
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

Random Forest Machine Learning Model

Implementation on Detecting Fraudulent Credit Cards

Enrique Alifio Ditya - 135211421

Departement of Informatics Engineering

School of Informatics and Electrical Engineering

Bandung Institute of Technology, Jl. Ganesha 10 Bandung 40132, Indonesia
113521142@std.stei.itb.ac.id

Abstract—In this paper, I explore the use of the random forest

machine learning model for detecting fraudulent credit card

transactions. I first provide a brief overview of the concepts needed

to understand the random forest algorithm. I then describe how a

random forest model can be trained on historical data to identify

patterns in the data that are associated with fraudulent transactions.

Finally, I present Python code that demonstrates implementation of

the random forest model to make predictions on fraudulent

transactions and evaluating its performance in comparison to a

single decision tree model.

Keywords—Machine Learning, Random Forest Algorithm,

Transaction, Fraudulent Credit Card Detection.

I. INTRODUCTION

Credit card fraud is a major problem for credit card

companies and their customers. It is estimated that as of 2018,

payment card fraud costs the worldwide economy $24.26

billion dollars (Nikolina Cveticanin, 2022), and it can cause

significant financial losses and inconvenience for individuals

who are victims of fraud. As such, there is a strong demand for

effective methods for detecting and preventing credit card

fraud.

One approach that has shown promise for detecting credit

card fraud is the use of machine learning algorithms. Machine

learning algorithms are a type of artificial intelligence that can

be trained to make predictions or take actions based on data.

They are widely used in a variety of fields, including finance,

healthcare, and marketing.

The random forest algorithm is a powerful tool for building

predictive models from large datasets. It is based on the

concept of decision trees, which are a type of mathematical

object used in discrete mathematics to represent hierarchical

data. A decision tree is made up of nodes, which represent

objects or data, and edges, which represent the connections

between the nodes. The random forest algorithm combines the

predictions of multiple decision trees, which are trained on

different subsets of the data, to produce a more accurate and

stable prediction than can be obtained from a single decision

tree.

In this paper, I provide a brief overview on the core concepts

of trees and forests in discrete mathematics, machine learning,

and the random forest algorithm. I then propose the use of a

random forest machine learning model for detecting fraudulent

credit cards. By training the model on a dataset of credit card

transactions, it is possible to demonstrate its ability to

accurately identify fraudulent transactions and discuss the

advantages and disadvantages of using the RFA model.

II. FUNDAMENTAL THEORY

A. Trees
In discrete mathematics, a tree is an undirected, connected,

acyclic graph. This means that a tree is a type of graph that has

no cycles or loops, and all of its nodes are connected to each

other in a specific pattern. Trees are commonly used to model

hierarchical relationships, such as the structure of a computer

file system or the organization of a family tree.

The branches of a tree represent the different paths that can

be taken from one node to another, and the leaves of a tree

represent the end points of those paths. The study of trees in

discrete mathematics often involves the use of graph theory

and recursive algorithms to analyze the structure and properties

of trees.

Figure 2.1 Example of a tree.

Source: https://i.stack.imgur.com/UQ2Bk.png

B. Forests
The concept of forests is closely related to the concept of

trees. A forest is a collection of trees, where each tree is a

connected acyclic graph. This means that a forest is a type of

graph that is made up of multiple disjoint trees, which are not

connected to each other.

Figure 2.2 Example of a forest with three trees.

Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-

2021/Pohon-2020-Bag1.pdf

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

The study of forests in discrete mathematics has many

practical applications, such as in the analysis of networks and

social networks. For example, a forest can be used to model the

structure of a network, where the trees in the forest represent

the different components of the network, and the connections

between the trees represent the relationships between the

components.

C. Machine Learning
Machine learning is a type of artificial intelligence that

involves training algorithms to make predictions or take

actions based on data. It is a powerful tool that is widely used

in a variety of fields, including finance, healthcare, and

marketing. At a high level, the machine learning process can be

broken down into the following steps:

1. Collect and preprocess data: The first step in developing

a machine learning model is to collect and clean the

data that will be used to train the model. This involves

things like removing missing or irrelevant data, and

transforming the data into a format that can be easily

used by the machine learning algorithm.

