
Paper for IF2120 Discrete Mathematics – 1st Semester, Academic Year 2022/2023

An Overview on Reed-Solomon Error-Correcting
Code and Its Implementation for File Recovery

Noel Christoffel Simbolon - 135210961

Computer Science Study Program
School of Electrical Engineering and Informatics

Bandung Institute of Technology, Ganesha Street, no. 10, Bandung, 40132, Indonesia
113521096@std.stei.itb.ac.id

Abstract— Error-correction codes have been around for a while.
Although they did not have much immediate application since it was
first discovered, in this day and age, they are much utilized in many
fields of study and the commercial sector. One of the categories of
error-correction code implementation is the Reed-Solomon codes
which are popular and widely used in modern society. They are used
in many forms of consumer technologies and have many applications.
One of which is data integrity. In this paper, I will overview an
implementation of the Reed-Solomon codes in the form of software
that is used to encode and decode files.

Keywords—error correction, file, Galois field, Reed-Solomon

I. INTRODUCTION
This world is constantly moving to a world where computing

data is ubiquitous and everyday. This has sparked more and
more interaction between humans and data [1]. For example, we
use online banking to manage our economical assets, or we
utilize word-processing software to accomplish university
assignments. Each of these actions requires storing data in a
medium after then we confidently continue our activities
without ever worrying about our data’s safety. However, in
theory, there are possibilities that those data undergo corruption,
degradation, or erasure. There are many factors on why and how
such a phenomenon can happen. Therefore, with the current
widespread of human-data interaction, and how they have been
deeply ingrained into our everyday lives, data integrity is of the
foremost importance now than ever.

There have been constant efforts to develop methods on how
we preserve the integrity of data. Most of which are based on
theoretical discoveries in mathematics. One such is the
discovery of error-correction coding. The discovery was
pioneered by an American mathematician, Richard Hamming,
when he first invented the first error-correcting code in 1950
which was used for controlling and correcting errors in data over
unreliable mediums [2]. Another curious discovery invented by
an early 19th century mathematician, Evariste Galois, is an
abstract theory of the Galois field which essentially is a theory
about fields that contain a finite number of elements, hence its
other term: finite field [3]. However, for well over a hundred
years, mathematicians looked upon Galois fields as elegant
mathematics but of no practical value. In 1959, Irving S. Reed
and Gustave Solomon, who were staff members of the MIT
Lincoln Laboratory, wrote a five-page paper titled “Polynomial

Codes over Certain Finite Fields” which was published in June
1960. This paper was a result of Reed’s idea of using the
elements of a finite field as an alphabet to use symbols rather
than bits, e.g., half-bytes or bytes for the symbols. However, for
years after its publication, the Reed-Solomon code was viewed
as interesting mathematics and little else. It simply did not
appear to be practical with the computing capability of the day.
Nowadays, the Reed-Solomon code has been widely used in
industrial and consumer electronic devices [4].

In this paper, I shall overview the Reed-Solomon error-
correcting code implementation in the form of a library written
in the Java programming language that is used to encode and
decode files. Such encoding can improve the files’ integrity by
allowing them to self-correct in case of erasure up to a certain
value.

II. THEORETICAL FOUNDATION

A. Fundamentals of Information Representation in the
Computer

At the smallest scale in the computer, information is stored as
bits. A bit is just a 0 or 1. In the computer, the value of these bits
is represented by transistors by controlling the amount of
electricity flowing through it, depending on its threshold
voltage. However, rather than accessing individual bits in
memory, most computers use blocks of 8 bits, or bytes, as the
smallest addressable unit of memory [5]. That means, every byte
consists of eight zeros or ones.

In the binary numeral system, or base-2 numeral system, we
represent each value with 0 or 1. Thus in binary notation, a
byte’s value ranges from 000000002 to 111111112.

