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Abstract—Sorting algorithms rearrange lists into an ordered 

manner. As with most algorithms, we have to take into account it’s 

efficiency when running in a program, we measure an algorithms 

efficiency using the concept of time complexity. Calculating time 

complexity allows us to know and understand the speed of an 

algorithm relative to the size of its input and express it using big-O 

notation. This paper analyzes the time complexity of sorting 

algorithms and collects data on actual algorithm run time. Our 

findings conclude that divide-and-conquer sorting algorithms are 

the most effective to use in most use cases, when compared to slower 

brute-force algorithms and memory hungry non-comparative 

sorting algorithms. 
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I.   INTRODUCTION 

A sorting algorithm is an algorithm that places the elements 

of a list into a specific order, whether it be in numerical order, 

lexicographical order and either ascending or descending. As 

with most algorithms, there is a requirement to optimize the 

efficiency of algorithms, such as sorting algorithms, to make 

sure its usage is as fast and efficient as possible. Due to the 

frequent need for sorting in computer science applications, there 

are various sorting algorithms with varying efficiencies and 

techniques used to implement them. 

Sorting algorithms use a wide variety of strategies, including 

brute-force, divide-and-conquer, advanced data-structures, and 

many more. The most common and popular algorithms use a 

brute-force strategy, those algorithms include bubble-sort, 

insertion-sort, and selection-sort, which are some of the most 

basic sorting algorithms, thus often used to introduce the 

concept of sorting algorithms to computer science students. 

More efficient sorting algorithms often use a dividie-and-

conquer strategy, with algorithms such as merge-sort and quick-

sort being quicker and more efficient than their brute-force 

counterparts. 

With efficiency being an important factor in determining the 

usefulness of a certain algorithm, computer scientists use the 

concept of computational complexity to describe a concise and 

consistent language around the efficiency of algorithms. The 

complexity of an algorithm can either express the time 

complexity, expressing how much time an algorithm will take, 

or the space complexity, expressing how much memory is used 

when running the algorithm. With the high capabilities of 

today’s machines, time complexity is more often used to gauge 

the computational complexity of an algorithm than space 

complexity as space complexity is less relevant when trying to 

optimize an algorithm. The time complexity of an algorithm can 

be expressed in terms of the number of operations used by the 

algorithm when the input has a particular size. Operations are 

used as metrics in the time complexity of algorithms instead of 

the actual time taken to run an algorithm due to the difference in 

time needed for different computers and languages to perform 

these basic operations. Using this concept we can conclude the 

efficiency of algorithms and analyze the use-casses in which 

these algorithms should be used in.  

 

II.  THEORETICAL BASIS 

A. Time Complexity 

The measure of time complexity stems from the number of 

operations in an algorithm when recieving an input of size n. 

The operations used to measure time complexity can be the 

comparison of integers, the addition of integers, the 

multiplication of integers, the division of integers, or any other 

basic operation. We express this using the expression 𝑇(𝑛). 

Since there are many cases for certain algorithm that yield 

different time complexities, we further derive the time 

complexity of algorithms as 𝑇𝑚𝑎𝑥(𝑛) to express the maximum 

time complexity in a worst-case scenario, 𝑇𝑎𝑣𝑔(𝑛) to express the 

average time complexity, and 𝑇𝑚𝑖𝑛(𝑛) to express the minimum 

time complexity in a best-case scenario. 

As the actual number of operations done in a specific case 

when using an algorithm varies due to other factors other than 

the size of the input, big-O notation is commonly used to 

simplify the comparison of time complexity between 

algorithms. Big-O notation defines the growth of a function 

relative to its input. For example, using big-O notation we can 

conclude that the function 𝑇1(𝑛) = 100𝑛2 + 17𝑛 + 4 is 𝑂(𝑛2) 

and the function 𝑇2(𝑛) = 𝑛3 is 𝑂(𝑛3). With that information, 

we know that 𝑇1(𝑛) is grows slower thatn 𝑇2(𝑛). The formal 

definition of big-O notation is “Let 𝑓 and 𝑔 be functions from 

the set of integers or the set of real numbers to the set of real 

numbers. We say that 𝑓(𝑥) is 𝑂(𝑔(𝑥)) if there are constants 𝐶 

and 𝑘 such that |𝑓 (𝑥)|  ≤  𝐶|𝑔(𝑥)| whenever 𝑥 > 𝑘.” 

