
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

Custom Vigenère Encryption Using Huffman Coding

Algorithm

Antonio Natthan Krishna - 135211621

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113521162@std.stei.itb.ac.id

Abstract—This paper discusses simple implementation of Vigenère

cipher on compressed text using Huffman Code. This method of

encryption is easy to understand and suitable for beginners as an

introductory material to Cryptography. It uses some of the most

foundational topics in Computer Science e.g., Binary Tree,

Combinatorics, and Graph. This paper also includes implementation

of data structures, algorithms, and experiments to some test cases.

Keywords— Binary Tree, Huffman Coding, Cryptography,

Vigenère Cipher.

I. INTRODUCTION

Cryptography is one of the most crucial parts of computer

science. Computer science students, like me, are required to

understand the process of cryptography which includes the

process of encryption and decryption. There are many

encryption and decryption algorithms out there, from the

simplest i.e., Caesar cipher, to the more advanced and high-

tech algorithms e.g., Advanced Encryption Standards (AES)

and RSA Security. Since Caesar cipher is no longer a secure

algorithm, the understanding of advanced encryption

algorithms is needed.

However, the advanced algorithms that I stated above is not

easy to comprehend at all. Caesar cipher is still mandatory

material in cryptography. The more “high-end” simple

algorithm, Vigenère cipher, is one way to dig deeper in

cryptography. The comprehension to those 2 topics is

important before learning advanced algorithms that are

applicable in real life.

This paper discusses Vigenère cipher algorithm. We do not

encrypt original text but compressed text using Huffman

coding algorithm. Huffman coding algorithm one way to

compress text, so we do not have store or send text in its

original size. Huffman coding algorithm is similar to general

encryption algorithms, where we try to convert original text to

another form, but since we have to store all Huffman code in a

list, Huffman coding cannot be categorized as encryption

algorithms.

I try to combine Huffman coding compressed text and

Vigenère cipher to implement a new way to encrypt a text. By

using this method, we can have a secure and minimal-size text.

This method can be taught to computer science students as an

introduction to cryptography because it uses fundamental

concepts that computer science students must have, i.e., graph,

binary-tree, and combinatorics.

This method might not be the most effective algorithm, but

this is suitable for beginners who are interested to learn

cryptography

II. THEORY AND CONCEPTS

A. Introduction to Cryptography

Cryptography is a subject that discusses secret transmission

of messages between two parties. The first party (let us say as

A) will translate the message to some unknown language. The

message will be delivered to destination party (let us say as B).

After the message is delivered, B would translate it back to

normal form, so that B would understand what A is trying to

say. The goal of this system is that there is no one, except A

and B, would understand the message. In today’s world,

cryptography is a foundation of cyber security. Internet

account, text messages, calls, and video calls use cryptography

to keep user’s personal information safe.

Cryptography consists of encryption and decryption.

Encryption is a process to convert original message to another

form, while conversely decryption bringing back encrypted

messages to its original form. There are many algorithms to

encrypt and decrypt messages. One of the most secure

examples like Triple DES, Blowfish, Twofish and many more.

In the next section, we will discuss one of the most ancient but

powerful cipher algorithms (Vigenère cipher) that has been a

foundation of many advanced algorithms I stated previously.

B. Vigenère Cipher

The idea used in Vigenère cipher is instead using single

cipher key to encrypt all character in data test, we use a string

of key which we called as password to encrypt our data test.

The enciphering process starts with repeating user’s password

as many times as necessary to span the length of data test.

Every character has its own ID, we use Caesar cipher for a

particular character with corresponding password character as

its cipher key. Yes, Vigenère cipher is technically just like

Caesar cipher, but it uses different cipher key for different

character.

For example, suppose we are going to encrypt only

uppercase letter of alphabet. Our password is “KEY” and we

are going to encrypt the word “HELLO” using Vigenère

cipher. So, the process of enciphering is listed below,

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

1. “HELLO” is consisted by 5 characters, then we span the

word “KEY” until there are 5 characters.

K E Y K E

2. Now, each letter in “HELLO” has a corresponding

password letter.