To convert a binary notation into a decimal number, we need
to represent a decimal number in terms of sums of 𝑎𝑎𝑛𝑛2𝑛𝑛. That
is, if 𝑥𝑥 is the said decimal number then we wish to have

𝑥𝑥 = �𝑎𝑎𝑛𝑛2𝑛𝑛
𝑛𝑛∈ℕ

The coefficients 𝑎𝑎𝑛𝑛 is then written in descending order of n

and all leading zeros then omitted. The final result becomes the
binary representation of the decimal 𝑥𝑥 [3]. As such, when
viewed as a decimal integer, a byte’s value ranges from 010 to

Paper for IF2120 Discrete Mathematics – 1st Semester, Academic Year 2022/2023

25510. However, neither binary nor decimal notation is very
convenient for describing bit patterns. Binary notation is too
verbose, while with decimal notation it is tedious to convert to
and from bit patterns. Instead, we write bit patterns as base-16,
or hexadecimal numbers. Hexadecimal (or simply “hex”) uses
digits ‘0’ through ‘9’ along with characters ‘A’ through ‘F’ to
represent 16 possible values. Written in hexadecimal, the value
of a single byte can range from 0016 to FF16 [5]. The following
table shows the decimal and binary values associated with the
16 hexadecimal digits.

Table I. Hexadecimal notation
Hex digit Decimal value Binary value

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

In Java, numeric constants starting with the prefix 0x are

interpreted as being in hexadecimal, while numeric constants
starting with the prefix 0b are interpreted as being in binary. The
characters ‘A’ through ‘F’ may be written in either upper or
lowercase. For example, we could write the number
A7BC3DF16 as 0xA7BC3DF, as 0xa7bc3df, or even mixing
upper- and lowercase (e.g., 0xA7bC3dF).

To understand this better, suppose you are given a
hexadecimal number 0x69A20B. You can convert this to binary
format by expanding each hexadecimal digit, as follows:

Hex 6 9 A 2 0 B

Binary 0110 1001 1010 0010 0000 1011

Thus, the binary representation is of the hex 0x69A20B is

011010011010001000001011.

B. Boolean Algebra and Bitwise Operations
Since binary values are at the core of how computers encode,

store, and manipulate information, a rich body of mathematical
knowledge has evolved around the study of the values 0 and 1.
This started with the work of George Boole (1815–1864) around
1850 and thus is known as Boolean algebra. Boole observed that
by encoding logic values TRUE and FALSE as binary values 1 and
0, he could formulate an algebra that captures the basic
principles of logical reasoning. The simplest Boolean algebra is
defined over the two-element set {0, 1}.

There are several operations defined in this algebra. The
Boolean operation ~ corresponds to the logical operation NOT,

denoted by the symbol ¬. That is, we say that ¬P is true when P
is not true, and vice versa. Correspondingly, ~p equals 1 when p
equals 0, and vice versa. Boolean operation & corresponds to the
logical operation AND, denoted by the symbol ∧. We say that P
∧ Q holds when both P is true, and Q is true. Correspondingly,
p & q equals 1 only when p = 1 and q = 1. Boolean operation |
corresponds to the logical operation OR, denoted by the symbol
∨. We say that P ∨ Q holds when either P is true, or Q is true.
Correspondingly, p | q equals 1 when either p = 1 or q = 1.
Boolean operation ^ corresponds to the logical operation
EXCLUSIVE-OR, denoted by the symbol ⊕. We say that P ⊕ Q
holds when either P is true or Q is true, but not both.
Correspondingly, p ^ q equals 1 when either p = 1 and q = 0, or
p = 0 and q = 1 [5].

The summary of logical operations and their corresponding
bitwise operator in Java are showed in the table below.

Table II. Bitwise operators in Java

Logical operation Java bitwise operator
NOT ~
AND &
OR |

EXCLUSIVE-OR ^

To understand this better in the context of Java, take a look at

the examples shown below.

a b Operation Result
0b0110 0b0110 ~a & b 0b0000
0x69 0x55 a & b 0x41
0b0110 0b0101 a | b 0b0111
0xAB 0xAB a ^ b 0x00

C. Matrices, and Matrix Operations

Most of information stored in the computer is organized into
arrays. A two-dimensional form of arrays is called “matrices”
(plural of “matrix) which has rows and columns. For its
applications, it is desirable to develop an “arithmetic of
matrices” in which matrices can be added, subtracted, and
multiplied in a useful way.

Equality. — Two matrices are defined to be equal if they
have the same size and their corresponding entries are equal.
Consider the matrices

𝐴𝐴 = �2 1

3 𝑥𝑥� ,𝐵𝐵 = �2 1
3 5� ,𝐶𝐶 = �2 1 0

3 4 0�

If 𝑥𝑥 = , then 𝐴𝐴 = 𝐵𝐵, but for all other values of 𝑥𝑥 the matrices

𝐴𝐴 and 𝐵𝐵 are not equal, since not all of their corresponding entries
are the same. There is no value of 𝑥𝑥 for which 𝐴𝐴 = 𝐶𝐶 since 𝐴𝐴 and
𝐶𝐶 have different sizes.

