

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

Implementation of Compact Trie in React

Autocomplete Input Component to Increase Memory

Efficiency

Made Debby Almadea Putri - 135211531

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113521153@mahasiswa.itb.ac.id

Abstract—Autocomplete Input Component is a commonly used

component in building application where the user can get

automatic suggestion based on their input. Autocomplete

implementation use a tree-based data structure called trie.

However, the basic implementation of trie brings new problem as

it can take a lot of space. In order to increase memory efficiency of

trie data structure, the trie is modified into compact trie. This

modification of trie will be discussed in this paper along with its

memory usage comparison with basic trie.

Keywords—Autocomplete, Compact Trie, Tree, Trie.

I. INTRODUCTION

While building an application, we often deal with form

submission that requires the user to only input values within list

of options. This can be dealt by using HTML Element called

radio button for single choice and checkbox for multiple choice.

However, that does not always solve the problem. There are

some cases where there were more than 30 options that the user

can choose. Using only HTML Element can break the interface

of our application, as it takes a lot of space, and decrease the user

experience, as the user needs to scroll down to see all the

options. This is where a new component called Autocomplete

Input Component came in handy.

Autocomplete, according to Cambridge Dictionary, is a

computer program that automatically finishes a word that

someone has started to type [1]. While you type in some input

area, e.g., form input or google search engine, a list of prediction

of words or sentences you wanted to type will be shown.

Autocomplete Input Component is a component used to get user

input where the user can type the prefix of the options they

wanted to choose and the application will show options that

matches the prefix the user typed.

The implementation of autocomplete commonly use tree-

based data structure called trie. One of trie implementation, as

explained by Jay Wengrow, is by using nodes containing a

HashMap with characters as keys and other nodes of trie as

values [2]. While it is simple and fast for list of short words, it

can cause potentially dangerous memory issues if the options are

long phrases, e.g., name of institution or suggestions in search

engine, as it can only store one character in one node.

There are many alternates to solve this problem, such as

burst-trie (Heinz, Zobel, and Williams 2002) [3], PATRICIA-

trie (Donald R. Morrison 1968) [4], and HAT-trie (Askitis and

Sinha 2007) [5]. However, the general idea behind those

solution are similar which is using a compressed or compact trie

data structure. Unlike the basic trie data structure, each nodes of

compact trie can store more than one characters, making each

nodes at least have two child.

In this paper, the Autocomplete Input Component will be

implemented with a compressed trie data structure suggested by

Jay Wengrow using object-oriented programming. The

component will be made using TypeScript and JavaScript

framework, React, with intention of good reusability and

customization. The author will also compare the memory usage

for both basic trie and compact trie with the help of chrome

developer tools.

II. BASIC THEORY

A. Tree

Tree is a node-based data structure where each node is

connected by an edge. Unlike graphs, tree nodes should not

create a circuit. For example, if we have a simple undirected

graph 𝐺 = (𝑉, 𝐸) with n vertices, then 𝐺 is a tree if 𝐺 is a

connected graph with 𝑚 = 𝑛 − 1 edges [6]. Based on this, the

graphs in Fig.1, from left to right, can be classified as tree, tree,

non-tree, and non-tree.

Fig. 1 Example of Tree and Non-Tree

(Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-

2021/Pohon-2020-Bag1.pdf)

B. Rooted Tree

A rooted tree is a tree that represents a hierarchy. Given

by its name, a rooted tree has one node that acts as a root and

every edges were given a direction, making it a directed graph

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Pohon-2020-Bag1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Pohon-2020-Bag1.pdf

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

[7].

Fig. 2 Example of Rooted Tree

(Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2021-

2022/Pohon-2021-Bag2.pdf)

Rooted tree consist of some terminologies to help us analyze

its data structure. First, if 𝑁 is a rooted tree node and 𝑁 is

connected with node 𝑀, then 𝑁 is the parent of 𝑀 and 𝑀 is a

child of 𝑁. For example, in Fig.2, node h, i, j, and k are the

children of node e and e is the parent of h, i, j, and k. A parent

node can have none to n-many children.