Intuitively, the definition that 𝑓(𝑥) is 𝑂(𝑔(𝑥)) says that 𝑓(𝑥) 

grows slower that some fixed multiple of 𝑔(𝑥) as x grows 

without bound, with 𝑔(𝑥) ideally being as small as possible to 

be able to compare a fuction’s growth effectively. 

When applied to computer science, we can calculate the time 

complexity of an algorithm and then compare it with the time 

complexity of another by looking at which one grows slower 

when receiving a bigger input of 𝑛. In this context, calculating 

the big-O of most algorithms in computer science yields the 
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following complexities. 
Table 1, Classification of time complexities 

No. Complexity Name Efficiency 

1. 𝑂(1) Constant Excellent 

2. 𝑂(𝑙𝑜𝑔(𝑛)) Logarithmic Excellent 

3. 𝑂(𝑛) Linear Great 

4. 𝑂(𝑛 𝑙𝑜𝑔(𝑛)) n log(n) Favourable 

5. 𝑂(𝑛2) Quadratic Slow 

6. 𝑂(𝑛3) Cubic Slow 

7. 𝑂(𝑎𝑛) Exponential Extremely slow 

8. 𝑂(𝑛!) Factorial Terrible 

 

 

Figure 1, Visualizations of asymptotic time complexity function growth 
Source: https://ajakcyer97.medium.com/big-o-time-complexity-graph-

simplified-798f3b67877a 

B. Bubble Sort 

Being the introductory algorithm when learning sorting 

algorithms, bubble sort uses a brute-force strategy to sort a list 

into ascending/descending order that can be summarized into 

these 5 steps: 

1. Point to two consecutive values in the array. (Initially, 

we start by pointing to the array’s first two values.) 

2. If the two items are out of order (in other words, the 

left value is greater than the right value), swap them (if 

they already happen to be in the correct order, do 

nothing for this step.) 

3. Move the two “pointers” one cell to the right. 

4. Repeat Steps 1 through 3 until we reach the end of the 

array, or if we reach the values that have already been 

sorted. (This will make more sense in the walk-through 

that follows.) At this point, we have completed our first 

pass-through of the array. That is, we “passed through” 

the array by pointing to each of its values until we 

reached the end. 

5. We then move the two pointers back to the first two 

values of the array, and execute another pass-through 

of the array by running Steps 1 through 4 again. We 

keep on executing these pass-throughs until we have a 

passthrough in which we did not perform any swaps. 

When this happens, it means our array is fully sorted 

and our work is done. 

 

To easier visualize the algorithm, the following vizualization 

shows steps 1 to 4 (one “pass-through” of the list) where these 

steps will be repeated until we finally get a fully ordered list. 

 

 
Figure 2, Visualization of a pass-through in bubble sort 

Source: https://www.programiz.com/dsa/bubble-sort  

 

C. Selection Sort 

Selection sort is another sorting algorithm that uses a brute-

force strategy. The algorithm can be summarized into the 

following steps: 

1. We check each cell of the array from left to right to 

determine which value is least. As we move from cell 

to cell, we keep track of the lowest value we’ve 

encountered so far. 

2. Once we’ve determined which index contains the 

lowest value, we swap its value with the value we 

began the pass-through with. This would be index 0 in 

the first pass-through, index 1 in the second pass-

through, and so on. 

3. Each pass-through consists of Steps 1 and 2. We repeat 

the pass-throughs until we reach a pass-through that 

would start at the end of the array. By this point, the 

array will have been fully sorted. 

 

To easier visualize the algorithm, the following vizualization 

shows steps 1 to 2 where these steps will be repeated until we 

finally get a fully ordered list. 

 
Figure 3, Visualization of a pass-through in selection sort 

Source: https://www.programiz.com/dsa/selection-sort  

 

D. Insertion Sort 

Selection sort is another sorting algorithm that uses a brute-

force strategy. The algorithm can be summarized into the 

following steps: 

https://www.programiz.com/dsa/bubble-sort
https://www.programiz.com/dsa/selection-sort


 

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023 

 

1. In the first pass-through, we temporarily remove the 

value at index 1. In subsequent pass-throughs, we 

remove the values at the subsequent indexes. 