Addition and Subtraction. — If 𝐴𝐴 and 𝐵𝐵 are matrices of the
same size, then the sum 𝐴𝐴 + 𝐵𝐵 is the matrix obtained by adding
the entries of 𝐵𝐵 to the corresponding entries of 𝐴𝐴, and the
difference 𝐴𝐴 − 𝐵𝐵 is the matrix obtained by subtracting the entries
of 𝐵𝐵 from the corresponding entries of 𝐴𝐴. Matrices of different
sizes cannot be added or subtracted.

In matrix notation, if 𝐴𝐴 = �𝑎𝑎𝑖𝑖𝑖𝑖� and 𝐵𝐵 = �𝑏𝑏𝑖𝑖𝑖𝑖� have the same
size, then

Paper for IF2120 Discrete Mathematics – 1st Semester, Academic Year 2022/2023

(A + B)𝑖𝑖𝑖𝑖 = (A)𝑖𝑖𝑖𝑖 + (B)𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑖𝑖

and

(A − B)𝑖𝑖𝑖𝑖 = (A)𝑖𝑖𝑖𝑖 − (B)𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑖𝑖 – 𝑏𝑏𝑖𝑖𝑖𝑖

Consider the matrices

𝐴𝐴 = �
2 1 0 3
−1 0 2 4
4 −2 7 0

� ,

𝐵𝐵 = �
−4 3 5 1
2 2 0 −1
3 2 −4 5

� ,𝐶𝐶 = �1 1
2 2�

Then

𝐴𝐴 + 𝐵𝐵 = �
−2 4 5 4
1 2 2 3
7 0 3 5

�

and

𝐴𝐴 − 𝐵𝐵 = �
6 −2 −5 2
−3 −2 2 5
1 −4 11 −5

�

The expressions 𝐴𝐴 + 𝐶𝐶, 𝐵𝐵 + 𝐶𝐶, 𝐴𝐴 − 𝐶𝐶, and 𝐵𝐵 − 𝐶𝐶 are

undefined.
Scalar multiplication. — If 𝐴𝐴 is any matrix and 𝑐𝑐 is any

scalar, then the product c𝐴𝐴 is the matrix obtained by multiplying
each entry of the matrix 𝐴𝐴 by 𝑐𝑐. The matrix 𝑐𝑐𝐴𝐴 is said to be a
scalar multiple of 𝐴𝐴.

In matrix notation, if 𝐴𝐴 = �𝑎𝑎𝑖𝑖𝑖𝑖�, then

(𝑐𝑐𝐴𝐴)𝑖𝑖𝑖𝑖 = 𝑐𝑐(𝐴𝐴)𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑎𝑎𝑖𝑖𝑖𝑖

For the matrices

𝐴𝐴 = �2 3 4

1 3 1� ,𝐵𝐵 = � 0 2 7
−1 3 −5� ,𝐶𝐶 = �9 −6 3

3 0 12�

we have

2𝐴𝐴 = �4 6 8
2 6 2� , (−1)𝐵𝐵 = �0 −2 −7

1 −3 5 �,
1
3
𝐶𝐶 = �3 −2 1

1 0 4�

It is common practice to denote (−1)𝐵𝐵 by −𝐵𝐵.
Matrix multiplication. — If 𝐴𝐴 is an 𝑚𝑚 × 𝑟𝑟 matrix and 𝐵𝐵 is

an 𝑟𝑟 × 𝑛𝑛 matrix, then the product 𝐴𝐴𝐵𝐵 is the 𝑚𝑚 × 𝑛𝑛 matrix whose
entries are determined as follows: To find the entry in row 𝑖𝑖 and
column 𝑖𝑖 of 𝐴𝐴𝐵𝐵, single out row 𝑖𝑖 from the matrix 𝐴𝐴 and column
𝑖𝑖 from the matrix 𝐵𝐵. Multiply the corresponding entries from the
row and column together, and then add the resulting products.