K E Y K E

H E L L O

3. Using Caesar cipher, we encrypt each character in row

2, with cipher key as listed in row 1. For example, we

have encryption table for uppercase letter,

A B C D E F G H I J K L M

0 1 2 3 4 5 6 7 8 9 10 11 12

N O P Q R S T U V W X Y Z

13 14 15 16 17 18 19 20 21 22 23 24 25

The encryption process uses this formula,

Cipher Text = Original Text + Key

The letter H (7) would be encrypted using key K (10),

then the cipher text letter corresponds to alphabet 7 + 10

= 17 (R). If enciphering process results a number that is

larger than 25, use modulo concepts e.g., L (11) with

key Y (24) enciphers 24 + 11 = 35. Using modulo

concepts 35 mod 26 = 9 results the letter “J”. Do the

same algorithm for all characters in data test until we

have table as below,

Password K E Y K E

Data test H E L L O

Cipher text R I J V S

4. Note that for the letter “L”, we can get different cipher

text letter. So, it will take a longer time for one who

does not know cipher password to decrypt the data test.

In contrast, it is easy to do a brute force attack to Caesar

cipher. Because of that, Vigenère cipher has influenced

many cipher algorithms throughout history and is still in

use today.

Decrypting Vigenère cipher use the similar algorithm to the

encryption one with steps listed below,

1. “RIJVS” is consisted by 5 characters, then we span the

word “KEY” until there are 5 characters.

K E Y K E

2. Again, each of letter of “RIJVS” has a corresponding

letter password.

K E Y K E

R I J V S

3. The decryption process uses this formula,

Original Text = Cipher Text - Key

The letter R (17) would be decrypted using key K (10),

then the cipher text letter corresponds to alphabet 17 –

10 = 7 (H). If deciphering process results a number that

is lower than 0, use modulo concepts e.g., J (9) with key

Y (24) deciphers 9 - 24 = -15. Using modulo concepts -

15 mod 26 = 11 results the letter “L”. Do the same

algorithm for all characters in data test until we have

table as below,

Password K E Y K E

Cipher text R I J V S

Data test H E L L O

C. Graph and Tree

1. Graph

Graph is a way to represent discrete objects and

relationships among them. It consists of two main

properties: vertex and edge. Formal definition of

graph,

G = (V, E)

where V is nonempty set of vertices and E is set of

edges (can be empty).

Fig. 1 Examples of graph

(Source: References [1])

Based on type of edges, graph is classified into 3

main categories,

a. Simple graph

Graph which does not contain multiple edges

(edges that have the same initial and final vertex

with initial vertex ≠ final vertex) and loop (edge

that start and finish on the same vertex).

Fig. 2 Examples of Simple Graph

(Source: References [1])

b. Multi-graph

Graph which has multiple edges but not loop.

Fig. 3 Examples of Multi-Graph

(Source: References [1])

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

c. Pseudo-graph

Graph which has multiple edges and/or loop(s).

Fig. 4 Examples of Pseudo-Graph

(Source: References [1])

Based on edge directions, graph is classified into 2

categories,

1. Undirected Graph

Graph that has undirected edge.

Fig. 5 Examples of Undirected Graph

(Source: References [1])

2. Directed Graph

Graph that has directed edge.

Fig. 6 Examples of Directed Graph

(Source: References [1])

In Graph, there are properties called, path and

circuit. Path (or trail) is series of vertices and edges

from initial vertex (vi) to final vertex (vf), such that e1

= (vi, v1), e2 = (v1, v2), …, en = (vn-1, vf) are edges of

the graph. For instance, In Fig 1-G1, 1-2-4-3 is an

example of path in the graph, but 1-4-3-2 is not a path

since there is no edge (1,4). Circuit is a path, the

initial and final vertex are the same, e.g. 1-2-4-3 is not

a circuit (since vertex 1 ≠ vertex 3), 1-2-4-3-1 is a

circuit (because 1-2-4-3-1 is a path and initial vertex =

final vertex), and 1-4-3-2-1 is not a circuit (because 1-

4-3-2-1 is not a path).

2. Tree

Tree is a graph that does not have a circuit. We are

using a specific type of tree in this paper: rooted tree.

Rooted tree is a tree with one vertex will be treated as

a root and all edges of the graph will be given

direction such that there is no edge directed to the

root.

Fig. 7 Tree with a is a root

(Source: References [1])

There are some terminologies used to differentiate

properties of a tree. We are not going to cover all

terminologies since we do not use all of them in this

paper. This paper only includes,

a. Child/Children and Parent

In Fig. 7, vertex b, c, and d are children of vertex

a. Conversely, vertex a is parent of vertex b, c,

and d.

b. Level

In Fig. 7, vertex b, c, and d are on level 1, Vertex

a is on level 0, and vertex h, i, j are on level 3.

c. Ordered Tree

Ordered tree is a tree with differentiation of each

child (first child, second child, etc). In Fig. 7, we

cannot determine whether the tree is an ordered

tree since there are no additional information (or

because there is no information added, we can

assume that the tree is not ordered).

d. N-ary tree

If a tree is a N-ary tree, it means that the tree has

minimum one vertex that has N child such that N

is a maximum number of children of all vertex.