2. We then begin a shifting phase, where we take each 

value to the left of the gap and compare it to the value in 

the temporary variable. If the value to the left of the gap 

is greater than the temporary variable, we shift that value 

to the right. As we shift values to the right, inherently the 

gap moves leftward. As soon as we encounter a value 

that is lower than the temporarily removed value, or we 

reach the left end of the array, this shifting phase is over. 

3. We then insert the temporarily removed value into the 

current gap 

4. Steps 1 through 3 represent a single pass-through. We 

repeat these passthroughs until the pass-through begins 

at the final index of the array. By then, the array will 

have been fully sorted. 

 

To easier visualize the algorithm, the following vizualization 

shows steps 1 to 3 where these steps will be repeated until we 

finally get a fully ordered list. 

 
Figure 4, Visualization of a pass-through in insertion sort 

Source: https://www.programiz.com/dsa/insertion-sort 

 

E. Counting Sort 

Counting sort is a sorting algorithm that uses a simple data 

structure approach. Compared to the other algorithms we have 

discussed counting sort is a non-comparative sorting algorithm, 

meaning that it doesn’t compare between two elements to sort 

it’s contents. The algorithm can be summarized into these 

steps: 

1. Find out the maximum element in the given list. 

2. Prepare a “count” list, with its elements numbered 

from 0 to max. 

3. Store the count or frequency of every element at their 

respective indexes in the “count” list. 

4. Find the index of each element of the original list in 

the count list and place the element into the original 

list. 

5. Decrease its count in the count array by one. 

To easier visualize the algorithm, the following vizualization 

shows an example list, its count list, and the resulting sorted 

list. 

 
Figure 5, Visualization of  counting sort 

Source: https://www.programiz.com/dsa/counting-sort  

 

F. Merge Sort 

Compared to the sorting algorithms that we haved discussed, 

merge sort uses a more complex strategy called divide-and-

conquer. That is because the algorithm divides the problem, in 

this case, the list, until finally doing comparisons of its 

elements until it finally results in a sorted list. The algorithm 

can be summarized into these steps: 

1. Divide the list into halves and record the initial length of 

the list. Repeat recursively until the recorded lenth is 

equal to one. 

2. Store the element of both halves into two temporary lists, 

which will only be length one on the lowest divisions, on 

higher divisions both lists will already be in ascending 

order. 

3. Insert the contents of the two temporary lists into the 

main list by inserting the lower uninserted elements 

between the two lists. 

4. Repeat step 2 and 3 until the whole list is sorted. 

 

To easier visualize the algorithm, the following vizualization 

shows how merge sort divides the list by two and then builds 

the list back up. 

 
Figure 6, Visualization of merge sort 

Source: https://www.programiz.com/dsa/merge-sort  

 

G. Quick Sort 

Quick sort also uses divide-and-conquer to sort a lists elements 

into order. Just like merge sort, quick sort achieves a sorted list 

by halving the problem until reaching a base case. Quick sort 

can be summarized into these steps: 

1. Choose the rightmost value int the list as a pivotand 

assign left and right pointers to the array (excluding the 

pivot). 

2. Move the left pointer to the right until it reaches a value 

that is greater than or equal to the pivot/ 

https://www.programiz.com/dsa/insertion-sort
https://www.programiz.com/dsa/counting-sort
https://www.programiz.com/dsa/merge-sort
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3. Then, the right pointer continuously moves one cell to 

the left until it reaches a value that is less than or equal 

to the pivot, and then stops. The right pointer will also 

stop if it reaches the beginning of the array. 

4. If the left pointer is to the left of the right pointer, repeat 

steps 1 until 3. If not, continue to step 5. 

5. Swap the pivot with the value the left pointer is 

pointing to. 

6. Treat the subarrays to the left and right of the pivot as 

their own arrays and recursively repeat steps 1 until 6. 

7. When we have a subarray with zero or one element, do 

nothing. 

To easier visualize the algorithm, the following vizualization 

shows how quick sort rearrange and partitions the list until 

reaching an ordered list. 