Consider the matrices

𝐴𝐴 = �1 2 4
2 6 0� ,𝐵𝐵 = �

4 1 4 3
0 −1 3 1
2 7 5 2

�

Since 𝐴𝐴 is a 2 × 3 matrix and 𝐵𝐵 is a 3 × 4 matrix, the product

AB is a 2 × 4 matrix. To determine, for example, the entry in
row 2 and column 3 of 𝐴𝐴𝐵𝐵, we single out row 2 from 𝐴𝐴 and
column 3 from 𝐵𝐵. Then, we multiply corresponding entries
together and add up these products.

�1 2 4
2 6 0� �

4 1 4 3
0 −1 3 1
2 7 5 2

� = �
… … … …
… … 26 …�

(2 ∙ 4) + (6 ∙ 3) + (0 ∙ 5) = 26

The entry in row 1 and column 4 of 𝐴𝐴𝐵𝐵 is computed as

follows:

�1 2 4
2 6 0� �

4 1 4 3
0 −1 3 1
2 7 5 2

� = �… … … 13
… … … … �

(1 ∙ 3) + (2 ∙ 1) + (4 ∙ 2) = 13

The computations for the remaining entries are

(1 ∙ 4) + (2 ∙ 0) + (4 ∙ 2) = 12
(1 ∙ 1) + (2 ∙ 1) + (4 ∙ 7) = 27
(1 ∙ 4) + (2 ∙ 3) + (4 ∙ 5) = 30
(2 ∙ 4) + (6 ∙ 0) + (0 ∙ 2) = 8

(2 ∙ 1) + (6 ∙ 1) + (0 ∙ 7) = −4
(2 ∙ 3) + (6 ∙ 1) + (0 ∙ 2) = 12

𝐴𝐴𝐵𝐵 = �12 27 30 13

8 −4 26 12�

The definition of matrix multiplication requires that the

number of columns of the first factor 𝐴𝐴 be the same as the
number of rows of the second factor 𝐵𝐵 in order to form the
product 𝐴𝐴𝐵𝐵. If this condition is not satisfied, the product is
undefined [6].

Transpose of a matrix. — If 𝐴𝐴 is any 𝑚𝑚 × 𝑛𝑛 matrix, then the

transpose of𝐴𝐴, denoted by 𝐴𝐴𝑇𝑇, is defined to be the 𝑛𝑛 × 𝑚𝑚 matrix
that results by interchanging the rows and columns of 𝐴𝐴; that is,
the first column of 𝐴𝐴𝑇𝑇 is the first row of 𝐴𝐴, the second column
of 𝐴𝐴𝑇𝑇 is the second row of 𝐴𝐴, and so forth.

The following are some examples of matrices and their
transposes

𝐴𝐴 = �
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13 𝑎𝑎14
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23 𝑎𝑎24
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33 𝑎𝑎34

� ,𝐵𝐵 = �
2 3
1 4
5 6

� ,

𝐴𝐴 = �

𝑎𝑎11 𝑎𝑎21 𝑎𝑎31
𝑎𝑎12 𝑎𝑎22 𝑎𝑎32
𝑎𝑎13 𝑎𝑎23 𝑎𝑎33
𝑎𝑎14 𝑎𝑎24 𝑎𝑎34

� ,𝐵𝐵 = �2 1 5
3 4 6�

Paper for IF2120 Discrete Mathematics – 1st Semester, Academic Year 2022/2023

D. Identity Matrices and the Inverse of a Matrix
A square matrix with one’s on the main diagonal and zeros

elsewhere is called an identity matrix. An identity matrix is
denoted by the letter I. Some examples are

[1], �1 0
0 1� , �

1 0 0
0 1 0
0 0 1

� , �

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

�

If 𝐴𝐴 is a square matrix, and if there exists a matrix 𝐵𝐵 of the

same size for which 𝐴𝐴𝐵𝐵 = 𝐵𝐵𝐴𝐴 = 𝐼𝐼, then 𝐴𝐴 is said to be invertible
(or nonsingular) and 𝐵𝐵 is called an inverse of 𝐴𝐴. If no such
matrix 𝐵𝐵 exists, then 𝐴𝐴 is said to be singular. An invertible
matrix has exactly one inverse. If 𝐴𝐴 is invertible, then its inverse
is denoted by the symbol 𝐴𝐴−1. Thus,

𝐴𝐴𝐴𝐴−1 = 𝐼𝐼 and 𝐴𝐴−1𝐴𝐴 = 𝐼𝐼

E. Vandermonde Matrices

Named after Alexandre-Théophile Vandermonde, a
Vandermonde matrix is a matrix with the terms of a geometric
progression in each row. A Vandermonde matrix 𝑉𝑉, which is an
element of the set of all 𝑛𝑛-by-𝑛𝑛 matrices over a field 𝐹𝐹, denoted
𝑉𝑉 ∈ 𝑀𝑀𝑛𝑛(𝐹𝐹), has the form

