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Abstract— Data are used in many forms, from simple text to 

large files. These data are stored through the encoding of bits of 0’s 

and 1’s which are used to transfer data between two subjects and 

used as a way to store information as data on storage. These data 

in its storage and transfers may have some information corrupted 

through many factors. These corruption(s) on data will lead to 

wrong information retrieved. Such it is needed for a good data 

encoding or better storage/transfer mechanisms.  A good encoding 

will ensure more reliable data stored/transferred, one of which is 

through Hamming Code. This paper will discuss ways we can 

encode images through Hamming Code such an image encoded will 

be able to self-correct itself up to a certain rate of errors to be 

corrected. The resulting encoded data will lead to more reliable 

data retrieved and preserve the information of image encoded. 
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I.   INTRODUCTION 

Information is of foremost importance in current society, such 

misinformation may lead to critical problems. These pieces of 

information are stored and transferred as a series of 0’s and 1’s 

or in a general term as binary. A flip between 0 and 1 in this 

series of data may lead to significantly different data retrieved. 

Such there needs to be a form of the mechanism of how data 

transferred/stored needs to be stored/packed which will reduce 

the risk of a wrong data retrieved. The way data arrangement are 

stored in computer science terms is called data encoding.  

Data corruption may happen in different ways, either in its 

transfer stages or storing stages. To resolve these, there are 

multiple solutions, from sending multiple copies of the same 

information (also called repetition) to better data transfer 

mechanisms. Such in 1950, Richard W. Hamming comes up 

with a solution which is a self-correcting code which was 

eventually named Hamming Code (named after Hamming). 

Hamming Codes are a family of linear error-correcting codes, 

which are codes that can self-correct errors in themselves.  

Hamming Codes are classified as perfect codes which means 

Hamming Codes fall into a category that has the best possible 

rate of data stored in a block of information transferred /stored 

to the number redundant pieces of information transferred.  Yet, 

Hamming Codes comes with its limitations wherein a block of 

Hamming Code, only ables to correct one error. This limitation 

may be improved by dividing the data into smaller blocks which 

leads to a worse rate of data stored. It can also be improved to 

be able to detect two-bit errors (without correcting them), which 

is called as Extended Hamming Code. 

This paper focuses on how to implement Hamming Codes to 

encode images which in itself is a series of binaries. Hamming 

Codes implemented will be varied and compared with different 

Hamming Code schemes. Reducing the possibility of wrong 

information retrieved which in result image retrieved will have 

identical information wise. By which, the encoded information 

will be able to handle errors during image transfer as efficient 

and effective as possible. 

 

II.  THEORITICAL BASIS 

A. Binary Code 

Binary code is a sequence of data encoded in binary which is 

a series of 0’s and 1’s. Binary code is used in computers that 

represent data, which may be interpreted as texts, numbers, or 

other types of data. Binary codes are interpreted and processed 

by computers which the data can be used, stored, and 

transferred. These strings of 0’s and 1’s will be processed 

computer which also uses boolean algebra in its lowest level of 

computation (hardware level). 

Binary codes are usually divided into parts, where a single  0 

or a 1 in the string is called  a bit and 8 bits form 1 byte. The 

form of binary code can be interpreted as states of on-offs. This 

is most valuable for computer hardware to computations on 

which uses transistors which turned on and off with certain 

voltage (5 Volts and 0 Volts). 

 

B. Boolean Algebra 

1. Definition 

Let B a set defined with two binary operators, + and -, and a 

unary operator, ‘. 0 and 1 are two different elements in set B, it 

follows that for every 𝑎, 𝑏, 𝑐 ∈ 𝐵  [1]: 

1. Identity 

i. 𝑎 +  0 =  𝑎 

ii. 𝑎 . 1 =  𝑎 

2. Commutative 

i. 𝑎 +  𝑏 =  𝑏 +  𝑎 

ii. 𝑎 . 𝑏 =   𝑏 . 𝑎 

3. Distributive 

i. 𝑎 . ( 𝑏 +  𝑐 )  =  ( 𝑎 . 𝑏 )  +  ( 𝑎 . 𝑐 ) 
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ii. 𝑎 +  ( 𝑏 . 𝑐 )  =  ( 𝑎 +  𝑏 ) . ( 𝑎 +  𝑐 ) 

4. Complement 

For every 𝑎 ∈ 𝐵, there exist a unique element 

 𝑎′ ∈ 𝐵 such that : 

i. 𝑎 +  𝑎’ =  1 

ii. 𝑎 . 𝑎’ =  0 

 

