

automatically configure to the computer’s configuration. 

Combined with -mavx2 and -mfma, it allows the compiler to use 

AVX instructions. 

 

D. Coppersmith-Winograd Algorithm 

Don Coppersmith and Shmuel Winograd developed an 

algorithm that further lowers the asymptotic complexity of the 

previous Strassen’s algorithm to 𝒪(𝑁2,3755) , a substantial 

decrease in growth rate. It is considered the asymptotically 

fastest known algorithm to date, with techniques such as 

asymmetric hashing that further improves the asymptotic 

complexity to 𝒪(𝑁2,3719), which is not exactly a meaningful 

difference, but it is there. 

The thing about the Coppersmith-Winograd algorithm is that 

it is not so much an algorithm as an existence proof. The 

algorithm is not used for practical purposes. In fact, the 

Coppersmith-Winograd algorithm is classified as a “galactic 

algorithm,” which is an algorithm that outperforms any other 

algorithm for problems that are sufficiently large, so large that 

it is never used in practice. Another example of a galactic 

algorithm is the fastest known way to multiple two integers, 

which uses a 1729-dimensional Fourier transform. 

While having a lower asymptotic complexity is generally 

better on a surface level, the constants hidden by the big O 

notation is worth noting. Due to sufficiently large constants, it is 

impractical for galactic algorithms to operate with small inputs. 

It might only become practical with sufficiently large inputs.  

Due to how it was designed, Coppersmith-Winograd 

algorithm cannot be easily written in a programming language. 

Nevertheless, it is worth delving into the inner workings of the 

algorithm. The Coppersmith-Winograd algorithm utilizes 

tensors and partitions. 

One first constructs an algorithm A which given vectors x and 

y with length N, computes N values of the form 𝑧𝑘 =
∑ 𝑡𝑖𝑗𝑘𝑥𝑖𝑦𝑗𝑖,𝑗 , with tijk ∈ {0, 1}. The values zk do not have to 
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correspond to entries from a matrix product. A is considered a 

tensor, and An is called the nth tensor power of A. It is obtained 

by applying A to vectors x and y of length Nn recursively n times. 

Split x and y into N subvectors of length Nn-1, then run A on x 

and y as vectors of length N with entries being vectors of length 

Nn-1. Its running time is 𝒪(𝑟𝑛)  with r being the number of 

multiplications performed by A. 

If An can be used to multiply square matrices in 𝒪(𝑟𝑛) time, 

then the asymptotic complexity is better bounded the larger the 

size of the matrix is. In other words, the larger the matrix, the 

faster the algorithm operates. 

Don Coppersmith and Shmuel Winograd introduced 

techniques that allowed them to effectively choose which 

variables to set to 0 so that very large matrix products can be 

computed using An. They rely on partitioning the index triples i, 

j, k ∈ [Q]n. 

Depending on the underlying algorithm, the partitioning 

varies and affects the final bound on the complexity of the 

algorithm. Coppersmith and Winograd obtained a better 

complexity with 𝒪(𝑁2,376) with A2. 

It is hard to simplify this algorithm to only a few words for 

this paper. Data structures that are used in this algorithm such as 

tensor powers are not practical to implement into a program. 

There is no readily available C++ implementation of the 

algorithm as of now. 

 

E. GPU Matrix Multiplication 

There is a different and more radical approach to matrix 

multiplication: do it outside the CPU. The GPU, or Graphics 

Processing Unit, can do things other than displaying images. 

GPGPU, or General-Purpose GPU computing, allows code to be 

executed using the GPU core. Performance will improve 

significantly with unparalleled parallelism compared to CPUs 

with a meager number of cores compared to GPUs with 

thousands of cores on the mid-high end. 

GPU computing is harder to implement compared to normal 

CPU implementations. Additional libraries are needed to 

support uploading the program to the GPU for it to execute code. 

For this purpose, an NVIDIA GPU with CUDA (Compute 

Unified Device Architecture) capability is used. The AVX 

implementation is compared with the GPU as it is the fastest of 

the bunch for CPU compute. The algorithm is slightly modified 

to use single-precision floating point arithmetic to provide an 

even ground between the GPU and the CPU. 

 
GPU: 0.109424s 

AVX (float): 0.253184s  

Figure 18 - CPU vs GPU in 2048x2048 matrix multiplication using a GTX 

1660 Ti 

Using C++ allows the program to manage the GPU’s memory 

manually, allowing for faster matrix operations and utilizing 

several tricks to conform to what the GPU is better at computing. 

GPUs are specifically designed for matrix operations—that is 

the main data structure used for graphics processing, so it is no 

surprise that GPUs are faster. 

What about a bigger matrix, say 4096 x 4096? 

GPU: 0.721064s 

AVX (float): 2.6836s  

Figure 19 - CPU vs GPU in 4096 x 4096 matrix multiplication 

The benefit of using GPUs is much more obvious now. The 

CPU’s elapsed time is multiplied ten-fold, while the GPU only 

gets a 7x performance penalty with a much larger matrix. While 

both get a considerable hit on processing time, the amount it 

takes for the GPU to multiply the matrix is already much faster 

to begin with. 

Using GPUs are not always better. On smaller matrices, the 

GPU can be slower than the CPU due to array copy between the 

system RAM and the GPU memory, object initialization, and 

other overheads. An example of a simple 8 x 8 matrix 

multiplication operation shows how GPUs can be slightly worse 

than CPUs with smaller matrices: 
GPU: 0.000102s 

AVX (float): 3.69e-05s  

Figure 20 - A simple 8 x 8 matrix multiplication 

The GPU is orders of magnitude slower than the CPU with 

such a small matrix. For smaller matrices, it is better to use the 

CPU to do the calculation. 

 

IV.   CONCLUSION 

Computational complexities of algorithms do not paint the 

whole story. Even when the naïve algorithm has an asymptotic 

worst-case complexity of 𝒪(𝑁3), what matters is the constant 

of said complexity. An algorithm with a time complexity of for 

example 1.000.000N3 + 3.000N2 and another algorithm with 

0,0001N3 + 2N2 are both classified as 𝒪(𝑁3), despite the latter 

being apparently much faster. 

Not only that, but certain tricks can also be used to speed up 

matrix multiplication that do not change the complexity of the 

algorithm, such as utilizing multiple threads on the CPU, using 

more efficient ways to calculate by using instructions and 

registers specifically designed for vector operations, having 

knowledge on memory alignment and cache to reduce cache 

misses and faster memory access, and so on. These tricks do not 

influence the complexity of the algorithms used, but they speed 

up operations by doing it much more efficiently. 

With that said, certain tricks should not be applied to every 

situation. Such as with small matrices, the overhead in 

multithreading outweighs the time saved by parallelizing due to 

thread spawning overhead. The overhead in copying to the AVX 

registers for smaller matrices is enough to make it slower than 

normal algorithms. 

Doing matrix operations on a device specifically tailored for 

matrix operations, like a GPU, is a valid option, provided the 

appropriate situation. GPUs in general are more power hungry 

than CPUs, which can be an issue on laptops where battery life 

matters. 

In conclusion, due diligence is needed to determine which 

approach is best for the job, and while the naïve algorithm is 

relatively the slowest of the bunch, what matters more is the 

implementation, not the asymptotic complexity. Don’t be 

discouraged to use the naïve algorithm, unless large datasets are 

used in which other algorithms and implementations are much 
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better suited for the job. 

 

V.   APPENDIX 

Source code for the program used for this paper can be found 

in this link, which contains all the algorithms used in this paper. 

The program is entirely written in C++. Python source code is 

not provided, as it is only for example purposes. 
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