

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

Analysis of Time Complexity in Sorting Algorithms

Rinaldy Adin - 13521134

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13521134@std.stei.itb.ac.id

Abstract—Sorting algorithms rearrange lists into an ordered

manner. As with most algorithms, we have to take into account it’s

efficiency when running in a program, we measure an algorithms

efficiency using the concept of time complexity. Calculating time

complexity allows us to know and understand the speed of an

algorithm relative to the size of its input and express it using big-O

notation. This paper analyzes the time complexity of sorting

algorithms and collects data on actual algorithm run time. Our

findings conclude that divide-and-conquer sorting algorithms are

the most effective to use in most use cases, when compared to slower

brute-force algorithms and memory hungry non-comparative

sorting algorithms.

Keywords—Sorting Algorithm, Time Complexity, big-O.

I. INTRODUCTION

A sorting algorithm is an algorithm that places the elements

of a list into a specific order, whether it be in numerical order,

lexicographical order and either ascending or descending. As

with most algorithms, there is a requirement to optimize the

efficiency of algorithms, such as sorting algorithms, to make

sure its usage is as fast and efficient as possible. Due to the

frequent need for sorting in computer science applications, there

are various sorting algorithms with varying efficiencies and

techniques used to implement them.

Sorting algorithms use a wide variety of strategies, including

brute-force, divide-and-conquer, advanced data-structures, and

many more. The most common and popular algorithms use a

brute-force strategy, those algorithms include bubble-sort,

insertion-sort, and selection-sort, which are some of the most

basic sorting algorithms, thus often used to introduce the

concept of sorting algorithms to computer science students.

More efficient sorting algorithms often use a dividie-and-

conquer strategy, with algorithms such as merge-sort and quick-

sort being quicker and more efficient than their brute-force

counterparts.

With efficiency being an important factor in determining the

usefulness of a certain algorithm, computer scientists use the

concept of computational complexity to describe a concise and

consistent language around the efficiency of algorithms. The

complexity of an algorithm can either express the time

complexity, expressing how much time an algorithm will take,

or the space complexity, expressing how much memory is used

when running the algorithm. With the high capabilities of

today’s machines, time complexity is more often used to gauge

the computational complexity of an algorithm than space

complexity as space complexity is less relevant when trying to

optimize an algorithm. The time complexity of an algorithm can

be expressed in terms of the number of operations used by the

algorithm when the input has a particular size. Operations are

used as metrics in the time complexity of algorithms instead of

the actual time taken to run an algorithm due to the difference in

time needed for different computers and languages to perform

these basic operations. Using this concept we can conclude the

efficiency of algorithms and analyze the use-casses in which

these algorithms should be used in.

II. THEORETICAL BASIS

A. Time Complexity

The measure of time complexity stems from the number of

operations in an algorithm when recieving an input of size n.

The operations used to measure time complexity can be the

comparison of integers, the addition of integers, the

multiplication of integers, the division of integers, or any other

basic operation. We express this using the expression 𝑇(𝑛).

Since there are many cases for certain algorithm that yield

different time complexities, we further derive the time

complexity of algorithms as 𝑇𝑚𝑎𝑥(𝑛) to express the maximum

time complexity in a worst-case scenario, 𝑇𝑎𝑣𝑔(𝑛) to express the

average time complexity, and 𝑇𝑚𝑖𝑛(𝑛) to express the minimum

time complexity in a best-case scenario.

As the actual number of operations done in a specific case

when using an algorithm varies due to other factors other than

the size of the input, big-O notation is commonly used to

simplify the comparison of time complexity between

algorithms. Big-O notation defines the growth of a function

relative to its input. For example, using big-O notation we can

conclude that the function 𝑇1(𝑛) = 100𝑛2 + 17𝑛 + 4 is 𝑂(𝑛2)

and the function 𝑇2(𝑛) = 𝑛3 is 𝑂(𝑛3). With that information,

we know that 𝑇1(𝑛) is grows slower thatn 𝑇2(𝑛). The formal

definition of big-O notation is “Let 𝑓 and 𝑔 be functions from

the set of integers or the set of real numbers to the set of real

numbers. We say that 𝑓(𝑥) is 𝑂(𝑔(𝑥)) if there are constants 𝐶

and 𝑘 such that |𝑓 (𝑥)| ≤ 𝐶|𝑔(𝑥)| whenever 𝑥 > 𝑘.”