𝑉𝑉 =

⎣
⎢
⎢
⎡1 𝑥𝑥1 𝑥𝑥12 ⋯ 𝑥𝑥1𝑛𝑛−1

1 𝑥𝑥2 𝑥𝑥22 ⋯ 𝑥𝑥2𝑛𝑛−1
⋮ ⋮ ⋮ ⋱ ⋮
1 𝑥𝑥𝑛𝑛 𝑥𝑥𝑛𝑛2 ⋯ 𝑥𝑥𝑛𝑛𝑛𝑛−1 ⎦

⎥
⎥
⎤

in which 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 ∈ 𝐹𝐹; that is, 𝑉𝑉 = [𝑣𝑣𝑖𝑖𝑖𝑖] with 𝑣𝑣𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖

𝑖𝑖−1 [7].

F. Galois Field
A Galois field is a field that contains a finite number of

elements. As with any field, a finite field is a set on which the
operations of multiplication, addition, subtraction, and division
are defined and satisfy certain basic rules. A finite field has the
property that arithmetic operations on field elements always
have a result in the field.

The elements of Galois Field 𝐺𝐺𝐹𝐹(𝑝𝑝𝑛𝑛) is defined as

𝐺𝐺𝐹𝐹(𝑝𝑝𝑛𝑛) = (0, 1, 2, … , 𝑝𝑝 − 1) ∪
(𝑝𝑝, 𝑝𝑝 + 1, 𝑝𝑝 + 2, … , 𝑝𝑝 + 𝑝𝑝 − 1) ∪
(𝑝𝑝2, 𝑝𝑝2 + 1, 𝑝𝑝2 + 2, … , 𝑝𝑝2 + 𝑝𝑝 − 1) ∪ …∪
(𝑝𝑝𝑛𝑛−1, 𝑝𝑝𝑛𝑛−1 + 1, 𝑝𝑝𝑛𝑛−1 + 2, … , 𝑝𝑝𝑛𝑛−1 + 𝑝𝑝 − 1)

where 𝑝𝑝 ∈ ℙ and 𝑛𝑛 ∈ ℤ+. The order of the field is given by
𝑝𝑝𝑛𝑛while 𝑝𝑝 is called the characteristic of the field.

G. Reed-Solomon Error-Correcting Code

The Reed-Solomon error-correcting code is a group of error-
correcting codes that operate on a block of data treated as a set
of the Galois field called symbols. The Reed-Solomon error-
correcting code is characterized by three parameters: an alphabet
size 𝑞𝑞, a block length 𝑛𝑛, and a message length 𝑘𝑘, with 𝑘𝑘 < 𝑛𝑛 ≤
𝑞𝑞. The set of alphabet symbols is interpreted as the finite field of

order 𝑞𝑞, and thus, 𝑞𝑞 must be a prime power.
Reed–Solomon codes are able to detect and correct multiple

symbol errors. By adding 𝑡𝑡 = 𝑛𝑛 − 𝑘𝑘 check symbols to the data,
a Reed–Solomon code can detect (but not correct) any
combination of up to 𝑡𝑡 erroneous symbols or locate and correct
up to ⌊𝑡𝑡/2⌋ erroneous symbols at unknown locations. As an
erasure code, it can correct up to 𝑡𝑡 erasures at locations that are
known and provided to the algorithm, or it can detect and correct
combinations of errors and erasures. Reed–Solomon codes are
also suitable as multiple-burst bit-error correcting codes since a
sequence of 𝑏𝑏 + 1 consecutive bit errors can affect at most two
symbols of size 𝑏𝑏. The choice of 𝑡𝑡 is up to the designer of the
code and may be selected within wide limits [8].