2. Choose a model and train it: Once the data is ready, the

next step is to choose a machine learning algorithm and

train it on the data. This involves providing the

algorithm with a set of labelled examples that the

algorithm can use to learn the relationship between the

input data and the desired output. For example, if the

purpose is to train a model to recognize faces, it would

be necessary to provide the algorithm with a large

dataset of images of faces, along with the corresponding

labels (i.e., the name of person on the images).

3. Evaluate the model: After the model is trained, it is

important to evaluate its performance to see how well it

is able to make predictions on new data. This typically

involves splitting the available data into a training set

and a test set, and using the training set to train the

model and the test set to evaluate its performance.

4. Fine-tune the model and repeat: Once the initial model

has been trained and evaluated, the next step is to fine-

tune the model to improve its performance. This might

involve changing the algorithm or the parameters used

to train the model, or trying different approaches to

preprocess the data. The process of training, evaluating,

and fine-tuning the model is typically repeated until the

desired level of performance is achieved.

D. Decision Trees
A decision tree is a type of machine learning algorithm that

is used to make predictions based on data using a structure of

the aforementioned concept of trees, with a root node at the

top, branches representing different paths that can be taken

based on the data, and leaves representing the final prediction

or decision. For example, if a data scientist is trying to predict

whether a customer would churn (stop using a product or

service), a decision tree might look at factors like the

customer’s age, how long they have been a customer, and how

often they use the product.

The decision tree algorithm uses a process of recursive

partitioning to split the data into smaller and smaller subsets,

based on the values of the features in the data. At each step in

the process, the algorithm selects the feature that provides the

most information about the target variable, and splits the data

based on the values of that feature. This process continues until

the data is partitioned into subsets that are "pure" with respect

to the target variable, or until a stopping criterion is reached.

Once the decision tree has been trained on the data, it can be

used to make predictions on new data by following the same

sequence of splits that were used to train the tree. The decision

tree algorithm is often used in applications such as

classification and regression, where it can provide fast and

accurate predictions based on the data.

Figure 2.3 Example of a binary decision tree.

Source: https://youtu.be/ZVR2Way4nwQ

A decision tree consists of two types of nodes, that is leaf

nodes and decision nodes. A leaf node is a terminal node that

does not have any child nodes. It is used to make a prediction

for a given input data sample. The prediction is made based on

the majority class of the training data samples that ended up at

that leaf node during the model training process. A decision

node, on the other hand, is a non-terminal node that has one or

more child nodes. It is used to split the data into smaller

subsets based on the values of an input attribute. The decision

to split the data is made based on the entropy (impurity) of the

current set of data samples. Entropy is a measure of the

impurity or uncertainty of a set of data samples. It is used to

determine the "goodness" of a split of the data during the

training process, where the goal is to create subsets of the data

that are as pure (homogeneous) as possible. The lower the

entropy, the more pure the subset of data. Mathematically,

entropy is defined as:

𝐸(𝑠) = ∑ − 𝑝𝑖 log2(𝑝𝑖)

𝑐

𝑖=1

With 𝑝𝑖 being the probability of class 𝑖. The attribute that

results in the greatest decrease in entropy is chosen as the

splitting attribute for that node, and the data is split into subsets

based on the values of that attribute. This process is repeated

recursively for each child node, until the data at each leaf node

is pure (i.e., all the samples have the same class label).

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

E. Random Forest Algorithm
The random forest algorithm is a popular machine learning

method that is used for classification and regression tasks. It is

an ensemble method, which means that it combines the

predictions of multiple individual models to make a final

prediction. As the name suggests, a random forest is an

ensemble of decision trees. Each decision tree would make a

prediction based on certain factors, and the random forest

would combine the predictions of all of the decision trees to

make a final prediction.

Figure 2.4 Example of a binary decision tree.

Source: https://youtu.be/v6VJ2RO66Ag

The decision trees in a random forest model are trained on

different subsets of the data, and each tree makes a prediction

based on the data that it has seen. The predictions from all of

the trees are then combined to make a final prediction. This is

done by taking the majority vote of the predictions, or by

averaging the predictions together.

The idea behind using a random forest is that by building

many decision trees and combining their predictions, the

random forest can make more accurate predictions than a

single decision tree. This is because each decision tree is

trained on a different subset of the data, and the final

predictions are made by taking the majority vote (for

classification tasks) or the mean of the individual predictions

(for regression tasks). This helps to reduce the overfitting of

the model, which is a common problem with decision trees.

F. Machine Learning Evaluation Metrics
Machine learning evaluation metrics are measures of the

performance of a machine learning model. They are used to

evaluate and compare the performance of different models on a

given dataset, and help to identify the best model for a given

task.