 

 

 
Figure 7, Visualization of quick sort 

Source: https://www.programiz.com/dsa/quick-sort  

 

III.   METHODOLOGY 

In order to test the validity of the resulting big-O calculations, 

we will use python on jupyter notebook to run each sorting 

algorithm and analyze the resulting computation time. The 

analysis is done by running every sorting algorithm with 

increasing size of the randomized input array, and then 

recording and plotting the computation time of each run into a 

graph. If the big-O calculations were correct, the resulting graph 

should have the same shape as it’s asymptotic complexity. 

Due to the random nature of our input array, there will often 

be cases where the input array causes a worst-case scenario to 

the specific algorithm. To be able to get the desired average 

computation time, we will repeat the algorithm 20 times and 

choose the median as the average computation time for the 

sorting algorithm when sorting an array of length 𝑛. 

The following is python code to record the computation time 

of a merge sort algorithm and repeat it 20 times: 
index = [n for n in range(1,(10**3),1)] 
result = [] 
 
for n in index: 
    data = randomArray(n) 
    size = len(data)-1 
    t = Timer(lambda: mergeSort(data)) 

    result.append([t.timeit(number=1)]) 
 
for j in range(19): 
    i = 0 
    for n in index: 
        data = randomArray(n) 
        size = len(data)-1 
        t = Timer(lambda: mergeSort(data)) 
        ti = t.timeit(number=1) 
        result[i].append(ti) 
        i += 1 
 
median = [] 
for res in result: 
    res.sort() 
    median.append(res[9]) 

 

After getting the resulting computation time, we will have to 

compare the results on the plot with its corresponding 

asymptotic function. Since the plot is mapped to an x-axis of 𝑛 

(the size of the input array) and a y-axis of 𝑇(𝑛) (thecomputation 

time of the algorithm), we will have to calculate the magnitude 

of the plotted asymptotic function. In order to calculate the 

magnitude, we first observe the desired 𝑇(𝑛) of the asymptotic 

graph of 𝑂(𝑓(𝑛)), 

𝑇(𝑛) = 𝑎 𝑓(𝑛) 

To get the magnitude 𝑎, we will use the computation time 

𝑇(𝑛) of the input array with the biggest size 𝑛. 

𝑎 =
𝑇(𝑛)

𝑓(𝑛)
 

The resulting magnitude 𝑎 will roughly equal the computation 

time of a single operation in the algorithm. Using 𝑎 we can plot 

the asymptotic function that correlates to the time complexity of 

the algorithm, allowing us to compare our calculated big-O 

notation with the actual run time of the algorithm. 

The following is python code to calculate the magnitude and 

to create an asymptotic function for 𝑂(𝑛 𝑙𝑜𝑔𝑛): 
import math 
clock_time = result[-1][9] / (len(result) *  
                              math.log2(len(result))) 
 
nlogn = [] 
for i in range(1, len(result) + 1): 
    nlogn.append(i * math.log2(i) * clock_time) 

 

IV.   BUBBLE SORT TIME COMPLEXITY 

Bubble sort works by traversing and swapping elements in the 

array repeatedly. Each pass-through will take 𝑂(𝑛) operations 

and since our algorithm stops if it does a pass through that did 

not do any swaps, then we can conclude that in the best-case 

where the algorithm only does one pass-through, bubble sort 

will have a time complexity of 𝑂(𝑛) and in the average and 

worst-case where the algorithm will do roughly n pass-throughs, 

bubble sort will have a time complexity of 𝑂(𝑛2). 

The following is python code of the bubble sort algorithm: 
def bubbleSort(arr): 
    n = len(arr) 
    for i in range(n-1): 
        swapped = False 
        for j in range(n-1): 
            if arr[j] > arr[j + 1]: 
                temp = arr[j]; 
                arr[j] = arr[j + 1]; 
                arr[j + 1] = temp; 
                swapped = True; 

https://www.programiz.com/dsa/quick-sort
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        if (not swapped): 
            break 

 

The time complexity of bubble sort for an array up to length 

𝑛 =  500 is plotted in figure 8. When compared to its 

asymptotic time complexity of 𝑂(𝑛2), since the graphs match, 

we can conclude that the time complexity of bubble sort is 

𝑂(𝑛2). 