Second, because rooted tree is a graph, it also has a path. Path

in rooted tree 𝑇 with length n is a series of nodes and edges

𝑣0, 𝑒1, 𝑣1, … , 𝑣𝑛−1, 𝑒𝑛−1, 𝑣𝑛 that connects one node 𝑣0 to node 𝑣𝑛

so 𝑒1 = (𝑣0, 𝑣1), . . , 𝑒𝑛−1 = (𝑣𝑛−1, 𝑣𝑛) is the edges of the rooted

tree 𝑇 [8].

Third, if 𝑁 is a parent of node 𝑃 and 𝑄 then 𝑃 and 𝑄 are

called siblings. For example, in Fig.2, node e and f are sibling

because it has the same parent, b, while f and g are not sibling

because node g parent is d.

Fourth, if 𝑇 is a rooted tree and 𝑆 is a node in rooted tree 𝑇

then we can view node 𝑆 and its descendants as another rooted

tree then 𝑆 is a subtree of rooted tree 𝑇.

Fifth, degree of a node 𝑁 is the amount of subgraph or

children in node 𝑁. For example in Fig.2, node a has 3 degree

while node c has 0 degree. Sixth, node with 0 degree are called

leaf. In Fig. 2, node h, i, j, f, c, l, and m are leaf. Seventh, node

with at least 1 degree are called internal nodes. Because root tree

represents hierarchy, it also has levels, heights or depth as

visualized by Fig. 3.

Fig. 3 Levels of Rooted Tree

(Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2021-

2022/Pohon-2021-Bag2.pdf)

Based on the maximum degree or children each node have, a

rooted tree are divided into two group, binary tree and n-ary tree.

Binary tree is a tree which each node has no more than 2 degree.

On the other hand, n-ary tree is a tree which each node can have

more than 2 degree.

C. Trie

Trie, according to Jay Wengrow, is a tree-based data structure

that is usually implemented in text-based structure such as

autocomplete [2]. The word trie originated from the word

retrieval. It is also often called as digital tree or prefix tree.

Because a trie is a node-based data structure, it can retrieve

collection of strings that match the given prefix faster and more

feasible than hash table. Each node of trie contains a character

and pointers to the next possible character in a dictionary. The

trie data structure also includes an end of string symbol [9].

Fig. 4 Implementation of Trie with HashMap

(Source: [2] Wengrow, J., MacDonald, B. (2020). It

Doesn’t Hurt to Trie. In A common-sense guide to data

structures and algorithms: Level up your core programming

skills. essay, The Pragmatic Bookshelf.)

A simple implementation of trie is by using a HashMap to

store characters and pointers in each node. The key is a character

and the value is a pointer to all possible character after the key.

In Fig. 4 is a trie which stores the word “ace”, “act”, “bad”, and

“cat”. As you can see, there are nodes that has key ‘*’ and value

nil. This indicates a traversal from the root to those nodes will

form a word. This end of word symbol is extremely important

especially when there are word that is a substring of other word.

For example, in Fig. 5, a node contains keys ‘*’ and ‘t’. This

means traversing to those nodes will form a word “bat” but it

can still be traversed to form another word, “batter”, which has

“bat” as a substring.

Fig. 5 Implementation of Trie with HashMap

(Source: [2] Wengrow, J., MacDonald, B. (2020). It

Doesn’t Hurt to Trie. In A common-sense guide to data

structures and algorithms: Level up your core programming

skills. essay, The Pragmatic Bookshelf.)

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2021-2022/Pohon-2021-Bag2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2021-2022/Pohon-2021-Bag2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2021-2022/Pohon-2021-Bag2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2021-2022/Pohon-2021-Bag2.pdf

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

D. Compact Trie

Compact trie, often called compressed trie, PATRICIA

trie or radix trie, is a modified trie which any path that has

internal nodes with only one degree or child are compressed

into one edge. In short, each node of a compressed trie are

either a node with 0 degree (leaf) or at least 2 degree [10].