Intuitively, the definition that 𝑓(𝑥) is 𝑂(𝑔(𝑥)) says that 𝑓(𝑥)

grows slower that some fixed multiple of 𝑔(𝑥) as x grows

without bound, with 𝑔(𝑥) ideally being as small as possible to

be able to compare a fuction’s growth effectively.

When applied to computer science, we can calculate the time

complexity of an algorithm and then compare it with the time

complexity of another by looking at which one grows slower

when receiving a bigger input of 𝑛. In this context, calculating

the big-O of most algorithms in computer science yields the

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

following complexities.
Table 1, Classification of time complexities

No. Complexity Name Efficiency

1. 𝑂(1) Constant Excellent

2. 𝑂(𝑙𝑜𝑔(𝑛)) Logarithmic Excellent

3. 𝑂(𝑛) Linear Great

4. 𝑂(𝑛 𝑙𝑜𝑔(𝑛)) n log(n) Favourable

5. 𝑂(𝑛2) Quadratic Slow

6. 𝑂(𝑛3) Cubic Slow

7. 𝑂(𝑎𝑛) Exponential Extremely slow

8. 𝑂(𝑛!) Factorial Terrible

Figure 1, Visualizations of asymptotic time complexity function growth
Source: https://ajakcyer97.medium.com/big-o-time-complexity-graph-

simplified-798f3b67877a

B. Bubble Sort

Being the introductory algorithm when learning sorting

algorithms, bubble sort uses a brute-force strategy to sort a list

into ascending/descending order that can be summarized into

these 5 steps:

1. Point to two consecutive values in the array. (Initially,

we start by pointing to the array’s first two values.)

2. If the two items are out of order (in other words, the

left value is greater than the right value), swap them (if

they already happen to be in the correct order, do

nothing for this step.)

3. Move the two “pointers” one cell to the right.

4. Repeat Steps 1 through 3 until we reach the end of the

array, or if we reach the values that have already been

sorted. (This will make more sense in the walk-through

that follows.) At this point, we have completed our first

pass-through of the array. That is, we “passed through”

the array by pointing to each of its values until we

reached the end.

5. We then move the two pointers back to the first two

values of the array, and execute another pass-through

of the array by running Steps 1 through 4 again. We

keep on executing these pass-throughs until we have a

passthrough in which we did not perform any swaps.

When this happens, it means our array is fully sorted

and our work is done.

To easier visualize the algorithm, the following vizualization

shows steps 1 to 4 (one “pass-through” of the list) where these

steps will be repeated until we finally get a fully ordered list.

Figure 2, Visualization of a pass-through in bubble sort

Source: https://www.programiz.com/dsa/bubble-sort

C. Selection Sort

Selection sort is another sorting algorithm that uses a brute-

force strategy. The algorithm can be summarized into the

following steps:

1. We check each cell of the array from left to right to

determine which value is least. As we move from cell

to cell, we keep track of the lowest value we’ve

encountered so far.

2. Once we’ve determined which index contains the

lowest value, we swap its value with the value we

began the pass-through with. This would be index 0 in

the first pass-through, index 1 in the second pass-

through, and so on.

3. Each pass-through consists of Steps 1 and 2. We repeat

the pass-throughs until we reach a pass-through that

would start at the end of the array. By this point, the

array will have been fully sorted.

To easier visualize the algorithm, the following vizualization

shows steps 1 to 2 where these steps will be repeated until we

finally get a fully ordered list.

Figure 3, Visualization of a pass-through in selection sort

Source: https://www.programiz.com/dsa/selection-sort

D. Insertion Sort

Selection sort is another sorting algorithm that uses a brute-

force strategy. The algorithm can be summarized into the

following steps:

https://www.programiz.com/dsa/bubble-sort
https://www.programiz.com/dsa/selection-sort

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

1. In the first pass-through, we temporarily remove the

value at index 1. In subsequent pass-throughs, we

remove the values at the subsequent indexes.

2. We then begin a shifting phase, where we take each

value to the left of the gap and compare it to the value in

the temporary variable. If the value to the left of the gap

is greater than the temporary variable, we shift that value

to the right. As we shift values to the right, inherently the

gap moves leftward. As soon as we encounter a value

that is lower than the temporarily removed value, or we

reach the left end of the array, this shifting phase is over.

