
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

Matrix Multiplication and Ways to Multiply Faster

Ammar Rasyad Chaeroel - 135211361

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113521136@std.stei.itb.ac.id

Abstract—Matrix multiplication algorithms that we generally

know has a computational worst-case complexity of O(N3). This is

generally a non-issue for smaller matrices, but as the complexity

grows cubically, it starts to show how unsuited it is for larger

matrices, which in turn slows work down in practical uses, e.g.,

linear transformations in graphical applications. This paper

analyzes common matrix multiplication algorithms and find ways

to optimize such algorithms.

Keywords—matrix, multiplication, algorithm, efficiency

I. INTRODUCTION

Matrices are rectangular multi-dimensional arrays that can

hold numbers, symbols, or expressions. Matrices play a huge

role in graphics, such as linear transformations of images, even

the images itself are represented in matrices. Machine learning

uses matrices to determine the weighted sums of their inputs.

[
2 3 5
1 4 1

]

Figure 1 - A 2x3 matrix holding 6 numbers

Matrix multiplication is a binary operation that produces a

single matrix from two matrices. The number of columns of the

first matrix must be equal to the number of rows of the second

matrix. The product of the matrix has the number of rows of the

first matrix and the number of columns of the second matrix. For

example, a matrix A with dimensions I x J multiplied by a matrix

B with dimensions N x M produces a matrix denoted as AB with

dimensions I x M. Matrix multiplication can be chained to do a

matrix chain multiplication to multiply several matrices.

Matrix multiplication has several properties. It is generally

non-commutative (AB ≠ BA), distributive (A(B+C) = AB +

AC), associative (A(BC) = (AB)C). Matrices can be multiplied

by a scalar, in which the product is a matrix with its entries

multiplied by the scalar. The transpose of a product is the

multiplication in the reverse order of the transposes of the

factors ((AB)T = BTAT).

The naïve way to do matrix multiplication is as follows:

[
2 3
1 4

] [
3 7
3 1

] = [
15 17
15 11

]

Figure 2 - Example of a matrix multiplication

Elements of a matrix is denoted by aij, i and j being the row

and column respectively. aij of the product matrix is the result of

multiplying term-by-term the entries of the ith row of the first

matrix and the jth column of the second matrix and summing

these n products. In this example for element a11, 2 ∗ 3 + 3 ∗

3 = 15. The same operation is applied for other elements of

the matrix.

II. THEORETICAL BASIS

This approach in matrix multiplication (for square matrices)

results in a computational complexity of 𝒪(𝑁3), which means

that the complexity grows cubically. As such, when matrices get

larger, the time required to calculate the product matrix grows

cubically. This is not ideal for larger matrices, as practical

applications of matrix multiplications do so with large matrices

in large quantities.

For reference, the naïve approach to matrix multiplication is

written as such in Python and C++:
for i in range(len(A[0])):

Columns of A

 for j in range(len(B)):

 # Rows of B

 C[i][j] = 0

 for k in range(len(B)):

 # Either the columns of A or rows

of B

 C[i][j] += A[i][k] * B[k][j]

Or use Python's built-in matrix multi-

plication operator (Only for NumPy matri-

ces)

C = A @ B

Figure 3 - Python code

for (i = 0; i < 3; i++) {

 for (j = 0; j < 3; j++) {

 c[i][j] = 0;

 for (k = 0; k < 3; k++) {

 c[i][j] += a[i][k] * b[k][j];

 }

 }

}

Figure 4 - C++ code

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

This is an example of matrix multiplication operations over

100.000 iterations to put into scale on how fast it grows:
2x2 matrix multiplication

0.3101429 seconds

3x3 matrix multiplication

0.6165339 seconds

4x4 matrix multiplication

1.1084627 seconds

5x5 matrix multiplication

1.9727168 seconds

6x6 matrix multiplication

3.1422739 seconds

Figure 5 - Elapsed time for each operation in Python

Figure 6 - Chart for elapsed time

Having 3 nested loops is a recipe for disaster when dealing

with large matrices. It may not look like an issue at first,

especially since we are dealing with such small matrices that it

only starts to creep into the seconds territory after we

deliberately repeat the same operation 100.000 times. How

about a 256 x 256 matrix with just 10 iterations?
256x256 matrix multiplication

17.3352191 seconds

Figure 7 - Time required for a naive 256 x 256 matrix multiplication in Python

With just 10 iterations, a 256x256 matrix multiplication takes

around 17.33 seconds, taking 1.73 seconds every iteration,

making it unsuitable for real world use. The slowdown is even

more apparent with larger matrices, both in size and in quantity,

which is to be expected in work such as image processing.