There are many different evaluation metrics for machine

learning, depending on the type of model and the task at hand.

For example, for classification tasks, common evaluation

metrics include accuracy, precision, recall, F1 score, and

Matthews correlation coefficient (MCC). For regression tasks,

common evaluation metrics include mean absolute error,

inequity to the sum of squares.

Evaluation metrics can be computed using a range of

techniques, such as cross-validation, holdout validation, and

bootstrapping. It is important to carefully choose the

appropriate evaluation metrics and techniques for a given

machine learning task in order to accurately assess the

performance of the model.

G. Confusion Matrix
A confusion matrix is a table that is used to evaluate the

performance of a classification model. It helps to visualize the

correct and incorrect predictions made by the model, and

provides insights into the types of errors that the model is

making.

A confusion matrix has four entries: true positives (TP),

false positives (FP), true negatives (TN), and false negatives

(FN). True positives are the cases where the model correctly

predicts the positive class, false positives are the cases where

the model predicts the positive class but is actually negative,

true negatives are the cases where the model correctly predicts

the negative class, and false negatives are the cases where the

model predicts the negative class but is actually positive.

Figure 2.5 Confusion Matrix.

Source: https://towardsdatascience.com/understanding-confusion-matrix-

a9ad42dcfd62

A confusion matrix can be used to compute a range of

evaluation metrics for a classification model, such as precision,

recall, and F1 score. These metrics provide a more detailed and

informative analysis of the model's performance compared to

simple metrics such as accuracy. The confusion matrix is an

essential tool for evaluating and comparing the performance of

different classification models.

H. Precision, Recall, F1 Score, Accuracy, and MCC
Precision is a measure of the model's ability to correctly

predict the positive class. It is calculated as the number of true

positives (TP) divided by the sum of true positives and false

positives (FP).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

A high precision value indicates that the model has a low

false positive rate, i.e. it rarely predicts the positive class when

it is actually negative.

Recall is a measure of the model's ability to detect the

positive class. It is calculated as the number of true positives

divided by the sum of true positives and false negatives (FN).

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

A high recall value indicates that the model has a low false

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

negative rate, i.e. it rarely predicts the negative class when it is

actually positive.

F1 score is the harmonic mean of precision and recall. It is

calculated as the product of precision and recall divided by the

sum of precision and recall.

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

The F1 score is a balanced metric that takes into account

both precision and recall, and is often used to compare

different classification models.

Accuracy is defined as the ratio of the number of correct

predictions made by the model to the total number of

predictions. It is calculated as the number of true positives (TP)

plus the number of true negatives (TN), divided by the total

number of predictions made by the model.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃

Accuracy is a useful metric for evaluating the performance

of a model, but it can be misleading in some cases. For

example, in imbalanced classification tasks, where the positive

and negative classes are not equally represented in the dataset,

a model can achieve a high accuracy by simply predicting the

majority class for all examples.

Matthews correlation coefficient (MCC) is a measure of the

model's accuracy, taking into account all four entries of the

confusion matrix.

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)

MCC ranges from -1 (perfectly incorrect) to 1 (perfectly

correct), with a value of 0 indicating random guessing. It is

often used as a performance measure for imbalanced

classification tasks, where the positive and negative classes are

not equally represented in the dataset.

III. ANALYSIS

A. RFA Model on Classifying Fraudulent Credit Cards

The implementation of The Random Forest Machine

Learning Model on detecting credit card frauds has potential to

provide a high accuracy score. To extract a conclusion, the

steps taken are provided as the following:

1. Import the necessary libraries and load the dataset into a

Pandas dataframe.

2. Preprocess the data such that the training is conducted

under valid circumstances. This requires analyzing the

data for NaN values, duplicates, and outliers and

dropping them from the dataset.

3. Split the dataframe into training and test set. With the

dataset described at Section III.B for example, the

‘Time’ and ‘Amount’ features are set as the input

variables (x) and the ‘Class’ feature as the target

variable (y).

4. Train the random forest model on the training set. Use a

large number of estimators (e.g. 100) to improve the

model’s performance.

5. Make predictions on the test set using the trained model.

6. Evaluate the model's performance using a range of

evaluation metrics, such as precision, recall, and F1

score.

7. Use the model to make predictions on new credit card

transactions and identify fraudulent transactions.