3. We then insert the temporarily removed value into the

current gap

4. Steps 1 through 3 represent a single pass-through. We

repeat these passthroughs until the pass-through begins

at the final index of the array. By then, the array will

have been fully sorted.

To easier visualize the algorithm, the following vizualization

shows steps 1 to 3 where these steps will be repeated until we

finally get a fully ordered list.

Figure 4, Visualization of a pass-through in insertion sort

Source: https://www.programiz.com/dsa/insertion-sort

E. Counting Sort

Counting sort is a sorting algorithm that uses a simple data

structure approach. Compared to the other algorithms we have

discussed counting sort is a non-comparative sorting algorithm,

meaning that it doesn’t compare between two elements to sort

it’s contents. The algorithm can be summarized into these

steps:

1. Find out the maximum element in the given list.

2. Prepare a “count” list, with its elements numbered

from 0 to max.

3. Store the count or frequency of every element at their

respective indexes in the “count” list.

4. Find the index of each element of the original list in

the count list and place the element into the original

list.

5. Decrease its count in the count array by one.

To easier visualize the algorithm, the following vizualization

shows an example list, its count list, and the resulting sorted

list.

Figure 5, Visualization of counting sort

Source: https://www.programiz.com/dsa/counting-sort

F. Merge Sort

Compared to the sorting algorithms that we haved discussed,

merge sort uses a more complex strategy called divide-and-

conquer. That is because the algorithm divides the problem, in

this case, the list, until finally doing comparisons of its

elements until it finally results in a sorted list. The algorithm

can be summarized into these steps:

1. Divide the list into halves and record the initial length of

the list. Repeat recursively until the recorded lenth is

equal to one.

2. Store the element of both halves into two temporary lists,

which will only be length one on the lowest divisions, on

higher divisions both lists will already be in ascending

order.

3. Insert the contents of the two temporary lists into the

main list by inserting the lower uninserted elements

between the two lists.

4. Repeat step 2 and 3 until the whole list is sorted.

To easier visualize the algorithm, the following vizualization

shows how merge sort divides the list by two and then builds

the list back up.

Figure 6, Visualization of merge sort

Source: https://www.programiz.com/dsa/merge-sort

G. Quick Sort

Quick sort also uses divide-and-conquer to sort a lists elements

into order. Just like merge sort, quick sort achieves a sorted list

by halving the problem until reaching a base case. Quick sort

can be summarized into these steps:

1. Choose the rightmost value int the list as a pivotand

assign left and right pointers to the array (excluding the

pivot).

2. Move the left pointer to the right until it reaches a value

that is greater than or equal to the pivot/

https://www.programiz.com/dsa/insertion-sort
https://www.programiz.com/dsa/counting-sort
https://www.programiz.com/dsa/merge-sort

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

3. Then, the right pointer continuously moves one cell to

the left until it reaches a value that is less than or equal

to the pivot, and then stops. The right pointer will also

stop if it reaches the beginning of the array.

4. If the left pointer is to the left of the right pointer, repeat

steps 1 until 3. If not, continue to step 5.

5. Swap the pivot with the value the left pointer is

pointing to.

6. Treat the subarrays to the left and right of the pivot as

their own arrays and recursively repeat steps 1 until 6.

7. When we have a subarray with zero or one element, do

nothing.

To easier visualize the algorithm, the following vizualization

shows how quick sort rearrange and partitions the list until

reaching an ordered list.

Figure 7, Visualization of quick sort

Source: https://www.programiz.com/dsa/quick-sort

III. METHODOLOGY

In order to test the validity of the resulting big-O calculations,

we will use python on jupyter notebook to run each sorting

algorithm and analyze the resulting computation time. The

analysis is done by running every sorting algorithm with

increasing size of the randomized input array, and then

recording and plotting the computation time of each run into a

graph. If the big-O calculations were correct, the resulting graph

should have the same shape as it’s asymptotic complexity.

Due to the random nature of our input array, there will often

be cases where the input array causes a worst-case scenario to

the specific algorithm. To be able to get the desired average

computation time, we will repeat the algorithm 20 times and

choose the median as the average computation time for the

sorting algorithm when sorting an array of length 𝑛.