Another aspect worthy of noting is computational or

asymptotic complexity. Big O notation is a mathematical

notation, but in computer science it is used to classify algorithms

according to how their run time or even space requirements

grow as the input size grows. Big O notation is also called worst-

case complexity, as it describes the upper bound on the

algorithm’s growth rate. Examples of big-O notation include

𝒪(𝑁3) which grows cubically, 𝒪(𝑁2) which grows

quadratically. Generally, the smaller the growth, the faster and

better, although it is not the whole picture.

III. APPROACHES TO MATRIX MULTIPLICATION

A. Tensor Decomposition

A matrix multiplication operation is bilinear, so it can be

represented by a 3-dimensional tensor. A tensor is an object that

describes a multilinear relationship between sets of objects

related to a vector space, just like scalars and vectors. In fact,

scalars are essentially tensors of rank 0 (or 0-dimensional

tensor), while vectors are tensors of rank 1 (or 1-dimensional

tensor). Tensors are used extensively in physics because of its

importance in solving physics problems in areas such as

mechanics, electrodynamics, and others. See Fig. 8a for a

representation of a 2 x 2 matrix multiplication operation as a 3-

dimensional tensor with the size of 4 x 4 x 4.

Figure 8 - Tensor decomposition of a 2x2 matrix multiplication operation

Source: https://www.nature.com/articles/s41586-022-05172-4

The matrices are decomposed into tensors to represent a

matrix multiplication operation, which is denoted by 𝒯𝑛 with n

being the size of the matrix. In general, and this also applies to

non-square matrices, it is represented by 𝒯𝑛,𝑚,𝑝 as an operation

between an n x m matrix and an m x p matrix. By tensor

decomposition, 𝒯𝑛 is decomposed to:

𝒯𝑛 = ∑ 𝑢(𝑟)

𝑅

𝑟=1

⊗ 𝑣(𝑟) ⊗ 𝑤(𝑟),

where u, v, and w are vectors.

Fig. 8a shows a tensor 𝒯2 that represents the multiplication of

two 2 x 2 matrices. The opaque blocks represent tensor entries

equal to 1, while the semi-transparent blocks represent entries

equal to 0. As an example, tensor entries in (a1, b2, c1) and (a2,

b3, c1) are set to 1 as per the following equation for matrix

multiplication:

𝑐1 = 𝑎1𝑏1 + 𝑎2𝑏3

Fig. 8b is Strassen’s algorithm, which will be explained in the

Section III B. Strassen’s algorithm is used for multiplying 2 x 2

matrices with 7 multiplications. Fig. 8c is the tensor factor

representation of Strassen’s algorithm, with u, v, and w

highlighted in green, purple, and yellow respectively. It is a

rank-7 decomposition of 𝒯2 . The correspondence between 8b

and 8c is shown by the colors.

This way, the computational worst-case complexity is

reduced to 𝒪(𝑁log𝑛 𝑅), with N being the size of a square matrix,

and the tensor rank R. However, there is a catch.

Matrix rank decomposition is relatively easy to compute

using techniques such as SVD (Singular Value Decomposition)

and RRQR factorization (rank-revealing QR factorization).

Unlike matrix rank decomposition, tensor rank decomposition is

NP-complete. NP-complete is short for “non-deterministic

polynomial-time complete,” meaning that the problem is not

0

1

2

3

4

2x2 3x3 4x4 5x5 6x6

Se
co

n
d

s

Matrix Multiplication over
100.000 iterations

Time

https://www.nature.com/articles/s41586-022-05172-4

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

solvable in realistic, polynomial time, but the solution can be

verified in polynomial time. In other words, it is not

algorithmically and thus programmatically possible to

determine tensor rank without a non-deterministic Turing

machine or an AI/neural network.