This alternate data structure is proposed because the usual trie

data structure will eventually suffer in space as each node can

only store up to one character.

Fig. 6 Difference Between Trie (Top) and Compact Trie

(Bottom)

(Source: https://cgi.luddy.indiana.edu/~yye/c343-

2019/tries.php)

In Fig. 6, we can see the difference in the number of nodes

needed to build the tree between trie and compact trie. Trie

required more than 40 nodes to build a trie that only store 10

words, while a compact trie only require 18 nodes. Similar to

trie, a compact trie also needs to store end of word symbol. The

disadvantage of this data structure is looking up words that

match given prefix require additional algorithm that is to

traverse each character stored in a node before traversing to the

next possible node [10]. Because we can store up to the whole

string in one node, the “word” inserted to the compact trie can

be a phrases or even a sentence. For consistency, the word

“word” will still be used but it does not only reference a word

but also a phrases or a sentence.

E. Memory Terminology

The size of an object is classified into two types, shallow size

and retained size. This classification is based on the way an

object hold its memory. Shallow size is the size of memory by

the object itself [11]. Retained size is the size of memory by the

object itself plus all objects referenced by this object [12]. In

modern JavaScript, unneeded memory are automatically

deallocated by garbage collection (GC). However, GC does not

deallocate memory of objects referenced by another object that

is still needed by the program.

III. COMPACT TRIE ALGORITHM AND IMPLEMENTATION

A. Data Structure

Compact trie will be implemented using JavaScript Map,

similar to the one in trie implementation, with a character as key

and pointer to other node as value. There is also additional data

in each node which is value that contain the string stored in each

node. The diagram of compact trie data structure are shown in

Fig. 7.

Fig. 7 Data Structure of Compact Trie

(Source: Personal Library)

For convenience, the Map for children will be referenced as

children map. In Fig.7, the root contains a value nil because

there are no words stored in the trie at the beginning. The root

also contains a children map with keys ‘a’, ‘b’, and ‘c’ which

are the first unique character for all stored word. The children

map value is a pointer that points to the child node that store

string value beginning with the character stored in their (pointer)

associated key. The child node will also have a children map that

has the first character of each string value in their children node

as keys and their children node as pointer. At the end of every

word, there is a symbol ‘$’ that indicates the end of a word.

Fig. 8 Data Structure of Compact Trie Node

(Source: Personal Library)

Fig. 9 Data Structure of Compact Trie

(Source: Personal Library)

B. Word Insertion

The insertion of our compact trie is categorized into three

cases. The first case is the best case, which is when the words

stored in the trie does not have the same first character as the

word that will be inserted. For example, we wants to insert a new

word in already constructed trie in Fig. 7. Before we start to

move to the algorithm, we first convert the word to a lowercase

https://cgi.luddy.indiana.edu/~yye/c343-2019/tries.php
https://cgi.luddy.indiana.edu/~yye/c343-2019/tries.php

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

so it still will match even when the user inputs a mixed type of

lowercase and uppercase. After we convert it to a lowercase

letter, then the algorithm of insertion are as follows:

1. Take the first character of the new word and use it as a

key to check if there exist a child with that key in the

root children map

2. If there is no child then this would be the best case of

insertion as no more traversal is needed to insert the

new word. Create a new trie node with the whole word

as the value and insert a new child node to the root node

with key the first character of the new word and value

the new trie node that just been made.

3. If there exist a child with the key then we begin to

traverse the string value in the child node. While

traversing, we compare each character of the new word

and the string value of child node. The traversal is

terminated when the index is out of range of either the

new word or the string value of the child node.