Additional steps that are also implemented in this paper is

improving the performance of the model by using cross-

validation and tuning the model's hyperparameters, such as

the maximum depth of the trees and the minimum number of

samples required to split a node, and using a larger and more

diverse dataset for training. Also, considering an imbalance

dataset, the undersampling technique is applied in order to

handle it.

B. Dataset

In this paper, I use the sample dataset provided by Machine

Learning Group ULB on Kaggle [6] that includes the

transactions made by credit cards in September 2013 by

European cardholders, containing 30 features (V1 .. V28, Time,

Amount) and holds only numerical attributes and no null

values. Features (V1,..,V28) are the features obtained through

PCA, while ‘Time’ contains the seconds elapsed between each

transactions and ‘Amount’ denoting the transaction amounts.

Feature ‘Class’ on the other hand is the response variable as it

classifies the transactions conducted to be fraudulent (1) or

non-fraudulent (0).

The dataset however, is highly imbalanced, as it contains

284807 transactions with 99.83% being a non-fraud transaction

whilst only 0.17% are classified as frauds (shown at Section

IV), therefore introducing the possibility of overfitting

(prediction model assuming that most transactions have near to

no frauds). To anticipate, the random undersampling technique

is implemented to balance out the dataset. Undersampling

works by reducing the amount of data in the majority class (the

class with more observations, in this case, non-fraudulent

transactions) by randomly selecting a subset of data from that

class.

C. Advantages and Disadvantages

There are several advantages to using a random forest

algorithm for detecting credit card fraud. One of the biggest

advantages is that it can help to reduce overfitting, which is a

common problem with decision trees. Since each decision tree

is trained on a different subset of the data, and the final

predictions are made by combining the predictions of many

trees, the random forest is less likely to overfit the training data

compared to a single decision tree. This can help to improve

the overall performance of the model and make it more robust

and reliable.

Another advantage of using a random forest algorithm is that

it can handle large datasets and a large number of features.

This is important for credit card fraud detection, because credit

card transactions can involve a wide range of different

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

variables, such as the amount of the transaction, the location of

the merchant, the time of day the transaction was made, and so

on. A random forest algorithm is well suited to working with

this type of data, and it can help to identify subtle patterns and

relationships that might not be obvious to a human analyst.

A third advantage of using a random forest algorithm for

credit card fraud detection is that it is relatively fast to train and

make predictions. This is important for real-time applications,

where it is necessary to quickly identify and prevent fraudulent

transactions. A random forest algorithm can typically make

predictions in just a few milliseconds, which is fast enough to

be used in a production environment.

Despite these advantages, there are also some limitations to

using a random forest algorithm for credit card fraud detection.

One of the main limitations is that it is a black-box model,

which means that it is difficult to understand how the model is

making its predictions. This can make it challenging to

interpret the results of the model, or to identify potential

improvements.

Another limitation of using a random forest algorithm is that

it is sensitive to the quality and quantity of the training data. In

order for the model to make accurate predictions, it is

important to have a large and diverse dataset that includes both

fraudulent and legitimate transactions. If the training data is

inadequate or biased, the model's performance may be poor.

Despite these limitations, a random forest algorithm can still

be a valuable tool for detecting credit card fraud. By carefully

training and evaluating the model, and by using appropriate

techniques for preprocessing and fine-tuning the model, it is

possible to achieve high levels of accuracy and performance. In

fact, in many cases, a random forest algorithm can outperform

other machine learning algorithms, as well as traditional

statistical methods, for detecting credit card fraud.

IV. IMPLEMENTATION

The implementation codes in this section is written in

Python with Jupyter Notebook as it provides the ability to

interpret cell by cell, easing the debugging process and

providing the ability to visualize the dynamics of data as it is

processed. It is a popular tool among data scientist as it allows

the user to easily combine code, visualizations, and narrative

text in a single document. Before getting to the

implementation, it should be noted that the following are the

specifications while conducting this research.

Hardware:

• Machine: Dell Inspiron 7300 2n1

• Processor: Intel

• RAM: 8 GB

Software:

• Operating System: Windows 10 64-bit

• Programming language: Python, Jupyter Notebook

• Libraries used: Pandas, Scikit-Learn, Seaborn,

Matplotlib

As proposed on section III, the Random Forest classifying

algorithm is implemented on a provided transactions dataset.

The dataset can be downloaded on the link referenced at [6].