In the original view of Reed & Solomon (1960), every
codeword of the Reed–Solomon code is a sequence of function
values of a polynomial of degree less than 𝑘𝑘. In order to obtain
a codeword of the Reed–Solomon code, the message symbols
(each within the 𝑞𝑞-sized alphabet) are treated as the coefficients
of a polynomial 𝑝𝑝 of degree less than 𝑘𝑘, over the finite field 𝐹𝐹
with 𝑞𝑞 elements. In turn, the polynomial 𝑝𝑝 is evaluated at 𝑛𝑛 ≤ 𝑞𝑞
distinct points 𝑎𝑎1, … , 𝑎𝑎𝑛𝑛 of the field 𝐹𝐹, and the sequence of
values is the corresponding codeword. Common choices for a
set of evaluation points include {0, 1, 2, . . . ,𝑛𝑛 − 1},
{0, 1,𝛼𝛼,𝛼𝛼2, . . . ,𝛼𝛼𝑛𝑛 − 2}, or for 𝑛𝑛 < 𝑞𝑞, {1,𝛼𝛼,𝛼𝛼2, . . . ,𝛼𝛼𝑛𝑛 − 1}, ...
, where 𝛼𝛼 is a primitive element of 𝐹𝐹.

The set 𝐶𝐶 of codewords of the Reed–Solomon code is defined
as follows:

𝐶𝐶 = ��𝑝𝑝(𝑎𝑎1), 𝑝𝑝(𝑎𝑎2), … , 𝑝𝑝(𝑎𝑎𝑛𝑛)� �

𝑝𝑝 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝𝑚𝑚𝑖𝑖𝑎𝑎𝑝𝑝 𝑝𝑝𝑣𝑣𝑜𝑜𝑟𝑟 𝐹𝐹 𝑝𝑝𝑜𝑜 𝑑𝑑𝑜𝑜𝑑𝑑𝑟𝑟𝑜𝑜𝑜𝑜 < 𝑘𝑘}

While the number of different polynomials of degree less than

𝑘𝑘 and the number of different messages is both equal to 𝑞𝑞𝑘𝑘, and
thus every message can be uniquely mapped to such a
polynomial, there are different ways of doing this encoding. The
original construction of Reed & Solomon (1960) interprets the
message 𝑥𝑥 as the coefficients of the polynomial 𝑝𝑝, whereas
subsequent constructions interpret the message as the values of
the polynomial at the first 𝑘𝑘 points 𝑎𝑎1, … , 𝑎𝑎𝑘𝑘 and obtain the
polynomial 𝑝𝑝 by interpolating these values with a polynomial of
degree less than 𝑘𝑘.

In the original construction of Reed & Solomon (1960), the
message 𝑥𝑥 = (𝑥𝑥1, … , 𝑥𝑥𝑘𝑘) ∈ 𝐹𝐹𝑘𝑘 is mapped to the polynomial 𝑝𝑝𝑥𝑥
with

𝑝𝑝𝑥𝑥(𝑎𝑎) = �𝑥𝑥𝑖𝑖𝑎𝑎𝑖𝑖−1
𝑘𝑘

𝑖𝑖=1

The codeword of 𝑥𝑥 is obtained by evaluating 𝑝𝑝𝑥𝑥 at 𝑛𝑛 different

points 𝑎𝑎1, … , 𝑎𝑎𝑛𝑛 of the field 𝐹𝐹. Thus, the classical encoding
function 𝐶𝐶:𝐹𝐹𝑘𝑘 → 𝐹𝐹𝑛𝑛 for the Reed–Solomon code is defined as
follows:

𝐶𝐶(𝑥𝑥) = (𝑝𝑝𝑥𝑥(𝑎𝑎1), … , 𝑝𝑝𝑥𝑥(𝑎𝑎𝑛𝑛))

This function 𝐶𝐶 is a linear mapping, that is, it satisfies 𝐶𝐶(𝑥𝑥) =

𝑥𝑥𝑇𝑇 ∙ 𝐴𝐴 for the following (𝑘𝑘 × 𝑛𝑛)-matrix 𝐴𝐴 with elements from

Paper for IF2120 Discrete Mathematics – 1st Semester, Academic Year 2022/2023

𝐹𝐹:

𝐴𝐴 =

⎣
⎢
⎢
⎢
⎡

1 ⋯ 1 ⋯ 1
𝑎𝑎1 ⋯ 𝑎𝑎𝑘𝑘 ⋯ 𝑎𝑎𝑛𝑛
𝑎𝑎12 ⋯ 𝑎𝑎𝑘𝑘2 ⋯ 𝑎𝑎𝑛𝑛2

⋮ ⋮ ⋮
𝑎𝑎1𝑘𝑘−1 ⋯ 𝑎𝑎𝑘𝑘𝑘𝑘−1 ⋯ 𝑎𝑎𝑛𝑛𝑘𝑘−1⎦

⎥
⎥
⎥
⎤

This matrix is the transpose of a Vandermonde matrix over 𝐹𝐹.