For this example, a 2 x 2 matrix with predetermined tensor

rank and vectors are used.
Tensor Decomposition Algorithm: 2.5e-06s

Naive Algorithm 2: 5.85e-05s

Figure 9 - Tensor decomposition compared to the naive algorithm

In this example, tensor decomposition is over 20x faster than

the naïve algorithm, although the results may vary wildly

depending on the compiler, the computer configuration, CPU

usage, among others. For example, setting the compiler flag -O3

can increase the performance boost from over 20x to 43x.
Tensor Decomposition Algorithm: 9e-07s

Naive Algorithm 2: 3.82e-05s

Figure 10 - By setting the -O3 flag, tensor decomposition is 43x faster

Tensor decomposition is more restrictive than other

algorithms due to how it is programmed. Since tensor rank

decomposition is inherently NP-complete, it is not simple to

implement. With other algorithms being just as fast or only ever

so slightly slower, tensor decomposition is not feasible for the

time being, as the origin of this algorithm comes from an AI

called AlphaTensor, specifically designed to discover new,

efficient, and provably correct algorithms for matrix

multiplication.

B. Strassen Algorithm

The Strassen algorithm, named after Volker Strassen, is a fast

algorithm for matrix multiplication with better asymptotic

complexity than the naïve algorithm for larger matrices. Below

a certain point, the naïve algorithm is preferable. The Strassen

algorithm uses a divide-and-conquer approach to reduce the

number of multiplications needed. For example, in a 2 x 2

matrix, there are 8 multiplications needed when using the naïve

approach, while only 7 multiplications are needed for the

Strassen algorithm. The benefits of Strassen’s algorithm are

much more apparent in larger matrices, such as in this example

where a 1024 x 1024 is used:
Strassen Time: 2.15946s

Normal Time: 6.28819s

Figure 11 - 1024 x 1024 matrix multiplication operation in C++

In this example, Strassen’s algorithm is 2.912x faster than the

naïve algorithm. C++ is used as opposed to Python because

Python has underlying optimizations for certain operations,

where it calls operations written in C to speed up certain

operations in which will result in inconsistent and essentially

incomparable elapsed time.

Strassen’s algorithm works wonders on large N x N matrices

with N being the power of 2. On non-square matrices and square

matrices where N is not a power of 2, padding with zeroes is

needed for the algorithm to work. The matrices are padded with

zeroes up to P with P being the smallest power of 2 larger than

N, e.g., if N is 27 then the matrix will be padded to 32. For non-

square matrices, it will be padded to a square matrix.

[
𝐴 0
0 0

] [
𝐵 0
0 0

] = [
𝐴𝐵 0
0 0

]

Figure 12 - An example of a matrix multiplication with padded zeroes

Figure 13 - Strassen's algorithm

Source: https://www.geeksforgeeks.org/strassens-matrix-multiplication/

The time complexity of Strassen’s algorithm is

approximately:

𝒪(𝑁log2 7) = 𝒪(𝑁2.8074)

While Strassen’s algorithm is fast and accurate, it is generally

not preferred for practical applications for various reasons, such

as the algorithm itself inherently using recursion, which takes

extra space in the stack. The source code used for Strassen’s

algorithm can be found in the Appendix section.

Strassen’s algorithm utilizes the naïve algorithm to a certain

degree. Depending on the leaf size, or the size of the matrix

where it defaults to the naïve algorithm, it can be faster or slower

than the naïve algorithm. The leaf size is dependent on the

architecture of the computer, there is no way to determine

without trial-and-error. In this instance, the best leaf size has

been determined to be 64 x 64. Strassen’s algorithm is relatively

easy to parallelize using available instructions in the CPU,

which will be discussed in the next section.