Below are the details and steps taken regarding the

application of the RSA machine learning model on the

previously mentioned datasets.

1. Importing the Dataset and Necessary Library

import pandas as pd
df = pd.read_csv(‘creditcard.csv’)

The python library ‘pandas’ is imported as the main library

to load and hold the dataframe provided by the ‘creditcard.csv’

dataset. Further down, more libraries will be included on this

code base.

2. Scaling and Distribution

from sklearn.preprocessing import StandardScaler,
RobustScaler

sc = StandardScaler()
rc = RobustScaler()

df['scaled_amount'] =
rc.fit_transform(df['Amount'].values.reshape(-
1,1))

df['scaled_time'] =
rc.fit_transform(df['Time'].values.reshape(-1,1))

df.drop(['Time','Amount'], axis=1, inplace=True)

scaled_amount = df['scaled_amount']
scaled_time = df['scaled_time']

df.drop(['scaled_amount', 'scaled_time'], axis=1,
inplace=True)

df.insert(0, 'scaled_amount', scaled_amount)

df.insert(1, 'scaled_time', scaled_time)

Before the test and training sets are separated, data needs to

be ‘cleansed’ and preprocessed. This step initializes the

preprocessing step by firstly scaling and distributing the range

of values of the feature ‘Time’ and ‘Amount’. As previously

described at section III.B, the ‘Time’ and ‘Amount’ features

are the only input variables that has not been scaled by the

PCA. Distributing the values of said columns would ensure the

input features of the model would have a consistent scale.

To be specific, the RobustScaler procedure imported from

the Scikit-learn library is applied on the ‘Amount’ feature and

StandardScaler on the ‘Time’ feature. StandardScaler is a

method of scaling that transforms the data to have a mean of 0

and a standard deviation of 1. This is done by subtracting the

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

mean from each value and dividing by the standard deviation.

StandardScaler is sensitive to outliers, and can be affected by a

few extreme values in the data. RobustScaler, however, is a

method of scaling that is less sensitive to outliers. It scales the

data based on the quantiles of the distribution, rather than the

mean and standard deviation. This means that it will only be

affected by the most extreme values in the data, and will not be

affected by small numbers of outliers. RobustScaler is often

used when the data contains a significant number of outliers, as

it can provide more robust and stable scaling than

StandardScaler. The selection of the type of scaler applied is

based off of the probability of outliers having a more

significant impact on the ‘Amount’ feature rather than the

‘Time’ feature.

3. Examine Fraudulent Transactions

print('Non Frauds: ',
round(df['Class'].value_counts()[0]/len(df) *
100,2), '% of the dataset')

print('Frauds: ',
round(df['Class'].value_counts()[1]/len(df) *
100,2), '% of the dataset')

output
Non Frauds: 99.83 % of the dataset
Frauds: 0.17 % of the dataset

As shown, the dataset is highly imbalanced, with only

0.17% of the total transactions are fraudulent. If the model is

trained under this circumstance, it is prone to overfit as the
model may assume that fraudulent cases are non-existent.

Consequently, sub-samples need to be taken to balance out the

dataset, that is taking samples that contains a 50/50 split

between fraudulent and non-fraudulent cases, and then training

the model on each of the sub-samples. This is, however, not to

be confused with the step of separating the dataset into sub-

segments to be applied the decision tree in the Random Forest

process, rather it is only to balance out the dataset to have a

more consistent distribution.

4. Balancing the Dataset

Shuffle dataset to implement
random undersampling
df = df.sample(frac=1)
fraud_df = df.loc[df['Class'] == 1]
492 fraudulent transactions
non_fraud_df = df.loc[df['Class'] == 0][:492]
normal_distributed_df = pd.concat([fraud_df,
non_fraud_df])

Shuffle dataframe rows
random_undersample_df =
normal_distributed_df.sample(frac=1,

random_state=42)

As previously hinted, the dataset needs to be balanced. This

sequence prepares the step of taking sub-samples with the

Random Undersampling technique by applying a normal

distribution on the dataframe and shuffling the rows.