2. Operations 

 From the set of three base operators ( +, . , ‘ ), we can derive 

other boolean operations and functions. In this scope of the 

topic, we will derive a particular binary operator called the XOR 

operator. XOR operator, we define as ‘⊕ ‘ operator. For, it holds 

that if and only if.In all, for all possible combinations of 𝑎 and 

𝑏, we define : 

 

Table i. Boolean Binary Operators 

a b a + b a . b a ⊕ b 

0 0 0 0 0 

0 1 1 0 1 

1 0 1 0 1 

1 1 1 1 0 

 

The derivation of ⊕ operator from . and + : 

                            𝑎 ⊕  𝑏 = ( 𝑎 + 𝑏 ) . ( 𝑎′ + 𝑏′)   (1) 

 

C. Image 

Images can be stored as vector (vector graphics) or as a bit-

map (raster/bitmap graphics) [2]. The most basic is bitmap 

images which are stored as an array of pixels. Each pixel can 

consist of RGB values or Greyscale images. In RGB, each pixel 

consists of three values, which usually of 256 levels of each 

color. Such a pixel is an array of three values ranging from 0-

255 for each Red, Green, and Blue channel (also called true 

color). While, in greyscale images, each pixel will only hold a 

value from 0-255. Thus a value can be represented as an 8-bit 

value (1 byte). 

An image is stored as a series of bits, which takes into account 

the number of pixels, the colour scale, and the level of the image. 

Such an image with  pixels and a level of 256 for each channel : 

 

Table ii. Image Memory Usage 

RGB (24 bit) image 𝑤 × ℎ × 8 × 3 

Greyscale image 𝑤 × ℎ × 8 

 

These values are calculated without taking into account 

compressions, such as the data of the image being stored as a 

raw bitmap. 

 

D. Linear Codes 

A linear codes  (or called linear error correcting code) are 

codes which has a structure with linear transformation (matrix 

and vector transformations) and ables to detect and correct error 

in itself through said transformations. Error detection differs 

from error correction. Error detection implies that the code able 

to detect error in itself, but it doesn’t have the ability to correct 

said errors. Error correction implies that a code able to detect an 

error in it and correct said error in itself. Linear codes have their 

limitations that are its error detection and error correction 

ability. These limitations can be found from its Hamming 

Distance (𝑑𝐻), which is the difference between two codewords 

(string of bits) of the same length in the same index/position. 

Minimum Hamming distance can be calculated as : 

𝑑𝑚𝑖𝑛 = min
𝑐𝑖 ≠𝑐𝑗 

𝑑𝐻(𝑐𝑖 , 𝑐𝑗) 

For a codeword of length of three we can visualize Hamming 

Distance as points of a cube, where each point represent it’s 

coordinate (codeword). 

 
Figure 1. Cube Representing Codeword 

Hamming – The Art of Doing Science and Engineering 

 

Minimum Hamming distance will determine the limitations 

of linear code. 

 

Table iii. Hamming Distance and Limitation 

Hamming Distance Limitation 

1 Unique Decoding 

2 Single Error Detection 

3 Single Error Correction 

4 
1 Error Correction and 2 Error 

Detection 

5 Double Error Correction 

2𝑘 + 1 𝑘 Error Correction 

2𝑘 + 2 
𝑘 Error Correction and 𝑘 + 1 Error 

Detection 

 

D. Hamming Codes 

Hamming Codes is a binary linear code with a hamming 

distance of three which implies it has the ability to correct a 

single error in its codeword. It has a property of Hamming 

Distance of 3 which will be shown. Hamming codes can be 

defined and interpreted in 2 ways, which are in its pure 

algorithm of binary operations and through linear 

transformations, hence Hamming Code is a linear code. 

Hamming code as its pure algorithm form can be seen as for 

every message we will encode, we will create a codeword which 

includes parity/check bits in it. Hamming code with a codeword 

of length n bits and message k bits will be defined as Hamming 

Code of  Hamming). Such that we have bits as parity/check bits 

in the codeword which will be bits in the position of power of 

two. The value of n for standard Hamming Code valid for 𝑛 =
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 2𝑚–  1, for integer 𝑚 ≥  2. Or formally 𝑛 is defined : 

 

                      𝑛 = { 2𝑚 − 1 | 𝑚 ∈ 𝑁 ,𝑚 ≥ 2 }           (2) 

 

This means, a codeword for a standard Hamming Code will have 

the length of one less power of two (a Hamming Code with 𝑛 

other than defined above called as a General Haming Code). 