In Fig.7, the tree is a 3-ary tree.

In the next section, we only use ordered 2-ary tree

(read: binary tree). Binary tree is a tree that has two

child properties: left child and right child (remember

binary tree only have maximum 2 children).

Fig. 8 Two different binary trees

(Source: References [1])

Look at Fig.8, the tree on the left is different with

the tree on the right because on the left tree, d is the

left child of b, while on the right tree, d is the right

child of b. In ordered tree, position matters. However,

if it is given that the trees is not ordered, the left and

the right tree are the same.

D. Huffman Coding Algorithm

Huffman coding algorithm is a way to compress text. It fits

best when we are not using all characters in the same string of

data test. For example, string “aaaaa” originally has 5 × 8-bit

data. With Huffman code, “aaaaa” can only take 5 bits!

The Huffman algorithm is explained below,

1. Suppose we are going to compress the word

“DISCRETEMATHAREHARD”. We first then list all

of character that are in string.

Letter D I S C R E T M A H

Frequency 2 1 1 1 3 3 2 1 3 2

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

2. We start by making trees for letters with least

frequency: I, S, C, and M.

Fig. 9.a Huffman Coding v.1

(Source: Personal Library)

3. Any combination is acceptable. We now have 2 trees

that have frequency = 2. Then we pair all letters dan

have frequency = 2.

Fig. 9.b Huffman Coding v.1

(Source: Personal Library)

4. T is left alone with frequency = 2. Since there is no

other letter or tree that has frequency = 2, we pair T

with one letter that have frequency = 3. Any

combination is acceptable.

Fig. 9.c Huffman Coding v.1

(Source: Personal Library)

5. Again, any combination is acceptable. Next step is not

combining DCI and MSH because we have letters

which have lower frequency than them: E, A.

Fig. 9.d Huffman Coding v.1

(Source: Personal Library)

6. Since all letters have been on one of the trees, we now

combine tree that has least frequency, these are MSH

and DCI.

Fig. 9.e Huffman Coding v.1

(Source: Personal Library)

7. We combine the next trees with least frequency, these

are AE and TR.

Fig. 9.f Huffman Coding v.1

(Source: Personal Library)

8. Finally, the last two trees.

Fig. 9.g Huffman Coding v.1

(Source: Personal Library)

9. We then order the children of the tree using Huffman

code.

Fig. 9.h Huffman Coding v.1

(Source: Personal Library)

10. Note that different tree might results different Huffman

code. It is fine. Convert all letters to Huffman code in a

table.

Letter Huffman Code Length Code

D 000 3

I 0011 4

S 0101 4

C 0010 4

R 101 3

E 111 3

T 100 3

M 0100 4

A 110 3

H 011 3

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

11. To compress text, we convert string

“DISCRETEMATHAREHARD” into Huffman code,

which results

“00000110101001010111110011101001101000111101

01111011110101000”. It is a 61 long string which is

great! The string “DISCRETEMATHAREHARD”

consists of 19 characters, hence without compression

the string would take 19 bytes = 152 bits of memory

while Huffman code form of the string would only take

61 bits of memory. We save around 59.9% memory

space.

12. To note, although your Huffman code might be different

than I stated above, the length of all Huffman code for

the string “DISCRETEMATHAREHARD” should be

still 61.

III. ALGORITHM AND DATA STRUCTURE

A. Big Picture

In this paper, we are going to encrypt a message using

Vigenère cipher, but the key we are going to use is not only

from user’s password letter, but also Huffman coding results.

Huffman coding may vary, but we can make a unification to it.

In the next section, we are going to discuss how we could

make a structured compressed text using Huffman Coding

Algorithm.

B. Huffman Coding Unification

A string of message can have multiple Huffman Code.

Differences between those coding could lead different

interpretations. So, how can we make a Huffman Coding

constant?

We could use a priority list for all characters possible. This

list is not for public. Only a master (could be a human or stored

in a secret place) would know this priority list. We can use

Machine Learning/Artificial Intelligence to randomize

elements of the list in a certain period regularly.