C. Multithreaded Approach to Multiplication, SIMD,

and Compiler Optimizations

In current times, it’s common to have more than two cores in

a computer. Even the cheapest of computers have at least two

cores with HyperThreading/SMT (Simultaneous

Multithreading), in which a core has two execution threads to

increase multithreaded performance. Most algorithms can be

parallelized to take advantage of a multicore processor, and

matrix multiplication algorithms are no exception. Here is an

example of a 2048 x 2048 matrix multiplication.
Strassen's Algorithm: 5.80621s

Naive Algorithm: 10.955s

Figure 14 - Multithreaded 2048 x 2048 matrix multiplication

Strassen's Algorithm: 15.6666s

Naive Algorithm: 67.0843s

Figure 15 - Single-threaded 2048 x 2048 matrix multiplication

The calculation is done on an Intel Core i7-10750H CPU with

6 cores and 12 threads in total. Multithreaded processing has

improved the speed of each algorithm by 2.70x and 6.124x

https://www.geeksforgeeks.org/strassens-matrix-multiplication/

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

respectively. Non-linear increase in the performance boost is

caused by the nature of the code and how parallelization works.

Not every part of the algorithm can be parallelized, which in turn

means that not every algorithm benefits the same from

multithreading.

By adding a simple compiler flag for auto-parallelization

allows the compiler to automatically parallelize the code

whenever possible and increase the speed of each calculation,

with the only drawback being increased power consumption.

Multithreaded processing is not always applicable to every

situation, as there is an overhead in starting each thread

corresponding to the number of logical threads available on the

computer, processing data, and joining the result from each

thread into one. One example of such condition where it may be

counter-intuitive to utilize multiple threads is with small

matrices.

Multithreading is not the only trick that can speed up matrix

multiplications. Modern CPUs support SIMD instructions, short

for Single Instruction Multiple Data, which can be used to

further improve the performance of matrix multiplications by

operating pieces of multiple data with only a single instruction

(hence Single Instruction Multiple Data) instead of every single

element in the matrices, greatly improving efficiency. SIMD

instructions are an extension of the x86 ISA (Instruction Set

Architecture) named SSE (Supplementary SIMD Extensions).

SSE operates using 16 128-bit XMM registers.

Strassen's Algorithm: 1.99301s

Naive Algorithm: 5.17092s

Figure 16 - Compiler optimization with SSE SIMD instructions to boost

performance

But it does not end there. Intel and AMD CPUs from 2011

onwards support an extension to the x86 ISA named AVX

(Advanced Vector Extensions). AVX uses 16 256-bit YMM

registers comprised of 2 128-bit registers (YMM is to XMM as

x86_64 is to x86 registers), with XMM registers as the lower

half of their respective YMM registers, to perform SIMD

operations. Both SSE and AVX are specifically made for vector

operations, including but not limited to matrices. This approach

speeds up matrix multiplication significantly, even by some

orders of magnitude compared to the naïve algorithm, although

it requires tinkering with the code and having low-level

knowledge on how processor cache and memory alignment

works. There is the more advanced and newer AVX2, but most

of it is irrelevant in this example, as it is mainly focused on

floating point arithmetic. Regardless, this example utilizes perks

from both AVX and AVX2. Utilizing AVX works on non-

power-of-two, non-square matrices.

Since AVX operates on 256-bit registers, the asymptotic

computational complexity of the algorithm does not change, but

rather the constants that do change, as now the computer

processes 8 integers at once, cutting down a considerable

amount of operations from N3 to 0.125N3. Cache misses are also

reduced, as the algorithm does not load columns to the registers

(C++ is a row-major order language, so contiguous blocks in

memory are the elements per row).

Strassen's Algorithm: 1.89657s

Naive Algorithm: 5.19158s

AVX Algorithm: 0.222756s

Figure 17 - Compiler optimizations + AVX operations + low-level knowledge

on how cache works greatly improve efficiency

The only downsides are that AVX operations are slightly

heavier on the CPU—it hammers the CPU more than any other

operation, and compatibility issues may arise, but only if we are

dealing with decades-old computers.

The compiler used for this paper is G++ and the compiler

flags that were used are as follows:

“-O3 -fopenmp -march=native -mtune=native -mavx2 -

mfma.”

-O3 enables compiler optimization level 3, which allows the

compiler to optimize the underlying assembly/machine code to

run things faster. It also allows the compiler to take use of AVX

registers.

-fopenmp allows multithreading by using OpenMP, a library

for multiprocessing, and it allows the compiler to automatically

parallelize pieces of code that the compiler thinks are

parallelizable without rewriting the code.