 

 
Figure 8, Bubble sort run times for array of size n  

Source: writer’s analysis 

 

V. SELECTION SORT TIME COMPLEXITY 

For each index in an array, selection sort will swap its element 

with the smallest element in the subarray to it’s right. Searching 

for the smallest element will take 𝑂(𝑛), when repeated 𝑛 times, 

selection sort’s time complexity is 𝑂(𝑛^2). For a subarray with 

𝑛 elements, the algorithm will run exactly the same steps 

everytime, causing it to have no worst-case or best-case, so the 

algorithm will always run in 𝑂(𝑛2) time. 

 The following is python code of the selection sort algorithm: 
def selectionSort(arr): 
    for i in range(len(arr)): 
        min_idx = i 
        for j in range(i+1, len(arr)): 
            if arr[min_idx] > arr[j]: 
                min_idx = j 
                 
        arr[i], arr[min_idx] = arr[min_idx], arr[i] 

 

The time complexity of selection sort for an array up to length 

𝑛  =  500 is plotted in figure 9. When compared to its 

asymptotic time complexity of 𝑂(𝑛2), since the graphs match, 

we can conclude that the time complexity of selection sort is 

𝑂(𝑛2). 

 
Figure 9, Selection sort run times for array of size n 

Source: writer’s analysis 

 

VI. INSERTION SORT TIME COMPLEXITY 

For each index in an array, inserstion sort will traverse the 

subarray to its left and swapping every element until it finds the 

original index’s correct spot. Traversing the array will take 𝑂(𝑛) 

time and since it will be repeated for all elements in the array, 

insertion sort has a time complexity of 𝑂(𝑛2). 

The following is python code of the insertion sort algorithm: 
def insertionSort(arr): 
    for i in range(1, len(arr)): 
        key = arr[i] 
        j = i-1 
 
        while j >= 0 and key < arr[j] : 
                arr[j + 1] = arr[j] 
                j -= 1 
 
        arr[j + 1] = key 

 

The time complexity of insertion sort for an array up to length 

𝑛  =  500 is plotted in figure 10. When compared to its 

asymptotic time complexity of 𝑂(𝑛2), since the graphs match, 

we can conclude that the time complexity of insertion sort is 

𝑂(𝑛2). 

 
Figure 10, Insertion sort run times for array of size n 

Source: writer’s analysis 

 

VII. COUNTING SORT TIME COMPLEXITY 

Since counting sort is non-comparative, the algorithm mostly 

consists of linear traversals on an array, which takes O(n) time. 

However, due to the creation and traversal of a count array that 

has the size 𝑘, the maximum value in the original array, the 

algorithm also does some traversals in 𝑂(𝑘) time. Knowing that, 

we could conclude that counting sort has a time complexity of 

𝑂(𝑛 + 𝑘), but since we are interested in the asymptotic function 

of the algorithm’s time complexity, we could also say that 

counting sort has a complexity of  𝑂(𝑛) since the algorithm has 

linear growth. 

The following is python code of the counting sort algorithm: 
def count_sort(arr): 
    max_element = int(max(arr)) 
    min_element = int(min(arr)) 
    range_of_elements = max_element - min_element + 1 
 
    count_arr = [0 for _ in range(range_of_elements)] 
    output_arr = [0 for _ in range(len(arr))] 
  
    for i in range(0, len(arr)): 
        count_arr[arr[i]-min_element] += 1 
  
    for i in range(1, len(count_arr)): 
        count_arr[i] += count_arr[i-1] 
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    for i in range(len(arr)-1, -1, -1): 
        output_arr[count_arr[arr[i] - min_element] - 1] 
           = arr[i] 
        count_arr[arr[i] - min_element] -= 1 
  
    for i in range(0, len(arr)): 
        arr[i] = output_arr[i] 

 

The time complexity of counting sort for an array up to length 

𝑛  =  5000 is plotted in figure 11. When compared to its 

asymptotic time complexity of 𝑂(𝑛), since the graphs match, we 

can conclude that the time complexity of counting sort is 𝑂(𝑛). 

 
Figure 11, Counting sort run times for array of size n  

Source: writer’s analysis 

 

VIII. MERGE SORT TIME COMPLEXITY 

When analyzing merge sort’s divide-and-conquer strategy, 

we can infer that, for every element in the array, the element will 

be compared and inserted into a sorted array or subarray 𝑙𝑜𝑔𝑛 

times. That is because the array is divided into halves to form 

subarrays and then each subarray’s elements will be compared 

and inserted. Knowing that, we can conclude that merge sort has 

a time complexity of 𝑂(𝑛 𝑙𝑜𝑔𝑛). 