4. If the character at index i is not equal for both string,

then we move to the next step which is splitting the

both string at index i. For example, the word “channel”

will be inserted to the trie on Fig. 7. The first character,

‘c’ already exist as a key to a child node in the root

node. However, the third character of the new word, ‘a’

does not match the third character of the value stored
in the child node, ‘e’. Both string then split at the third

character (or index 2) resulting in two string, “ch” and

“erry$” for the value in the child node, “ch” and

“annel” for the new word. The first substring for both

words, “ch”, will became the new value of the child

node. Two new trie nodes then created with value of

the later half of the split string, “erry$” and “annel$”

with each has key of the respective first character, “e”

and “a”. These two nodes then inserted as a new child

of the child node “ch”. Because this compact trie use

Map to store the key and not node, there is no need to

calculate the order of insertion. In every insertion, the

new word is concatenated with the end of word symbol

‘$’.

Fig. 10 Trie After Insertion of The Word “channel”

(Source: Personal Library)

5. If the given word has length less than the compared

string value and all character at the start index to length

of given word – 1 are equals then we do the same thing

as step 4, but instead of splitting the given word, the

new node has a value of symbol ‘$’ or the end of word

symbol. The key will also be the symbol ‘$’. For

example the word “ban” will be inserted to the trie in

Fig. 10. After we did step 2, we arrived at the child

node containing the value of “banana$”. Because “ban”

is the prefix of “banana$”, then the comparison from

the starting index 0 to the minimum index possible for

the two strings, in this case length of given word – 1,

will give equal result. Similar to step 4, the value in

child node is split at index of the length of given word,

in this case index 3, resulting in substring “anana”.

Because there are no more character left in “ban”, the

second node will have the value of “$” as shown in the

Fig. 11.

Fig. 11 Trie After Insertion of The Word “ban”

(Source: Personal Library)

6. If the trie level is more than 2 and the given word is

longer than the value in the child node and the traversal

is terminated at index i then execute step 1 – 6 except

the root node, or the parent node, is the current child

node and the starting index is not 0 but index i. For

example the word “channeling energy” will be inserted

to the trie in Fig. 12. After executing step 3, the

traversal terminated while there are still characters left

in the given word. However we cannot insert a new

node to the child node immediately because there is a

possibility the child node have children with the same

prefix as the given word. Now, to make referencing

more simple, the current child node became the “root”

node or the parent node and the start index is not 0 but

i. For example the traversal in node with value “annel”

will terminated after letter ‘l’ so the remaining “ing

energy” part of the given word remains unchecked. By

stating index i as the new index 0 is the same as making

“ing energy” as the word that will be inserted. After

executing step 2 – 5 with this new rules, the resulting

trie is shown at Fig. 13.

Fig. 12 Trie After Insertion of The Word

“channeling”

(Source: Personal Library)

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

Fig. 13 Trie After Insertion of The Word “channeling

energy”

(Source: Personal Library)

Fig. 14 Implementation of Insertion Algorithm in TypeScript

(Source: Personal Library)

To make it simpler for the component to insert words in a batch,

the compact trie class also has insertAll method shown in Fig.

15.

Fig. 15 Implementation of InsertAll Method in TypeScript

(Source: Personal Library)

C. Looking up Words

The algorithm to look up for all the words matching the given

prefix is similar to the insertion algorithm except for additional

recursive algorithm to get all possibility. The recursive

algorithm is similar to the one suggested by Jay Wengrow [2]

with some modification to fit the data structure of compact trie.

The recursive part does not immediately performed, but there

are some pre-lookup algorithm needed to perform the recursion.

For example, given a prefix “cha” then the algorithm for looking

up words are:

1. Search for the node with maximum depth that has the

same prefix as the given prefix. This is the pre-

recursion part and the node is called the starting node.

Searching for the starting node is similar to the one in

insertion. In Fig. 16. searching for the start node also

involved searching the child node and matching the

value in the child node with the given string. If when

searching for the child node by key, it returns undefined

value then there is no need to perform a recursion

because it means there is no words stored in compact

trie that has the same prefix as the given prefix. If there

is a child then the algorithm checks if the given prefix

is also a prefix for the value in a child. If it is, then that

child node is the start node of the recursion process. For

given prefix “cha” then the node with maximum depth

that has the prefix “cha” is node with value “annel”,

because the path from the root node to the start node

formed a word “channel” with prefix “cha”.