-march=native and -mtune=native tunes the compiler to

automatically configure to the computer’s configuration.

Combined with -mavx2 and -mfma, it allows the compiler to use

AVX instructions.

D. Coppersmith-Winograd Algorithm

Don Coppersmith and Shmuel Winograd developed an

algorithm that further lowers the asymptotic complexity of the

previous Strassen’s algorithm to 𝒪(𝑁2,3755) , a substantial

decrease in growth rate. It is considered the asymptotically

fastest known algorithm to date, with techniques such as

asymmetric hashing that further improves the asymptotic

complexity to 𝒪(𝑁2,3719), which is not exactly a meaningful

difference, but it is there.

The thing about the Coppersmith-Winograd algorithm is that

it is not so much an algorithm as an existence proof. The

algorithm is not used for practical purposes. In fact, the

Coppersmith-Winograd algorithm is classified as a “galactic

algorithm,” which is an algorithm that outperforms any other

algorithm for problems that are sufficiently large, so large that

it is never used in practice. Another example of a galactic

algorithm is the fastest known way to multiple two integers,

which uses a 1729-dimensional Fourier transform.

While having a lower asymptotic complexity is generally

better on a surface level, the constants hidden by the big O

notation is worth noting. Due to sufficiently large constants, it is

impractical for galactic algorithms to operate with small inputs.

It might only become practical with sufficiently large inputs.

Due to how it was designed, Coppersmith-Winograd

algorithm cannot be easily written in a programming language.

Nevertheless, it is worth delving into the inner workings of the

algorithm. The Coppersmith-Winograd algorithm utilizes

tensors and partitions.

One first constructs an algorithm A which given vectors x and

y with length N, computes N values of the form 𝑧𝑘 =
∑ 𝑡𝑖𝑗𝑘𝑥𝑖𝑦𝑗𝑖,𝑗 , with tijk ∈ {0, 1}. The values zk do not have to

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

correspond to entries from a matrix product. A is considered a

tensor, and An is called the nth tensor power of A. It is obtained

by applying A to vectors x and y of length Nn recursively n times.

Split x and y into N subvectors of length Nn-1, then run A on x

and y as vectors of length N with entries being vectors of length

Nn-1. Its running time is 𝒪(𝑟𝑛) with r being the number of

multiplications performed by A.

If An can be used to multiply square matrices in 𝒪(𝑟𝑛) time,

then the asymptotic complexity is better bounded the larger the

size of the matrix is. In other words, the larger the matrix, the

faster the algorithm operates.

Don Coppersmith and Shmuel Winograd introduced

techniques that allowed them to effectively choose which

variables to set to 0 so that very large matrix products can be

computed using An. They rely on partitioning the index triples i,

j, k ∈ [Q]n.

Depending on the underlying algorithm, the partitioning

varies and affects the final bound on the complexity of the

algorithm. Coppersmith and Winograd obtained a better

complexity with 𝒪(𝑁2,376) with A2.

It is hard to simplify this algorithm to only a few words for

this paper. Data structures that are used in this algorithm such as

tensor powers are not practical to implement into a program.

There is no readily available C++ implementation of the

algorithm as of now.

E. GPU Matrix Multiplication

There is a different and more radical approach to matrix

multiplication: do it outside the CPU. The GPU, or Graphics

Processing Unit, can do things other than displaying images.

GPGPU, or General-Purpose GPU computing, allows code to be

executed using the GPU core. Performance will improve

significantly with unparalleled parallelism compared to CPUs

with a meager number of cores compared to GPUs with

thousands of cores on the mid-high end.

GPU computing is harder to implement compared to normal

CPU implementations. Additional libraries are needed to

support uploading the program to the GPU for it to execute code.

For this purpose, an NVIDIA GPU with CUDA (Compute

Unified Device Architecture) capability is used. The AVX

implementation is compared with the GPU as it is the fastest of

the bunch for CPU compute. The algorithm is slightly modified

to use single-precision floating point arithmetic to provide an

even ground between the GPU and the CPU.