5. Implement Random Undersampling

from sklearn.model_selection import
train_test_split
from copy import deepcopy

X = random_undersample_df.drop('Class', axis=1)
y = random_undersample_df['Class']

Split training and test sets
X_train, X_test, y_train, y_test =
train_test_split(X, y, test_size=0.2,
random_state=42)

Turn to arrays to feed on classifier (Random
Forest Algorithm)
X_train = X_train.values
X_test = X_test.values
y_train = y_train.values
y_test = y_test.values

Save a copy
X_train2 = deepcopy(X_train)
X_test2 = deepcopy(X_test)
y_train2 = deepcopy(y_train)
y_test2 = deepcopy(y_test)

Sub-samples of the dataset are taken using the Random

Undersampling technique. Undersampling is a method for

dealing with unbalanced datasets in machine learning, where

the goal is to balance the class distribution by reducing the

amount of data in the majority class. This is done by randomly

selecting a subset of data from the majority class, so that the

resulting dataset has a more balanced distribution of classes.

This can help improve the performance of the model on the

minority class (e.g. fraud cases), as well as reduce the potential

for overfitting to the majority class (e.g. non-fraud cases).

However, it's important to note that undersampling can also

cause information loss, and it may not always be the best

approach for a given dataset.

The test and training sets are then separated and converted

into arrays to feed into the machine learning model. A

deepcopy of the array is also saved to be used as a performance

comparison to another classification model later on.

6. Get The Best Hyperparameters for Random

Forest Classifier

from sklearn.model_selection import GridSearchCV

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

from sklearn.ensemble import
RandomForestClassifier

Define hyperparameter grid
param_grid = {'n_estimators': [50, 100, 150],
'max_depth': [3, 5, 7]}

Perform grid search with 5-fold cross-validation
grid_search
=GridSearchCV(RandomForestClassifier(),
param_grid, cv=5)
grid_search.fit(X_train, y_train)

best_params = grid_search.best_params_

In this step, the best hyperparemeter for the model is

retrieved with cross validation. Hyperparameter tuning is the

process of choosing the optimal values for the hyperparameters

of the model. In the case of a random forest model, this

involves finding the optimal values for parameters such as the

number of decision trees, the maximum depth of each tree, and

the minimum number of samples required to split a node. By

carefully tuning these hyperparameters, it is possible to

improve the performance of the model. The GridSearchCV

class is then applied to perform a grid search with 5-fold cross-

validation. This means that the data will be divided into 5

folds, and the model will be trained and evaluated on each fold.

The GridSearchCV class will automatically try all

combinations of hyperparameters, and it will return the

combination that achieved the best performance on the data.

7. Train the Random Forest Model on the Balanced

Training Set

rf_classifier =
RandomForestClassifier(**best_params)

rf_classifier.fit(X_train,y_train)

Predicted Target
y_pred = rf_classifier.predict(X_test)

The Random Forest model is trained under the parameters

provided before on an already balanced dataset. The prediction

for the target variables is then made based off of the training.

8. Evaluate the Model’s Performance

from sklearn.metrics import
(accuracy_score,precision_score,
recall_score,f1_score,matthews_corrcoef)

acc = accuracy_score(y_test,y_pred)
precision = precision_score(y_test,y_pred)
recall = recall_score(y_test,y_pred)
f1 = f1_score(y_test,y_pred)
mcc =matthews_corrcoef(y_test,y_pred)

print(f"Accuracy: {acc}")
print(f"Precision: {precision}")
print(f"Recall: {recall}")
print(f"F1-Score: {f1}")
print(f"Matthews correlation coefficient: {mcc}")

output
Accuracy: 0.934010152284264
Precision: 0.98989898989899
Recall: 0.8909090909090909
F1-Score: 0.937799043062201
Matthews correlation coefficient:
0.8734119362123363

The results of the experiment showed that the random forest

model was able to accurately identify fraudulent transactions,

achieving high precision and recall scores on the test set. In

particular, the model had a precision of 98.98%, a recall of

89.09% and an accuracy of over 93.40%. This indicates that

the model was able to correctly identify a large proportion of

fraudulent transactions, while also maintaining a low false

positive rate.