In other words, the Reed-Solomon code is a linear code, and in
the classical encoding procedure, its generator matrix is 𝐴𝐴 [9].

III. REED-SOLOMON ERROR-CORRECTION CODE
IMPLEMENTATION

Throughout this section, I will give a general review of the
Reed-Solomon code implementation written in the Java
programming language. The source code of the library can be
found in the remote Git repository linked here.

In this implementation, the failure model is that of a file
erasure. This is as opposed to a file error, in which an error is
manifested by storing and retrieving incorrect values [10]. To
address this problem, we encode a file using the Reed-Solomon
code and then calculate the parity of the file. The result of this
encoding is then broken up into shards of files. In the case of
shard erasure, the original file can still be recovered as long as
there are still enough shards to recalculate the original contents
of the file.

We will take a close look at the SampleEncoder class, which
is the class that does the encoding. This class has the variables
DATA_SHARDS, PARITY_SHARDS, TOTAL_SHARDS, and
BYTES_IN_INT. By default, the SampleEncoder class encodes a
file with Reed-Solomon 4+2. It means the original file will be
broken into four shards, then the program will calculate parity
from it and add two more shards. From six shards, if there is a
total of four shards after encoding and file erasure, regardless of
the order of encoding, the contents of the original file can still
be reconstructed. In short, the maximum number of shards we
can lose to still be able to construct the original file is the same
as the number of parity shards.

Moving on, now we will focus on the main method of the
SampleEncoder class. In the first part of the main method, the
program parses the command line argument, which is the path
of the file to be encoded. If the file does not exist in the path, it
terminates the program.

Next, it stores the file size of the file to be encoded. Then, it
calculates the size of each shard because each shard must have
the same size Afterwards, it creates a buffer holding the size of
the input file (represented as 4-byte integer), reads from the file
input stream, and verifies if the number of bytes read is equal to
the size of the input file. After that, it creates a matrix of bytes
and copies the shards that have not been encoded into it. Next,
the program creates a Reed-Solomon coding matrix and encodes
the parity of the data matrix using the coding matrix.

Finally, after the encoding is finished, the program writes the
encoded data matrix into TOTAL_SHARDS different files (in this
case, it is 6), each having the same size.

Next, we will focus on the process of decoding. which is done
by the SampleDecoder class. As with the SampleEncoder class,
the SampleDecoder class also has the same variables, and its
value should also be the same as the variables in the
SampleEncoder class for it to be able to reconstruct the file.
Now, we will take a closer look at the main method of the
SampleEncoder class.

The main method parses a command line argument, which is
the path of the file to be decoded. If the number argument is not
equal to 1, the program terminates. Next, it reads in any of the
shards that are present in the directory passed in the argument.
The decoding process needs at least DATA_SHARDS shards to be
able to reconstruct the file (in this case, it is 4). The program
terminates if the number of shards present is not enough.
Otherwise, the program continues to make empty buffers for
missing shards and uses the Reed-Solomon code to fill it (if
any). Then, the program combines the data shards into one
buffer. Although it is not efficient, it is convenient. Next, it
extracts the file size (represented as a 4-byte integer) that was
written at the beginning of the file in the encoding process. The
extracted file size is useful for the next step, which is writing the
reconstructed file.

The core encoding and decoding process is oversimplified in
[11, Fig. 1] below.

Fig. 1(a) The original data represented as matrix. Each data shard is

represented as a matrix row.

Fig. 1(b) The coding matrix (left) generated by the Reed-Solomon
code is multiplied with the original data, computing the parity
(represented as the last two rows of the matrix on the right).

Fig. 1(c) Data erasure. Two of the six rows are lost.

https://github.com/noelsimbolon/reed-solomon

Paper for IF2120 Discrete Mathematics – 1st Semester, Academic Year 2022/2023

Fig. 1(d) The matrix equation still holds without the two erased rows.

Fig. 1(e) The coding matrix is guaranteed to be invertible. Both sides

of the equation are multiplied by the inverse of the coding matrix
(left-most matrix).

Fig. 1(f) The inverse of the coding matrix and the coding matrix

cancel out.