This comes from the logic where we will view every bit in 

codeword as its binary representation of said position. Trivial 

Hamming Code is represented as in Fig.1, where the valid 

codeword is 000 and 111, while other combination string of bits 

0 and 1 will means it has an error of 1 bit differs from one of the 

valid codes and can be corrected two one of valid codes. All 

Hamming Code has a hamming distance of 3, for a codeword of 

length 3, we can visualize it in 3-Dimension cube form as in 

figure 1. For a codeword of length 𝑛, can be represented as 𝑛-

Dimension cube, where every bit in the code represents 

coordinate in said dimension. Some of the first values of 𝑛 

(codeword length), 𝑘 (number of message bits), 𝑚 (number of 

parity bits) and its corresponding Hamming Code category : 

 

Table iv. Hamming Code 𝑛 values 

Hamming Code (n,k) n k m 

Hamming(3,1) 3 1 2 

Hamming(7,4) 7 4 3 

Hamming(15, 11) 15 11 4 

Hamming(31, 26) 31 26 5 

 

 As we can see, the more message bits we encode for a block 

of Hamming Code, the less space of codeword used as 

check/parity bits. The efficiency of a the bits transmitted can be 

calculated as 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
𝑘

𝑛
=

2𝑚−1−𝑚

2𝑚−1
=  1 −

𝑚

2𝑚−1
           (3) 

 

We can see for larger value of 𝑚 (larger block of codeword), 

results to more efficient encoding as Efficiency approaches 1. 

As example, for Hamming(15,11) we can encode a message 

bits of 01011000111 as codeword 𝑇𝑊𝑋0𝑌101𝑍1000111, 

where 𝑊𝑋𝑌𝑍 parity bits with corresponding values of 1110 and 

𝑇 can be 0/1 which is redundant (not used as message bit nor 

parity bit). 

 

 
Figure 2(a). Position of Message bits in Hamming(15,11) 

 
Figure 2(b). Complete Hamming(15,11) 

 

Every parity bits will check for all bits with position in binary 

corresponding to its bit 1 position and will the value of the parity 

bit will be set to 0/1 such that the number (sums) of all bits value 

1 with those position will be even. Here are the list of parity bits 

position and its corresponding bits to check in Hamming(15,11). 

 

Table v. Parity bit positions Hamming(15,11) 

Parity Bit 

Position 

Binary 

Positions 
Bits positions (decimal) 

0001 _ _ _ 1 1, 3, 5, 7, 9, 11, 13, 15 

0010 _ _ 1 _ 2, 3, 6, 7, 10, 11, 14, 15 

0100 _ 1 _ _ 4, 5, 6, 7, 12, 13, 14, 15 

1000 1 _ _ _ 8, 9, 10, 11, 12, 13, 14, 15 

  

Parity bit positions always placed in positions with bit 

representation of exactly one bit 1 (position of power of 2 in 

decimal). Each parity bit will record the number of 1s in bits it 

checks in forms of rows or columns. Thus this property of parity 

checks in a way sets up a binary search for any error in any 

positions through checking the number of 1s in the parity blocks 

and the status of the parity bit in the block. Another property is, 

for every parity block, there will only exist 1 parity bit position. 

This holds true for every Hamming Code since every parity 

block is defined by the position of 1s. 

 

  

  
Figure 3. Parity check blocks in Hamming(15,11) 

 

From those properties, to check a codeword, we can do xor to 

all binary representation positions with value of 1. The binary 

representations result of those will results to 0 if the codeword 
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is valid (no flipped bits) or will results the position of the flipped 

bit for a bit error. For more than 1 error, the resulting xor 

operations will results to a single position which may or may not 

be one of the flipped bits, means we can’t fix nor determine more 

than 1 error, such the nature of a linear code with Hamming 

Distance of 3.  

In Matrix representation, for a general hamming code, we 

need two matrices, which are Generator Matrix and Parity 

Matrix. We define Generator Matrix as 

 𝐺 = [𝐼𝑘 × 𝑘 | 𝑆 ]                                  (4) 

 

where 𝐼 is an Identity matrix and 𝑆 is matrix with 𝑘 rows, where 

every rows represents all possible 𝑚-bit string with more than 

one 1 bits (at least 2 bits of 1), which in term called strings with 

weight (the number of 1 bits) at least 2.  