The following is the python code of the merge sort algorithm: 
def mergeSort(arr): 
    if len(arr) > 1: 
  
        mid = len(arr)//2 
        L = arr[:mid] 
        R = arr[mid:] 
  
        mergeSort(L) 
        mergeSort(R) 
  
        i = j = k = 0 
  
        while i < len(L) and j < len(R): 
            if L[i] <= R[j]: 
                arr[k] = L[i] 
                i += 1 
            else: 
                arr[k] = R[j] 
                j += 1 
            k += 1 
  
        while i < len(L): 
            arr[k] = L[i] 
            i += 1 
            k += 1 
  
        while j < len(R): 
            arr[k] = R[j] 
            j += 1 
            k += 1 

 

The time complexity of merge sort for an array up to length 

𝑛  =  1000 is plotted in figure 12. When compared to its 

asymptotic time complexity of 𝑂(𝑛 𝑙𝑜𝑔𝑛), since the graphs 

match, we can conclude that the time complexity of merge sort 

is 𝑂(𝑛 𝑙𝑜𝑔𝑛). 

 
Figure 12, Merge sort run times for array of size n 

Source: writer’s analysis 

 

VIII. QUICK SORT TIME COMPLEXITY 

Similar to merge sort, quick sort halves the array and 

recursively repeats the operation until it reaches a subarray that 

has length one or zero. With the same principles as merge sort, 

we can also find that every element in the array will be compared 

by the algorithm as much as 𝑙𝑜𝑔𝑛 times. So we can conclude 

that quick sort has a time complexity of 𝑂(𝑛 𝑙𝑜𝑔𝑛). 

The following is the python code of the quick sort algorithm: 
def partition(array, low, high): 
    pivot = array[high] 
    i = low - 1 
  
    for j in range(low, high): 
        if array[j] <= pivot: 
            i = i + 1 
            (array[i], array[j]) = (array[j], array[i]) 
  
    (array[i + 1], array[high]) = (array[high], array[i 
+ 1]) 
 
    return i + 1 
  
def quickSort(array, low, high): 
    if low < high: 
        pi = partition(array, low, high) 
 
        quickSort(array, low, pi - 1) 
        quickSort(array, pi + 1, high) 

 

The time complexity of quick sort for an array up to length 

𝑛  =  1000 is plotted in figure 13. When compared to its 

asymptotic time complexity of 𝑂(𝑛 𝑙𝑜𝑔𝑛), since the graphs 

match, we can conclude that the time complexity of quick sort 

is 𝑂(𝑛 𝑙𝑜𝑔𝑛). 

 
Figure 13, Quick sort run times for array of size n  

Source: writer’s analysis 
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IX.   CONCLUSION 

From the time complexities that we have calculated and the 

recorded run time done from our tests, we can confidently say 

that using the right algorithm is important in optimizing the 

performance of a program. In our cases, we have found that 

when doing comparative based sorting, it is best to use the more 

efficient quick sort and merge sort that have a time complexity 

of 𝑂(𝑛 𝑙𝑜𝑔𝑛). Our run time testing also show a significant 

difference in computation speed between divide-and-conquer 

algorithms with brute-foce algorithms, such as bubble sort, 

insertion sort, and selection sort that all have an average time 

complexity of 𝑂(𝑛2). While counting sort has an average speed 

that is much more faster than any other algorithm that we have 

discussed, it’s memory usage is much more significant and 

might affect the program that it is running on. 

In most programming languages however, programmers 

rarely have to consider the sorting algorithm to use as almost all 

modern languages already have sorting functions that come with 

it’s standard library. These sorting functions often use a mix of 

sorting algorithms to make it’s implementation even faster in the 

average use case. For example, python’s standard sorting 

function uses Timsort, a mix between merge sort and insertion 

sort, that has 𝑂(𝑛 𝑙𝑜𝑔𝑛) average and worst-case time 

complexity and 𝑂(𝑛) best-case time complexity, making it 

better than all the comparison based algorithms that we have 

discussed. 
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