Fig. 16 Implementation of Searching for Start Node in

TypeScript

(Source: Personal Library)

2. The starting node is now viewed as the root node

making it and its descendant node a subtree of a

compact trie. Because the starting node is the node that

has maximum depth with the same prefix as the given

prefix then all of its descendant also has the same prefix

as the given prefix.

3. The first step is to check if the start node is a leaf node.

If it is a leaf node (base 1) then the path from the

original root node to that node must formed a word.

This word then stored inside an array of string that will

be returned at the end [2]. While pushing a new word

to the array, we need to remove the end of word symbol

‘$’ so the array only contains the pure word without the

mark.

4. If the start node has children then for each child, if the

child value is ended with an end of word symbol (base

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

2) then the path from the original root node to the child

node also formed a word. Similar to step 3, this word

also stored in an array of string, with the end of word

symbol removed. If the child value is not ended with

an end of word symbol then we perform the recursive

part with new prefix which is the given prefix

concatenated with the value in the child node and a new

start node which is the child node.

Fig. 17 Implementation of Looking up Words Algorithm in

TypeScript inspired by reference [2]

(Source: Personal Library)

Fig. 18 Method to Retrieve All Words

(Source: Personal Library)

For given prefix “cha”, after executing step 1 – 4, we will

obtain an array of string containing “channel” and “channeling”.

The method to retrieve all words is shown in Fig. 18. First, it

execute the first step which is getting the start node and if the

start node is undefined then it returns empty array indicating

there is no match. If there is a start node then it calls the lookup

method with new prefix equals to the word formed from the root

up to the start node as returned by the getStartNode method in

Fig. 16.

D. Implementation in React Autocomplete Input Component

The Autocomplete Input Component in React is divided into

two sub-component, the input component and the box

component. The input component is the component that is

responsible for obtaining the user input and calling the method

in class compact trie to retrieve all words that has prefix equals

to the string from the input. In this implementation, the

autocomplete input will be restricted, meaning the user can only

submit values within the options provided by the application.

The box component will show all matching words based on user

input.

The Autocomplete Input Component has four properties;

words is an array of string that will be stored inside the compact

trie; style is an Object for the style of the component, the string

is in a format of tailwind styling; onSubmit is a method that has

the value the user choose as the parameter; placeholder is a

placeholder for the input component. The interface of this

properties is shown in Fig. 19.

Fig. 19 Interface for Autocomplete Input Component Props

(Source: Personal Library)

At first render, the component will create a new compact trie

object and call the insertAll method from compact trie class.

Every time the user type in the prefix in the input area, the

component will call getWords method. The array returned by

the method is stored in a state and rendered via box component.

The website preview for Autocomplete Input Component is

shown in Fig. 20.

Fig. 20 Preview for Autocomplete Input Component

(Source: Personal Library)

IV. MEMORY USAGE COMPARISON

In order to see the difference clearly, the words used in the

comparison experiment are phrases with length more than 20.

The words are retrieved from international university API by

hipolabs. This experiment only use up to 160 universities in

Indonesia.

Table 1 Example of Words Used in Experiment

Word Length

Akademi Farmasi Mitra

Sehat Mandiri Sidoarjo
44

Institut Sains & Teknologi

Akprind
34

STMIK AMIKOM

Yogyakarta
23

STIKES RS Anwar Medika 22

Universitas Katolik

Indonesia Atma Jaya
39

(Source:

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

http://universities.hipolabs.com/search?country=indonesia)

Computation of the memory usage by each trie were done in

real-time by using google developer tools, heap memory

snapshot. The snapshot showed the shallow size and retained

size of an object. As shown in Table 2 and Fig. 21, the shallow

size of both trie object are equals meaning the object have the

same direct use of memory. A very significant difference is

shown by the retained size. The retained size of compact trie is

almost 10 times smaller than the retained size of basic trie (trie).

The cause of this is related to the total node used by each trie.