For every Generator Matrix G we have a parity matrix 𝐻 

which defined as 

 

                                     𝐻 = [𝑆𝑇| 𝐼𝑘 ×𝑘]         (5) 

 

Such for a message string �⃗⃗� , we encode to a codeword 𝑐  with 

a form of Hamming Code encoding by the formula: 

 

𝑐 =  �⃗⃗� 𝐺                (6) 

 

and to check codeword  𝑐  to a resulting vector 𝑠  with formula: 

 

𝑠 = 𝐻𝑐  𝑇            (7) 

  

where 𝑠  called syndrome vector. For a no error codeword, will 

results to 0⃗  vector of 𝑠 , and for other value of 𝑠  will give a given 

column vector in 𝐻, which the corresponding column index 

gives the flipped bit index in 𝑐  for a 1 bit error. More than 1 error 

will give a combination of two column vector in 𝐻, which won’t 

be detected by Hamming Code encoding. Linear transformation 

defined with boolean operations XOR and AND. We may 

check, for every column vector in 𝐻 can only be achieved from 

combination of 3 other vector columns in 𝐻, thus Minimum 

Hamming Distance of a Hamming Code is three. Note : In this 

paper, we will refer �⃗⃗�  as our message bits vector and 𝑚 as the 

number of parity bits. 

 

III.  HAMMING CODE IMPLEMENTATION ON IMAGE 

A. Hamming Codes Implementation Non-Matrix 

Standard Hamming Codes in implementation needs us to 

divide our data, such that stream of bits will be partitioned to 

chunks of message bit vectors. The size of block determined by 

the Hamming Code used. For Hamming(𝑛, 𝑘), the data will be 

partitioned to blocks of k bits. Thus, we need to consider the 

number of bits on said data stream to be transmitted such that 

we can encode all said data to a same encoding of Hamming 

Code. We want for a bit stream data of length 𝐿 to be divided to 

blocks of bits of size 𝑘, such that 𝐿 𝑚𝑜𝑑 𝑘 = 0. For the two 

ways of implementation of Hamming Code, we can analyze by 

it’s complexity. 

Hamming code for Hamming(𝑛, 𝑘) without matrix requires 

us to divide data to message string of length 𝑘, after which we 

will pad the to corresponding size 𝑛 + 1. Thus giving the length 

of codeword to be length of power of two. After which, we 

assign the 0th position to as 0/1 (redundant bit) and all position 

of power of two as parity bit. After which, we assign the values 

of each parity bit corresponding to each parity block (1 for odd 

number of 1s or 0 for even number of 1s), thus for every parity 

block there are even number of 1s. To check a codeword, we 

will xor all the positions with value 1, with resulting bit 

representation as the flipped bit (error) for a single error 

codeword. We can generalize for all meesage of length arbitrary 

𝑘 since we won’t be restricted to the columns nor the rows of 

said vector. In all, we can write out the algorithm for encoding 

Standard Hamming Code as: 

1. Determine the Hamming(n,k). 

2. Set 0/1 for the 0th position bit (optional). 

3. Set bits in message bit vector to non power of two 

positions in codeword consecutively. 

4. Set every parity bit according to number 1s in each 

parity block as: 

 1 for odd number of 1s in parity block 

 0 for even number of 1s in parity block 

After which, the codeword is said a well-prepared block which 

is set for transfer. 

Algorithm to check a codeword and correcting the error bit, 

which will be done when receiving a codeword, can be listed as: 

1. Set an initial value of 0. 

2. Enumerate codeword from 1 (or 0) to 2𝑚 − 1 as the 

position of said bits. 

3. Iterate all bits in codeword, for all bits in codeword, 

if the value is 1, then xor the position to current 

value. 

4. Resulting value indicates the position of flipped bit 

in the codeword. 

5. Complement the value in said position from step 4. 

6. Extract all values not in position of power of two. 

Here is a code in python on Encoding Standard Hamming 

Code shown below: 

 

def encodeHamming1(msg,n,k) : 

    m = n - k 

    encoded = [] 

    r = 0 #rth redundant bit 

 

    #set up codeword loop 

    for i in range(1, n+1): 

        if i == 2 ** r : 

            encoded.append(0) 

            r += 1 

        else : 

            encoded.append(int(msg[i-r-1])) 

 

    #set paritybit values 

    rval = 0 

    for i in range(m) : 

        rval = 2 ** i 

        count1 = 0 

        for j in range(1,n+1) : 

            if ((j & (1 << i)) & rval == rval and encoded[j-1] ==1): 
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                count1 += 1 

        if (count1 % 2 == 1) : 

            encoded[rval-1] = 1 

    return encoded 

 

This code has a time complexity of  𝑂(𝑛 × 𝑚), where 𝑛 

represents the length of codeword and 𝑚 represents the number 

of parity bits in the codeword. As seen in tge code, we won’t 

need to add 0th bit since it won’t effect our calculations as we 

will see in code for error correcting Hamming Code in python 

shown below: 