The following is python code to record the computation time

of a merge sort algorithm and repeat it 20 times:
index = [n for n in range(1,(10**3),1)]
result = []

for n in index:
 data = randomArray(n)
 size = len(data)-1
 t = Timer(lambda: mergeSort(data))

 result.append([t.timeit(number=1)])

for j in range(19):
 i = 0
 for n in index:
 data = randomArray(n)
 size = len(data)-1
 t = Timer(lambda: mergeSort(data))
 ti = t.timeit(number=1)
 result[i].append(ti)
 i += 1

median = []
for res in result:
 res.sort()
 median.append(res[9])

After getting the resulting computation time, we will have to

compare the results on the plot with its corresponding

asymptotic function. Since the plot is mapped to an x-axis of 𝑛

(the size of the input array) and a y-axis of 𝑇(𝑛) (thecomputation

time of the algorithm), we will have to calculate the magnitude

of the plotted asymptotic function. In order to calculate the

magnitude, we first observe the desired 𝑇(𝑛) of the asymptotic

graph of 𝑂(𝑓(𝑛)),

𝑇(𝑛) = 𝑎 𝑓(𝑛)

To get the magnitude 𝑎, we will use the computation time

𝑇(𝑛) of the input array with the biggest size 𝑛.

𝑎 =
𝑇(𝑛)

𝑓(𝑛)

The resulting magnitude 𝑎 will roughly equal the computation

time of a single operation in the algorithm. Using 𝑎 we can plot

the asymptotic function that correlates to the time complexity of

the algorithm, allowing us to compare our calculated big-O

notation with the actual run time of the algorithm.

The following is python code to calculate the magnitude and

to create an asymptotic function for 𝑂(𝑛 𝑙𝑜𝑔𝑛):
import math
clock_time = result[-1][9] / (len(result) *
 math.log2(len(result)))

nlogn = []
for i in range(1, len(result) + 1):
 nlogn.append(i * math.log2(i) * clock_time)

IV. BUBBLE SORT TIME COMPLEXITY

Bubble sort works by traversing and swapping elements in the

array repeatedly. Each pass-through will take 𝑂(𝑛) operations

and since our algorithm stops if it does a pass through that did

not do any swaps, then we can conclude that in the best-case

where the algorithm only does one pass-through, bubble sort

will have a time complexity of 𝑂(𝑛) and in the average and

worst-case where the algorithm will do roughly n pass-throughs,

bubble sort will have a time complexity of 𝑂(𝑛2).

The following is python code of the bubble sort algorithm:
def bubbleSort(arr):
 n = len(arr)
 for i in range(n-1):
 swapped = False
 for j in range(n-1):
 if arr[j] > arr[j + 1]:
 temp = arr[j];
 arr[j] = arr[j + 1];
 arr[j + 1] = temp;
 swapped = True;

https://www.programiz.com/dsa/quick-sort

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

 if (not swapped):
 break

The time complexity of bubble sort for an array up to length

𝑛 = 500 is plotted in figure 8. When compared to its

asymptotic time complexity of 𝑂(𝑛2), since the graphs match,

we can conclude that the time complexity of bubble sort is

𝑂(𝑛2).

Figure 8, Bubble sort run times for array of size n

Source: writer’s analysis

V. SELECTION SORT TIME COMPLEXITY

For each index in an array, selection sort will swap its element

with the smallest element in the subarray to it’s right. Searching

for the smallest element will take 𝑂(𝑛), when repeated 𝑛 times,

selection sort’s time complexity is 𝑂(𝑛^2). For a subarray with

𝑛 elements, the algorithm will run exactly the same steps

everytime, causing it to have no worst-case or best-case, so the

algorithm will always run in 𝑂(𝑛2) time.

 The following is python code of the selection sort algorithm:
def selectionSort(arr):
 for i in range(len(arr)):
 min_idx = i
 for j in range(i+1, len(arr)):
 if arr[min_idx] > arr[j]:
 min_idx = j

 arr[i], arr[min_idx] = arr[min_idx], arr[i]

The time complexity of selection sort for an array up to length

𝑛  =  500 is plotted in figure 9. When compared to its

asymptotic time complexity of 𝑂(𝑛2), since the graphs match,

we can conclude that the time complexity of selection sort is

𝑂(𝑛2).