Fig. 1(g) This leaves the equation for reconstructing the original data

from the pieces that are available.

IV. CONCLUSION
In case of file erasure up to a certain value, file recovery can

be done by recalculating the contents of the erased file using an
implementation of the Reed-Solomon error-correcting code as
overviewed in the contents of this paper. The erasure coding
technology is useful in many areas, particularly in local or cloud
data storage. Such technology is essential in large data
infrastructure to improve its fault tolerance, mitigating data
erasures, and as a workaround when doing vault maintenance.

V. APPENDIX
The Java implementation of the Reed-Solomon error-

correcting code overviewed in this paper is available in the
remote Git repository linked here. It was originally written by
an engineer at Backblaze, a cloud storage and data backup
company based in the USA, for its services. Currently, it is open
source under the MIT license.

VI. ACKNOWLEDGMENT
This paper would not have been possible without the

opportunity given by my lecturer, Dr. Nur Ulfa Maulidevi, S.T.,
M.Sc. Her enthusiasm for educating her students motivated me
to understand better and explore the field of discrete
mathematics further. I would also like to thank Mr. Evan Su,
maintainer of the encryption software Picocrypt, Mr. Vivek
Verma, educational content creator on mathematics, and Mr.
Brian Beach, engineer at Backblaze. Their extraordinary work
has inspired me to pick the Reed-Solomon error-correcting code
as the main subject of this paper.

REFERENCES
[1] R. Mortier, H. Haddadi, T. Henderson, D. McAuley, and J. Crowcroft,

“Human-Data Interaction: The Human Face of the Data-Driven Society.”
arXiv, Jan. 06, 2015. Accessed: Dec. 10, 2022. [Online]. Available:
http://arxiv.org/abs/1412.6159

[2] R. Hamming, “Error Detecting and Error Correcting Codes,” vol. 29, Apr.
1950.

[3] C. J. Benvenuto, “Galois Field in Cryptography,” p. 11.
[4] I. S. Reed, “A brief history of the development of error correcting codes,”

Computers & Mathematics with Applications, vol. 39, no. 11, pp. 89–93,
Jun. 2000, doi: 10.1016/S0898-1221(00)00112-7.

[5] R. E. Bryant and D. R. O’Hallaron, Computer systems: a programmer’s
perspective, Third edition. Boston: Pearson, 2016.

[6] H. Anton and A. Kaul, “Elementary Linear Algebra, 12th Edition”.
[7] R. A. Horn and C. R. Johnson, Matrix analysis, 2nd ed. Cambridge ; New

York: Cambridge University Press, 2012.
[8] M. Riley, “An introduction to Reed-Solomon codes: principles,

architecture and implementation.” [Online]. Available:
https://www.cs.cmu.edu/~guyb/realworld/reedsolomon/reed_solomon_co
des.html

[9] I. S. Reed and G. Solomon, “Polynomial Codes Over Certain Finite
Fields,” Journal of the Society for Industrial and Applied Mathematics,
vol. 8, no. 2, pp. 300–304, Jun. 1960, doi: 10.1137/0108018.

[10] J. S. Plank, “A tutorial on Reed-Solomon coding for fault-tolerance in
RAID-like systems,” Softw: Pract. Exper., vol. 27, no. 9, pp. 995–1012,
Sep. 1997, doi: 10.1002/(SICI)1097-024X(199709)27:9<995::AID-
SPE111>3.0.CO;2-6.

[11] B. Beach, “Backblaze Open-sources Reed-Solomon Erasure Coding
Source Code,” Jun. 16, 2015. https://www.backblaze.com/blog/reed-
solomon/

STATEMENT OF ORIGINALITY
I hereby declare that this paper is my own writing, not an
adaptation, or translation of someone else's paper, and not

plagiarized.

Bandung, December 12th, 2022

Noel Christoffel Simbolon

https://github.com/noelsimbolon/reed-solomon

	I. Introduction
	II. Theoretical Foundation
	A. Fundamentals of Information Representation in the Computer
	B. Boolean Algebra and Bitwise Operations
	C. Matrices, and Matrix Operations
	D. Identity Matrices and the Inverse of a Matrix
	E. Vandermonde Matrices
	F. Galois Field
	G. Reed-Solomon Error-Correcting Code

	III. Reed-Solomon Error-Correction Code Implementation
	IV. Conclusion
	V. Appendix
	VI. Acknowledgment
	References
	Statement of Originality