GPU: 0.109424s

AVX (float): 0.253184s

Figure 18 - CPU vs GPU in 2048x2048 matrix multiplication using a GTX

1660 Ti

Using C++ allows the program to manage the GPU’s memory

manually, allowing for faster matrix operations and utilizing

several tricks to conform to what the GPU is better at computing.

GPUs are specifically designed for matrix operations—that is

the main data structure used for graphics processing, so it is no

surprise that GPUs are faster.

What about a bigger matrix, say 4096 x 4096?

GPU: 0.721064s

AVX (float): 2.6836s

Figure 19 - CPU vs GPU in 4096 x 4096 matrix multiplication

The benefit of using GPUs is much more obvious now. The

CPU’s elapsed time is multiplied ten-fold, while the GPU only

gets a 7x performance penalty with a much larger matrix. While

both get a considerable hit on processing time, the amount it

takes for the GPU to multiply the matrix is already much faster

to begin with.

Using GPUs are not always better. On smaller matrices, the

GPU can be slower than the CPU due to array copy between the

system RAM and the GPU memory, object initialization, and

other overheads. An example of a simple 8 x 8 matrix

multiplication operation shows how GPUs can be slightly worse

than CPUs with smaller matrices:
GPU: 0.000102s

AVX (float): 3.69e-05s

Figure 20 - A simple 8 x 8 matrix multiplication

The GPU is orders of magnitude slower than the CPU with

such a small matrix. For smaller matrices, it is better to use the

CPU to do the calculation.

IV. CONCLUSION

Computational complexities of algorithms do not paint the

whole story. Even when the naïve algorithm has an asymptotic

worst-case complexity of 𝒪(𝑁3), what matters is the constant

of said complexity. An algorithm with a time complexity of for

example 1.000.000N3 + 3.000N2 and another algorithm with

0,0001N3 + 2N2 are both classified as 𝒪(𝑁3), despite the latter

being apparently much faster.

Not only that, but certain tricks can also be used to speed up

matrix multiplication that do not change the complexity of the

algorithm, such as utilizing multiple threads on the CPU, using

more efficient ways to calculate by using instructions and

registers specifically designed for vector operations, having

knowledge on memory alignment and cache to reduce cache

misses and faster memory access, and so on. These tricks do not

influence the complexity of the algorithms used, but they speed

up operations by doing it much more efficiently.

With that said, certain tricks should not be applied to every

situation. Such as with small matrices, the overhead in

multithreading outweighs the time saved by parallelizing due to

thread spawning overhead. The overhead in copying to the AVX

registers for smaller matrices is enough to make it slower than

normal algorithms.

Doing matrix operations on a device specifically tailored for

matrix operations, like a GPU, is a valid option, provided the

appropriate situation. GPUs in general are more power hungry

than CPUs, which can be an issue on laptops where battery life

matters.

In conclusion, due diligence is needed to determine which

approach is best for the job, and while the naïve algorithm is

relatively the slowest of the bunch, what matters more is the

implementation, not the asymptotic complexity. Don’t be

discouraged to use the naïve algorithm, unless large datasets are

used in which other algorithms and implementations are much

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

better suited for the job.

V. APPENDIX

Source code for the program used for this paper can be found

in this link, which contains all the algorithms used in this paper.

The program is entirely written in C++. Python source code is

not provided, as it is only for example purposes.

VI. ACKNOWLEDGMENT

This paper would not have been brought to fruition without

resources provided by the IF2120 Discrete Mathematics class

with the guidance of Fariska Zakhralativa Ruskanda, S.T., M.T.

as the lecturer of the author in class.

The author would like to thank other brilliant programmers in

the world for sharing their knowledge and code, as without it

this paper would not have been complete. Without readily

available documentation, the author would not have been able

to learn and create a program for this purpose.

REFERENCES

[1] Ambainis, Adris, Yuval Filmus, François Le Gall, (2014), Fast Matrix
Multiplication: Limitations of the Laser Method,

http://www.cs.toronto.edu/~yuvalf/AmbFilLeG14.pdf [Accessed: Dec.