9. Compare Performance Scores to a Single

Decision Tree Classifier Model

from sklearn.tree import DecisionTreeClassifier

Define hyperparameter grid
tree_params = {"criterion": ["gini", "entropy"],
"max_depth": list(range(2,4,1)),
"min_samples_leaf": list(range(5,7,1))}

grid_tree = GridSearchCV(DecisionTreeClassifier(),
tree_params)
grid_tree.fit(X_train2, y_train2)

Get the best parameters for the balanced dataset
tree_clf = grid_tree.best_estimator_

Train balanced dataset with Decision Tree Model
dt_classifier = tree_clf
dt_classifier.fit(X_train2,y_train2)

New prediction
new_y_pred = dt_classifier.predict(X_test2)

Verdict
acc = accuracy_score(y_test2,new_y_pred)
precision = precision_score(y_test2,new_y_pred)
recall = recall_score(y_test2,new_y_pred)
f1 = f1_score(y_test2,new_y_pred)
mcc =matthews_corrcoef(y_test2,new_y_pred)

print(f"Accuracy: {acc}")
print(f"Precision: {precision}")
print(f"Recall: {recall}")
print(f"F1-Score: {f1}")

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

print(f"Matthews correlation coefficient: {mcc}")

output
Accuracy: 0.9137055837563451
Precision: 1.0
Recall: 0.8454545454545455
F1-Score: 0.916256157635468
Matthews correlation coefficient:
0.8409846875866674

Scoring is also conducted to compare the performance of the

random forest model to that of a single decision tree. The

decision tree achieved a higher precision of 100%, but a

slightly lower recall and accuracy of 84.55% and 91.37%

respectively, and an F1 score of 91.62%. This suggests that the

use of an ensemble of decision trees, as in the random forest

model, can improve the performance of the model and reduce

overfitting.

10. The Confusion Matrix for Random Forest

Algorithm

from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns

LABELS = ['Non-Fraud', 'Fraud']
confusion_mtx = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(12, 12))
sns.heatmap(confusion_mtx, xticklabels=LABELS,
yticklabels=LABELS, annot=True, fmt="d");
plt.title("Confusion matrix")
plt.ylabel('True class')
plt.xlabel('Predicted class')
plt.show()

To further analyze the performance of the Random Forest

model, the confusion matrix is then plotted to evaluate the

amount of correct predictions made by predicting based of the

trained model.

Figure 4.1 The Resulting Confusion Matrix.

Source: Personal Document

The confusion matrix above consists of the following:

• True Negatives (Top-Left Square), is the amount of

correct classifications of the Non-Fraud class, with

the model having 98.

• False Negatives (Top-Right Square), is the amount

of incorrect classifications of the Non-Fraud class,

with the model having only 1.

• False Positives (Bottom-Left Square), is the amount

of incorrect classifications of the Fraud class, with

the model having 5.

• True Positives (Bottom-Right Square), is the

amount of correct classifications of the Fraud Class,

with the model having 86.

V. CONCLUSION

The implementation of a Random Forest machine learning

model for detecting fraudulent credit card transactions

demonstrated promising results. The model was able to

accurately identify fraudulent transactions with an F1 score of

0.93, and it outperformed the single decision tree model tested

in terms of both accuracy and recall. Additionally, the use of

the Random Forest algorithm allowed for the efficient

processing of a large dataset, and provided interpretable results

through the use of feature importance scores. These findings

suggest that the Random Forest model is a valuable tool for

detecting fraudulent credit card transactions, and it could be

further improved through the use of additional data and the

optimization of hyperparameters. Overall, this study highlights

the potential of machine learning for detecting fraud and

protecting consumers from financial loss. In future work, it is

possible for this model to be implemented in a real-world

setting and explore its potential for detecting other types of

fraudulent activity.

VI. ACKNOWLEDGMENT

I would like to begin by acknowledging God, who has given

me the knowledge, skills, and determination to complete this

study. I am grateful for His guidance and support throughout

this process.

I would also like to express my deep appreciation to Ms.

Fariska Zakhralativa Ruzkanda, S.T. M.T. who provided me

with the foundation of knowledge and critical thinking skills

that were essential for this work. Her guidance and

encouragement were instrumental in helping me to develop as

a researcher and to successfully complete this study.

Additionally, I would like to acknowledge the valuable

contributions of previous researchers in the field of machine

learning. Their work provided valuable insights and inspiration

for this study, and helped to lay the groundwork for the

approach and methods used in this work. I am grateful for their

pioneering efforts and for the knowledge that they have shared.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2022/2023

REFERENCES

[1] Kumar, M. S., Soundarya, V., Kavitha, S., Keerthika, E. S., & Aswini, E.

(2019). Credit Card Fraud Detection Using Random Forest Algorithm.

2019 3rd International Conference on Computing and Communications
Technologies (ICCCT).