Figure 9, Selection sort run times for array of size n

Source: writer’s analysis

VI. INSERTION SORT TIME COMPLEXITY

For each index in an array, inserstion sort will traverse the

subarray to its left and swapping every element until it finds the

original index’s correct spot. Traversing the array will take 𝑂(𝑛)

time and since it will be repeated for all elements in the array,

insertion sort has a time complexity of 𝑂(𝑛2).

The following is python code of the insertion sort algorithm:
def insertionSort(arr):
 for i in range(1, len(arr)):
 key = arr[i]
 j = i-1

 while j >= 0 and key < arr[j] :
 arr[j + 1] = arr[j]
 j -= 1

 arr[j + 1] = key

The time complexity of insertion sort for an array up to length

𝑛  =  500 is plotted in figure 10. When compared to its

asymptotic time complexity of 𝑂(𝑛2), since the graphs match,

we can conclude that the time complexity of insertion sort is

𝑂(𝑛2).

Figure 10, Insertion sort run times for array of size n

Source: writer’s analysis

VII. COUNTING SORT TIME COMPLEXITY

Since counting sort is non-comparative, the algorithm mostly

consists of linear traversals on an array, which takes O(n) time.

However, due to the creation and traversal of a count array that

has the size 𝑘, the maximum value in the original array, the

algorithm also does some traversals in 𝑂(𝑘) time. Knowing that,

we could conclude that counting sort has a time complexity of

𝑂(𝑛 + 𝑘), but since we are interested in the asymptotic function

of the algorithm’s time complexity, we could also say that

counting sort has a complexity of 𝑂(𝑛) since the algorithm has

linear growth.

The following is python code of the counting sort algorithm:
def count_sort(arr):
 max_element = int(max(arr))
 min_element = int(min(arr))
 range_of_elements = max_element - min_element + 1

 count_arr = [0 for _ in range(range_of_elements)]
 output_arr = [0 for _ in range(len(arr))]

 for i in range(0, len(arr)):
 count_arr[arr[i]-min_element] += 1

 for i in range(1, len(count_arr)):
 count_arr[i] += count_arr[i-1]

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

 for i in range(len(arr)-1, -1, -1):
 output_arr[count_arr[arr[i] - min_element] - 1]
 = arr[i]
 count_arr[arr[i] - min_element] -= 1

 for i in range(0, len(arr)):
 arr[i] = output_arr[i]

The time complexity of counting sort for an array up to length

𝑛  =  5000 is plotted in figure 11. When compared to its

asymptotic time complexity of 𝑂(𝑛), since the graphs match, we

can conclude that the time complexity of counting sort is 𝑂(𝑛).

Figure 11, Counting sort run times for array of size n

Source: writer’s analysis

VIII. MERGE SORT TIME COMPLEXITY

When analyzing merge sort’s divide-and-conquer strategy,

we can infer that, for every element in the array, the element will

be compared and inserted into a sorted array or subarray 𝑙𝑜𝑔𝑛

times. That is because the array is divided into halves to form

subarrays and then each subarray’s elements will be compared

and inserted. Knowing that, we can conclude that merge sort has

a time complexity of 𝑂(𝑛 𝑙𝑜𝑔𝑛).

The following is the python code of the merge sort algorithm:
def mergeSort(arr):
 if len(arr) > 1:

 mid = len(arr)//2
 L = arr[:mid]
 R = arr[mid:]

 mergeSort(L)
 mergeSort(R)

 i = j = k = 0

 while i < len(L) and j < len(R):
 if L[i] <= R[j]:
 arr[k] = L[i]
 i += 1
 else:
 arr[k] = R[j]
 j += 1
 k += 1

 while i < len(L):
 arr[k] = L[i]
 i += 1
 k += 1

 while j < len(R):
 arr[k] = R[j]
 j += 1
 k += 1

The time complexity of merge sort for an array up to length

𝑛  =  1000 is plotted in figure 12. When compared to its

asymptotic time complexity of 𝑂(𝑛 𝑙𝑜𝑔𝑛), since the graphs

match, we can conclude that the time complexity of merge sort

is 𝑂(𝑛 𝑙𝑜𝑔𝑛).