Suppose we have a priority list as listed below,

A B C D E F G H I J K L M

0 1 2 3 4 5 6 7 8 9 10 11 12

N O P Q R S T U V W X Y Z

13 14 15 16 17 18 19 20 21 22 23 24 25

a b c d e f g h i j k l m

26 27 28 29 30 31 32 33 34 35 36 37 38

n o p q r s t u v w x y z

39 40 41 42 43 44 45 46 47 48 49 50 51

 SPACE ! ? , . - _ & () []

52 53 54 55 56 57 58 59 60 61 62 63

This list is an example of priority list. We use the table

above in this paper’s experiment to give a big picture how

custom Vigenère cipher works. In the real use, this list is not

open to public. You can customize the table: use another

element order or add symbol, e.g., “\n” or “#”. Lower

corresponding number means that the character is more

prioritized.

Back to the previous example of Huffman Coding in earlier

section, we are going to redo our work to compress

“DISCRETEMATHAREHARD”, but now we are going to use

our priority list to determine which character should we work

on first.

The steps are,

1. We have table frequency of

“DISCRETEMATHAREHARD”

2. We start by making trees for letters with least

frequency: I, S, C, and M. Since C and I have more

priority than M and S, we should pair CI and MS. We

can’t pair C and S or any other combination because we

are wanting this Huffman Coding constant.

Fig. 10.a Huffman Coding v.2

(Source: Personal Library)

Note that node that has more priority list should be a left

child of its parent node. Notice that C is the left child of

CI and S is the right child of MS.

3. There is no longer character with frequency = 1. Hence,

we now combine character with frequency = 2. There

are five characters possible: CI, MS, D, H, T. The

Huffman coding tree would be,

Fig. 10.b Huffman Coding v.2

(Source: Personal Library)

Notice how CI is the left child of DCI and MS is the

right child of HMS. For composite characters, the value

if its priority is the highest priority (means lower

corresponding number on priority list) of characters that

formed it, i.e., CI has the same priority value as C.

4. T is left behind. Now, we combine T with character

with frequency = 3 that has the highest priority, i.e., A.

Fig. 10.c Huffman Coding v.2

(Source: Personal Library)

Notice how A is the left child of AT since A is more

prioritized than T even though T has a lower frequency.

5. Combine the rest of characters which have frequency =

3, i.e., E and R.

Letter D I S C R E T M A H

Frequency 2 1 1 1 3 3 2 1 3 2

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

Fig. 10.d Huffman Coding v.2

(Source: Personal Library)

6. Combine DCI and HMS (characters with frequency =

4).

Fig. 10.e Huffman Coding v.2

(Source: Personal Library)

7. We combine the next trees with least frequency, these

are AE and TR.

Fig. 10.f Huffman Coding v.2

(Source: Personal Library)

8. We finally combine the last two trees.

Fig. 10.g Huffman Coding v.2

(Source: Personal Library)

9. We then order the children of the tree using Huffman

code.

Fig. 10.h Huffman Coding v.2

(Source: Personal Library)

10. Based on the tree above, we get Huffman code listed in

table below.

Letter Huffman Code Length Code

D 101 3

I 1001 4

S 1111 4

C 1000 4

R 011 3

E 010 3

T 001 3

M 1110 4

A 000 3

H 110 3

11. Notice that the table gives us different coding compared

to the previous one. If you notice that all characters

have the same code length, it is just a coincidence,

different coding might different. However, the thing we

can conclude based on two Huffman coding that we

have done previously is Huffman coding could give us

the same TOTAL length of compressed text.

C. Data Structure

1. Tree (Class)

class Node:

 def __init__(self, listchar,

frequency, prio, left, right):

 self.frequency = frequency

 self.listchar = listchar

 self.prio = prio

 self.left = left

 self.right = right

 self.code = ''

2. Priority List (Ordered List)

priorityList = [

 'A', 'B', 'C', 'D', 'E',

 'F', 'G', 'H', 'I', 'J',

 'K', 'L', 'M', 'N', 'O',

 'P', 'Q', 'R', 'S', 'T',

 'U', 'V', 'W', 'X', 'Y',

 'Z', 'a', 'b', 'c', 'd',

 'e', 'f', 'g', 'h', 'i',

 'j', 'k', 'l', 'm', 'n',

 'o', 'p', 'q', 'r', 's',

 't', 'u', 'v', 'w', 'x',

 'y', 'z', ' ', '!', '?',

 ',', '.', '-', '_', '&',

 '(', ')', '[', ']'

]

3. Dictionary (Map)

listHuffmanCodes = dict()

listEncodedHuffmanCodes = dict()

#Example

{'A': '000', 'T': '001', 'E': '010',

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

'R': '011', 'C': '1000', 'I':

'1001', 'D': '101', 'H': '110', 'M':

'1110', 'S': '1111'}

D. Huffman Coding Algorithm

The subsequent program is written in Python.