[2] Cveticanin, N. (2022, 2 November). “Credit Card Fraud Statistics: What

Are the Odds?”. DataProt. https://dataprot.net/statistics/credit-card-
fraud-statistics/. Last Accessed 9 December 2022, 17.31 GMT+7

[3] Devi Menakshi, B. Janani, B. Gayathri, S. Indira, N. (2019). Credit Card

Fraud Detection Using Random Forest. Internatonal Research Journal of
Engineering and Technology (IRJET).

[4] Jeba, Jemi & Ramachandran, Venkatesan & Ramalakshmi, K.. (2021).
Fraud Detection for Credit Card Transactions Using Random Forest

Algorithm. 10.1007/978-981-15-5285-4_18.

[5] Ileberi, E., Sun, Y. & Wang, Z. A machine learning based credit card
fraud detection using the GA algorithm for feature selection. J Big Data

9, 24 (2022). https://doi.org/10.1186/s40537-022-00573-8

[6] Machine Learning Group ULB (2017). “Credit Card Fraud Detection”.
Kaggle. https://www.kaggle.com/datasets/mlg-

ulb/creditcardfraud?resource=download. Last Accessed 10 December

2022, 5.42 GMT+7
[7] Jania Bachman, M (2019). “Credit Card Fraud || Dealing with

Imbalanced Datasets”. Kaggle.

https://www.kaggle.com/code/janiobachmann/credit-fraud-dealing-with-
imbalanced-datasets#notebook-container. Last Accessed 10 December

2022, 5.45 GMT+7

[8] Aurélien Géron. (2019). Hands-on machine learning with Scikit-Learn
and TensorFlow concepts, tools, and techniques to build intelligent

systems. O’Reilly Media, Inc.

[9] Normalized Nerd. (2021, 13 January). Decision Tree Classification
Clearly Explained!. YouTube. https://youtu.be/ZVR2Way4nwQ.

[10] Normalized Nerd. (2021, 21 April). Random Forest Algorithm Clearly

Explained!. YouTube. https://youtu.be/v6VJ2RO66Ag.
[11] Kenton, W. (2022, March 6). “What is a Black Box Model? Definition,

Uses, and Samples”. Investopedia.

https://www.investopedia.com/terms/b/blackbox.asp. Last Accessed 10
December 2022, 17.30 GMT+7.

[12] Munir, R. (2022). “Pohon (Bag. 1)”. Informatika STEI ITB.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Pohon-
2020-Bag1.pdf. Last Accessed 10 December 2022, 17.41 GMT+7.

[13] Munir, R. (2022). “Pohon (Bag. 2)”. Informatika STEI ITB.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2021-
2022/Pohon-2021-Bag2.pdf. Last Accessed 10 December 2022, 17.41

GMT+7.

[14] Munir, R. (2022). “Graf (Bag. 3)”. Informatika STEI ITB.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-

2020-Bagian3.pdf. Last Accessed 10 December 2022, 17.41 GMT+7.

APPENDIX

The code implemented at Section IV along with an

optimized version of the code provided by reference [7] can be

seen and retrieved on the Author’s github repository:

https://github.com/AlifioDitya/Credit-Card-Fraud-Detection-

with-Machine-Learning.

DECLARATION OF ORIGINALITY

I, the undersigned below, the Author of this paper, hereby

declare that this paper is my own writing, not an adaptation or

translation of someone else's paper, and not plagiarized.

Bandung, 10 December 2020

Enrique Alifio Ditya

13521142

https://dataprot.net/statistics/credit-card-fraud-statistics/
https://dataprot.net/statistics/credit-card-fraud-statistics/
https://doi.org/10.1186/s40537-022-00573-8
https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud?resource=download
https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud?resource=download
https://www.kaggle.com/code/janiobachmann/credit-fraud-dealing-with-imbalanced-datasets#notebook-container
https://www.kaggle.com/code/janiobachmann/credit-fraud-dealing-with-imbalanced-datasets#notebook-container
https://youtu.be/ZVR2Way4nwQ
https://youtu.be/v6VJ2RO66Ag
https://www.investopedia.com/terms/b/blackbox.asp
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Pohon-2020-Bag1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Pohon-2020-Bag1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2021-2022/Pohon-2021-Bag2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2021-2022/Pohon-2021-Bag2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian3.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian3.pdf
https://github.com/AlifioDitya/Credit-Card-Fraud-Detection-with-Machine-Learning
https://github.com/AlifioDitya/Credit-Card-Fraud-Detection-with-Machine-Learning