11, 2022].
[2] Duan, Ran, Hongxun Wu, Renfei Zhou, (2022), Faster Matrix

Multiplication via Asymmetric Hashing,

https://doi.org/10.48550/arXiv.2210.10173 [Accessed: Dec. 11, 2022].
[3] Fawzi, A., Balog, M., Huang, A. et al. Discovering faster matrix

multiplication algorithms with reinforcement learning. Nature 610, 47–53

(2022). https://doi.org/10.1038/s41586-022-05172-4 [Accessed: Dec. 10,
2022]

[4] Huang, Jianyu & Smith, Tyler & Henry, Greg & van de Geijn, Robert.

(2016). Strassen's Algorithm Reloaded. 690-701. 10.1109/SC.2016.58

[Accessed: Dec. 11, 2022].

[5] Higham, Nicholas J., (1990), Exploiting Fast Matrix Multiplication Within

the Level 3 BLAS,
https://www.maths.manchester.ac.uk/~higham/papers/high90s.pdf

[Accessed: Dec. 11, 2022]

[6] Intel, (2022), Intel Intrinsics Guide,
https://www.intel.com/content/www/us/en/docs/intrinsics-

guide/index.html#techs=AVX,AVX2 [Accessed: Dec. 11, 2022]

[7] Intel, (2015), Intel Architecture Instruction Set Extensions Programming
Reference, https://www.cs.utexas.edu/~hunt/class/2016-

spring/cs350c/documents/Intel-x86-Docs/64-ia-32-architectures-

instruction-set-extensions-reference-manual.pdf [Accessed: Dec. 11,
2022]

[8] Landsberg, J. M. Geometry and Complexity Theory 169 (Cambridge Univ.

Press, 2017) [Accessed: Dec. 10, 2022].
[9] Mahato, Saahil, (2020), Strassen’s Matrix Multiplication Algorithm,

https://medium.com/swlh/strassens-matrix-multiplication-algorithm-

936f42c2b344 [Accessed: Dec. 10, 2022].
[10] OpenMP, (2018), SIMD Directives, https://www.openmp.org/spec-

html/5.0/openmpsu42.html [Accessed: Dec. 10, 2022].

[11] Ståhlberg, Henrik, (2017), “AVX SIMD in Matrix Multiplication”,

https://codereview.stackexchange.com/questions/177616/avx-simd-in-

matrix-multiplication [Accessed: Dec. 10, 2022].

[12] Williams, Virginia Vassilevska, (2014), Multiplying matrices in O(n2,373)
time, http://theory.stanford.edu/~virgi/matrixmult-f.pdf [Accessed: Dec.

11, 2022].

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 11 Desember 2022

Ammar Rasyad Chaeroel

13521136

https://github.com/ammarasyad/SIMD-MatrixMultiplication
http://www.cs.toronto.edu/~yuvalf/AmbFilLeG14.pdf
https://doi.org/10.48550/arXiv.2210.10173
https://doi.org/10.1038/s41586-022-05172-4
https://www.maths.manchester.ac.uk/~higham/papers/high90s.pdf
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#techs=AVX,AVX2
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#techs=AVX,AVX2
https://www.cs.utexas.edu/~hunt/class/2016-spring/cs350c/documents/Intel-x86-Docs/64-ia-32-architectures-instruction-set-extensions-reference-manual.pdf
https://www.cs.utexas.edu/~hunt/class/2016-spring/cs350c/documents/Intel-x86-Docs/64-ia-32-architectures-instruction-set-extensions-reference-manual.pdf
https://www.cs.utexas.edu/~hunt/class/2016-spring/cs350c/documents/Intel-x86-Docs/64-ia-32-architectures-instruction-set-extensions-reference-manual.pdf
https://medium.com/swlh/strassens-matrix-multiplication-algorithm-936f42c2b344
https://medium.com/swlh/strassens-matrix-multiplication-algorithm-936f42c2b344
https://www.openmp.org/spec-html/5.0/openmpsu42.html
https://www.openmp.org/spec-html/5.0/openmpsu42.html
https://codereview.stackexchange.com/questions/177616/avx-simd-in-matrix-multiplication
https://codereview.stackexchange.com/questions/177616/avx-simd-in-matrix-multiplication
http://theory.stanford.edu/~virgi/matrixmult-f.pdf