1. countCharacter

Type: Function returns dictionary

Process: count frequency of characters in string input

def countCharacter(stringinput):

 chartable = dict()

 for charinput in stringinput:

 if chartable.get(charinput) == None:

 chartable[charinput] = 1

 else:

 chartable[charinput] += 1

 return chartable

2. huffmanTreeCode

Type: Function returns dictionary

Process: list all Huffman Code based on Huffman

coding algorithm

def huffmanTreeCode(

 nodeTree, currentCode=''):

 newCode =

 currentCode + str(nodeTree.code)

 if (nodeTree.left):

 huffmanTreeCode(

 nodeTree.left, newCode)

 if (nodeTree.right):

 huffmanTreeCode(

 nodeTree.right, newCode)

 if not nodeTree.left and

 not nodeTree.right:

 listHuffmanCodes[nodeTree.listchar] =

 newCode

 return listHuffmanCodes

3. huffmanEncoding

Type: Procedure

Process: processing Huffman Coding Algorithm

def huffmanEncoding(stringinput):

 listcharfrequency =

 countCharacter(stringinput)

 listchar = listcharfrequency.keys()

 listfrequency =

 listcharfrequency.values()

 huffmanTreeNode = []

 for char in listchar:

 huffmanTreeNode.append(Node(char,

 listcharfrequency.get(char),

 priorityList[char], None, None))

 while (len(huffmanTreeNode) > 1):

 huffmanTreeNode =

 sorted(huffmanTreeNode,

 key=lambda x: (x.frequency,

 x.prio))

 left = huffmanTreeNode[0]

 right = huffmanTreeNode[1]

 if left.prio > right.prio:

 left, right = right, left

 left.code = 0

 right.code = 1

 if left.prio < right.prio:

 newNodeTree =

 Node(left.listchar +

 right.listchar,

 left.frequency +

 right.frequency,

 left.prio, left,

 right)

 else:

 newNodeTree =

 Node(left.listchar +

 right.listchar,

 left.frequency +

 right.frequency,

 right.prio, left,

 right)

 huffmanTreeNode.remove(left)

 huffmanTreeNode.remove(right)

 huffmanTreeNode.append(

 newNodeTree)

E. Encryption Algorithm

This custom Vigenère cipher is a little bit different than the

original one. In this version, we cannot have the same cipher

results from different letters and it only works if number of

characters of string input is less or equal to number of

characters in priority list used. This happens because every

character in Huffman code is unique, then we should have a

unique cipher to every character in string input

The subsequent program is written in Python.

1. Encryption

def vigenereEncode(stringinput,

password):

 encodedText = ''

 for i in range (0, len(stringinput)):

 lengthHuffman =

len(listHuffmanCodes[stringinput[i]])

 passwordchar =

password[i%len(password)]

 key =

priorityList.index(stringinput[i]) +

priorityList.index(passwordchar) +

lengthHuffman

 encodedChar =

priorityList[key%len(priorityList)]

 keyoffset =

len(listHuffmanCodes[stringinput[i]])

 while encodedChar in

listEncodedHuffmanCodes.keys():

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

 encodedChar =

priorityList[priorityList.index(encodedCh

ar)+1]

 keyoffset = keyoffset + 1

listEncodedHuffmanCodes[encodedChar] =

keyoffset

 encodedText += encodedChar

 return encodedText

2. Decryption

def vigenereDecode(decodedText,

password):

 originalText = ''

 for i in range (0, len(decodedText)):

 passwordchar =

password[i%len(password)]

 key =

priorityList.index(decodedText[i]) -

priorityList.index(passwordchar) -

listEncodedHuffmanCodes[decodedText[i]]

 originalText +=

priorityList[key%len(priorityList)]

 return originalText

F. Main Program

The subsequent program is written in Python.