Figure 12, Merge sort run times for array of size n

Source: writer’s analysis

VIII. QUICK SORT TIME COMPLEXITY

Similar to merge sort, quick sort halves the array and

recursively repeats the operation until it reaches a subarray that

has length one or zero. With the same principles as merge sort,

we can also find that every element in the array will be compared

by the algorithm as much as 𝑙𝑜𝑔𝑛 times. So we can conclude

that quick sort has a time complexity of 𝑂(𝑛 𝑙𝑜𝑔𝑛).

The following is the python code of the quick sort algorithm:
def partition(array, low, high):
 pivot = array[high]
 i = low - 1

 for j in range(low, high):
 if array[j] <= pivot:
 i = i + 1
 (array[i], array[j]) = (array[j], array[i])

 (array[i + 1], array[high]) = (array[high], array[i
+ 1])

 return i + 1

def quickSort(array, low, high):
 if low < high:
 pi = partition(array, low, high)

 quickSort(array, low, pi - 1)
 quickSort(array, pi + 1, high)

The time complexity of quick sort for an array up to length

𝑛  =  1000 is plotted in figure 13. When compared to its

asymptotic time complexity of 𝑂(𝑛 𝑙𝑜𝑔𝑛), since the graphs

match, we can conclude that the time complexity of quick sort

is 𝑂(𝑛 𝑙𝑜𝑔𝑛).

Figure 13, Quick sort run times for array of size n

Source: writer’s analysis

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

IX. CONCLUSION

From the time complexities that we have calculated and the

recorded run time done from our tests, we can confidently say

that using the right algorithm is important in optimizing the

performance of a program. In our cases, we have found that

when doing comparative based sorting, it is best to use the more

efficient quick sort and merge sort that have a time complexity

of 𝑂(𝑛 𝑙𝑜𝑔𝑛). Our run time testing also show a significant

difference in computation speed between divide-and-conquer

algorithms with brute-foce algorithms, such as bubble sort,

insertion sort, and selection sort that all have an average time

complexity of 𝑂(𝑛2). While counting sort has an average speed

that is much more faster than any other algorithm that we have

discussed, it’s memory usage is much more significant and

might affect the program that it is running on.

In most programming languages however, programmers

rarely have to consider the sorting algorithm to use as almost all

modern languages already have sorting functions that come with

it’s standard library. These sorting functions often use a mix of

sorting algorithms to make it’s implementation even faster in the

average use case. For example, python’s standard sorting

function uses Timsort, a mix between merge sort and insertion

sort, that has 𝑂(𝑛 𝑙𝑜𝑔𝑛) average and worst-case time

complexity and 𝑂(𝑛) best-case time complexity, making it

better than all the comparison based algorithms that we have

discussed.

VII. ACKNOWLEDGMENT

I wish to show my appreciation to Dr. Fariska Zakhralativa

Ruskanda for this assignment, as this assignment has

encouraged me into researching deeper about discrete maths and

algorithm strategies. I wish to extend my appreciation to the

GeeksforGeeks community for providing and maintaining an

extensive and accessible archive of computer science

knowledge on the internet.

REFERENCES

[1] Cyer, A. (2022, January 7). Big O — Time Complexity Graph Simplified

- Ajak Cyer. Medium. Retrieved December 10, 2022, from

https://ajakcyer97.medium.com/big-o-time-complexity-graph-simplified-
798f3b67877a

[2] GeeksforGeeks. (2022, December 9). Time Complexities of all Sorting

Algorithms. Retrieved December 10, 2022, from
https://www.geeksforgeeks.org/time-complexities-of-all-sorting-

algorithms/

[3] Learn Data Structures and Algorithms. (n.d.). Retrieved December 10,
2022, from https://www.programiz.com/dsa

[4] Rosen, K. (2011). Discrete Mathematics and Its Applications Seventh

Edition (7th ed.).
[5] McGraw Hill. Wengrow, J. (2020). A Common-Sense Guide to Data

Structures and Algorithms, Second Edition: Level Up Your Core

Programming Skills. Pragmatic Bookshelf.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 12 Desember 2022

Rinaldy Adin 13521134

https://ajakcyer97.medium.com/big-o-time-complexity-graph-simplified-798f3b67877a
https://ajakcyer97.medium.com/big-o-time-complexity-graph-simplified-798f3b67877a
https://www.geeksforgeeks.org/time-complexities-of-all-sorting-algorithms/
https://www.geeksforgeeks.org/time-complexities-of-all-sorting-algorithms/
https://www.programiz.com/dsa