Basic trie use a total of 151 nodes to store 5 words, shown by

Table 1, while compact trie only use 7 of them. This bloated

node use by basic trie is because the similarity of the prefix store

inside the trie is minimum. The graph in Fig. 22 shown a very

fast increase in total size of the trie nodes as the total words

increased.

Fig. 20 Trie and Compact Trie Comparison

(Source: Personal Library

Fig. 21 Trie Node and Compact Trie Node Comparison

(Source: Personal Library)

V. CONCLUSION

Autocomplete Input Component is an important component to

improve user experience of our application. The most common

implementation is a tree-based implementation called trie. The

data structure of a basic trie, however, only store up to one

character each node. This caused a problem in memory usage.

This problem can be solved by using compressed trie or compact

trie. Compact trie can reduce the size of the trie up to 10 times

smaller. This is due to the node of compact trie have at least two

children if they are not a leaf node and each node does not only

store a character but also a string value.

VI. APPENDIX

The website preview along with the code implementation of

compact trie and the basic implementation of trie based on

reference [2] can be accessed via

https://github.com/debbyalmadea/autocomplete-trie. The

repository for API used in section IV can be accessed via

https://github.com/Hipo/university-domains-list.

VII. ACKNOWLEDGMENT

I want to express my gratitude to God, who has given me

knowledge and strength to finish this paper.

I am also very grateful to Ms. Fariska Zakhralativa Ruzkanda,

Table 2 Memory Usage of Trie and Compact Trie (bytes)

Total

Words

Avg

Length

Trie Trie Node Compact Trie Compact Trie Node

Shallow

Size

Retained

Size

Total

Node

Shallow

Size

Retained

Size

Shallow

Size

Retained

Size

Total

Node

Shallow

Size

Retained

Size

5 32 60 17592 161 2576 17456 60 1484 7 140 1348

10 27 60 25420 232 3712 25292 60 2760 15 300 2624

20 28 60 42972 394 6304 42844 60 5252 31 620 5124

40 26 60 72460 666 10656 72332 60 9804 62 1240 9676

80 26 60 125060 1152 18432 124932 60 18352 121 2420 18224

160 26 60 206420 1898 30368 206264 60 34320 234 4680 34192

(Source: Google Heap Memory Snapshot)

http://universities.hipolabs.com/search?country=indonesia
https://github.com/debbyalmadea/autocomplete-trie
https://github.com/Hipo/university-domains-list

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

S.T. M.T., who introduced me to the world of graphs and trees.

The idea and the research behind this paper would not be

possible without her guidance and knowledge.

Last, I also want to express my appreciation towards previous

researcher in trie data structure and its modification. Without

their insight and determination, it would not be possible for me

to have the base idea for trie and this paper.

REFERENCES

[1] Autocomplete. Cambridge Dictionary. (n.d.). Retrieved December 10,

2022, from

https://dictionary.cambridge.org/dictionary/english/autocomplete
[2] Wengrow, J., MacDonald, B. (2020). It Doesn’t Hurt to Trie. In A

common-sense guide to data structures and algorithms: Level up your core

programming skills. essay, The Pragmatic Bookshelf.

[3] Heinz, S., Zobel, J., Williams, H. E. (2002). Burst tries. ACM Transactions

on Information Systems, 20(2), 192–223.
https://doi.org/10.1145/506309.506312

[4] Morrison, D. R. (1968). Patricia—practical algorithm to Retrieve

Information Coded in alphanumeric. Journal of the ACM, 15(4), 514–534.

https://doi.org/10.1145/321479.321481

[5] Askitis, N., & Sinha, R. (2007). HAT-trie: A Cache-conscious Trie-
based Data Structure for Strings. Retrieved December 10, 2022, from

https://www.researchgate.net/publication/262410440_HAT-

Trie_A_Cache-Conscious_Trie-Based_Data_Structure_For_Strings.