listHuffmanCodes = dict()

listEncodedHuffmanCodes = dict()

priorityList = [

 'A', 'B', 'C', 'D', 'E',

 'F', 'G', 'H', 'I', 'J',

 'K', 'L', 'M', 'N', 'O',

 'P', 'Q', 'R', 'S', 'T',

 'U', 'V', 'W', 'X', 'Y',

 'Z', 'a', 'b', 'c', 'd',

 'e', 'f', 'g', 'h', 'i',

 'j', 'k', 'l', 'm', 'n',

 'o', 'p', 'q', 'r', 's',

 't', 'u', 'v', 'w', 'x',

 'y', 'z', ' ', '!', '?',

 ',', '.', '-', '_', '&',

 '(', ')', '[', ']'

]

passkey = input("Enter your password: ")

stringinput = input("Enter your message: ")

huffmanEncoding(stringinput)

print("Psst.. It's a Secret: ", end='')

secrettext = vigenereEncode(stringinput,

passkey)

print(secrettext)

print("Check Decode ", end='')

print(vigenereDecode(secrettext, passkey))

IV. EXPERIMENT

1. Test Case 1

DISCRETEMATHAREHARD with password: HELLO

 Fig. 11 TC1 Results

(Source: Personal Library)

2. Test Case 2

DISCRETEMATHAREHARD with password:

PASSWORD

 Fig. 12 TC2 Results

(Source: Personal Library)

3. Test Case 3

DISCRETEMATHAREHARD with password:

DISCRETEMATHAREHARD

 Fig. 13 TC3 Results

(Source: Personal Library)

4. Test Case 4

“DID YOU KNOW THERE IS A TUNNEL UNDER

OCEAN BOULEVARD ” with password: “LANA DEL

REY”

 Fig. 14 TC4 Results

(Source: Personal Library)

5. Test Case 5

“GoOd PeRsOn” with password: “Ingrid”

 Fig. 15 TC5 Results

(Source: Personal Library)

V. CONCLUSION

. Vigenère cipher, an algorithm that is simple and easy to

understand, is a fundamental and a way to dig deeper in

cryptography. This suitable and intended for beginners like me,

who are willing to learn more about cyber security world and

its high-tech properties. We can custom Vigenère cipher with

Huffman coding algorithm which makes that algorithm more

exciting. We can also learn other fundamental computer

science concepts, i.e., binary tree and its properties, data

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

structure and its efficiency on algorithms by using this method.

This method can help us understand a big picture of what

cryptography is and an open gate to more advanced algorithms

that waits for us ahead.

VI. ACKNOWLEDGMENT

Firstly, I want to thank me and God for making this paper

finished. I cannot express what I am feeling now because I

cannot believe that I wrote this paper fully in English. I want to

thank Mr. Rinaldi Munir and Ms. Fariska Ruskanda for the

fundamental knowledge that you have taught me earlier this

semester. That knowledge made me do an exploration to

something I could not ever imagined before. Hope this paper

helps beginner student like me, who are interested in computer

science and want to dig deeper into that, in order to

comprehend basic yet fundamental knowledge in informatics

and cryptography.

APPENDIX

1. Code documentation on GitHub

 https://github.com/natthankrish/Custom-Vigenere-Huffman

REFERENCES

[1] Munir, Rinaldi, Pohon (Bagian 1 &2), (2022), accessed on

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Pohon-
2020-Bag1.pdf and

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2021-2022/Pohon-

2021-Bag2.pdf on December 1st - 11th 2022.
[2] Rodriguez-Clark, Dan (2017), Vigenère Cipher, Crypto Corner

[3] Yağmur Çiğdem Aktaş (2021), Huffman Encoding & Python

Implementation, accessed on Medium
https://towardsdatascience.com/huffman-encoding-python-

implementation-8448c3654328 on December 1st - 11th 2022.

[4] Martin, Keith M. (2012). Everyday Cryptography. Oxford University

Press. p. 142. ISBN 978-0-19-162588-6.

[5] Gupta, Sanjali, Nikhil Shanker Mathur, Priyank Chauhan, (2016), A New

Approach to Encryption using Huffman Coding, International Journal of
Progressive Sciences and Technologies (IJPSAT)

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 12 Desember 2022

Antonio Natthan Krishna - 13521162

https://github.com/natthankrish/Custom-Vigenere-Huffman
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Pohon-2020-Bag1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Pohon-2020-Bag1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2021-2022/Pohon-2021-Bag2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2021-2022/Pohon-2021-Bag2.pdf