[6] Munir, R. (2021). Pohon 2020 Bag 1. Homepage Rinaldi Munir. Retrieved

December 10, 2022, from
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Pohon-

2020-Bag1.pdf

[7] Munir, R. (2021). Pohon 2020 Bag 2. Homepage Rinaldi Munir. Retrieved

December 10, 2022, from

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Pohon-
2020-Bag2.pdf

[8] Munir, R. (2021). Graf 2020 Bag 1. Homepage Rinaldi Munir. Retrieved

December 10, 2022, from

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-

2020-Bagian1.pdf
[9] Trie data structure - javatpoint. www.javatpoint.com. (n.d.). Retrieved

December 12, 2022, from https://www.javatpoint.com/trie-data-

structure#:~:text=Trie%20is%20a%20sorted%20tree,help%20of%20the

%20word's%20prefix.

[10] CGLAB. (n.d.). Chapter 7 Data Structures for Strings - cglab.ca.
Computational Geometry Lab. Retrieved December 10, 2022, from

https://cglab.ca/~morin/teaching/5408/notes/strings.pdf

[11] news, M. K. O. latest. (n.d.). Memory terminology. Chrome Developers.

Retrieved December 11, 2022, from

https://developer.chrome.com/docs/devtools/memory-problems/memory-
101/

[12] Dominators¶. Dominators - Firefox Source Docs documentation. (n.d.).

Retrieved December 11, 2022, from https://firefox-source-

docs.mozilla.org/devtools-
user/memory/dominators/index.html#:~:text=shallow%20size%3A%20th

e%20size%20of,kept%20alive%20by%20this%20object

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 12 Desember 2022

Made Debby Almadea Putri - 13521153

https://dictionary.cambridge.org/dictionary/english/autocomplete
https://doi.org/10.1145/506309.506312
https://doi.org/10.1145/321479.321481
https://www.researchgate.net/publication/262410440_HAT-Trie_A_Cache-Conscious_Trie-Based_Data_Structure_For_Strings
https://www.researchgate.net/publication/262410440_HAT-Trie_A_Cache-Conscious_Trie-Based_Data_Structure_For_Strings
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Pohon-2020-Bag1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Pohon-2020-Bag1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Pohon-2020-Bag2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Pohon-2020-Bag2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian1.pdf
https://www.javatpoint.com/trie-data-structure#:~:text=Trie%20is%20a%20sorted%20tree,help%20of%20the%20word's%20prefix
https://www.javatpoint.com/trie-data-structure#:~:text=Trie%20is%20a%20sorted%20tree,help%20of%20the%20word's%20prefix
https://www.javatpoint.com/trie-data-structure#:~:text=Trie%20is%20a%20sorted%20tree,help%20of%20the%20word's%20prefix
https://cglab.ca/~morin/teaching/5408/notes/strings.pdf
https://developer.chrome.com/docs/devtools/memory-problems/memory-101/
https://developer.chrome.com/docs/devtools/memory-problems/memory-101/
https://firefox-source-docs.mozilla.org/devtools-user/memory/dominators/index.html#:~:text=shallow%20size%3A%20the%20size%20of,kept%20alive%20by%20this%20object
https://firefox-source-docs.mozilla.org/devtools-user/memory/dominators/index.html#:~:text=shallow%20size%3A%20the%20size%20of,kept%20alive%20by%20this%20object
https://firefox-source-docs.mozilla.org/devtools-user/memory/dominators/index.html#:~:text=shallow%20size%3A%20the%20size%20of,kept%20alive%20by%20this%20object
https://firefox-source-docs.mozilla.org/devtools-user/memory/dominators/index.html#:~:text=shallow%20size%3A%20the%20size%20of,kept%20alive%20by%20this%20object

	I. Introduction
	II. Basic Theory
	III. Compact Trie Algorithm and Implementation
	A. Data Structure
	B. Word Insertion
	C. Looking up Words
	D. Implementation in React Autocomplete Input Component

	IV. Memory Usage Comparison
	V. Conclusion
	VI. Appendix
	VII. Acknowledgment
	References
	PeRNYATAAN