 

def Hamming1(encoded): 

    error = 0 

    idx = 1 

    for i in encoded : 

        if (i==1) : 

            error = error ^ idx 

        idx += 1 

    if (error > 0 and error < idx) : 

        encoded[error-1] = int(not encoded[error-1]) 

    r = 0 

    bits = [] 

    for i in range(1,len(encoded)+1): 

        if (i == 2 ** r) : 

            r += 1 

        else : 

            bits.append(encoded[i-1]) 

    return bits 

 

Time complexity to check and correct received encoded 

Hamming Code is 𝑂(𝑛), where 𝑛 represents the length of list 

encoded. Which means, it will take rather longer to encode a 

chunk of bit vector than to receive and correct error of a 

codeword in Hamming Code. 

This algorithm is the most intuitive, since it acts as how 

Hamming Code in essence. It xor all bit representation of 

positions with value 1. Since we have prepared the codeword 

such for every parity block, we will always have even number 

of 1s, which means when we xor the bits, we will eventually 

ends up to 0 value, since every 1 bit has a pair and counted once 

(since every parity check are unique). But, this algorithm has its 

own cons. As we find, we won’t need to track 0th position value, 

as it is redundant and doesn’t contain our message bit 

information, where as when we xor 0th position (which in binary 

representation will be 𝑚 number of 0s), it will not effect our 

calculation. Thus, as mentioned before, 0th position can be 

completely discarded or set as abritary value of 0/1. 

Con of above algorithm are it doesn’t have the capability to 

encode message with length that doesn’t follow definition in (2). 

We can expand our Hamming Code out of its standard forms, 

which in term we need to find the least parity bits we need to 

encode the message bit, yet it is sufficient to parity check all bits 

in the message. Formally we need to find 𝑚 known length of 

string 𝑘 : 

 

       𝑚 | 𝑘 +  𝑚 + 1 ≤  2𝑚 < 2𝑚+1 − 1             (8) 

 

Yet, this will results to a higher complexity of encodin since we 

will need to find such 𝑚 that follows (y). Snippet of expanded 

algorithm for encoding Hamming Code which is put in the 

beginning of encoding (replacing line 1 in function 

encodeHamming1) shown below : 

 

def encodeHamming2(msg) : 

    k = len(msg) 

    m = 1 

    while (2**m < k + m + 1): 

        m += 1 

    n = k + m 

     … 

 

For a uniform and repeated use of the same Hamming(n,k), it is 

most beneficial to determine 𝑛, 𝑘, and 𝑚 values beforehand 

rather than adding another redundant loop as above. 

 

B. Hamming Codes Implementation Matrix Form 

In formal matrix representation of Haming Code, we need to 

generate matrix 𝐺 and 𝐻 to encode and check message and 

codeword by applying linear transformation to message �⃗⃗�  and 

codeword 𝑐. For a Hamming Code with form Hamming(𝑛, 𝑘), 

we can create a Parity Matrix 𝐻 such that: 

1. Parity Matrix 𝐻 will be formed from every possible 

combination of 0s and 1s (excluding binary 

representation for 0). 

2. Matrix 𝐻 will have 𝑚 rows and 2𝑚 − 1 rows. 

3. Every column vector is a binary representation for 

every number 1 through 2𝑚 − 1. 

 As example, for Hamming(7,4), we will have parity matrix 

𝐻 with the form 

 

𝐻(7,4) =  [
1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

] 

 

Where column 1 through 7 are column vector for its 

coressponding column. This matrix representation is analog 

with its representation as in Fig. 2 for 𝐻(15,11) which has a 

parity matrix in the form 

 

𝐻(15,11)

= [

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

] 

 

In general, we want 𝐻 to be in systematic form such that in 

the form as in (z) by moving all columns with one 1s to the right 

of the matrix. Such for 𝐻(7,4) in its systematic form will be 

 

𝐻(7,4) =  [
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

] 

 

To form our generating matrix G, we transpose 𝑆 in 𝐻 and 

concatenate Identity matrix (𝐼𝑘×𝑘) to the left of said 𝑆𝑇. 
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Generating matrix for Hamming(7,4) is 

 

𝐺(7,4) =  [

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

] 

 Such we can encode a message �⃗⃗�  by (6) and check encoded 

codeword by (7).  With the form of systematic 𝐺 and 𝐻, for 

Hamming(𝑛, 𝑘) and a message with length 𝑘, we will get 

codeword length  𝑛 = 𝑘 + 𝑚 such that first 𝑘 bits are the 

message bits and consecutive 𝑚 bits as parity bits. For 

Hamming(7,4) we have message bit of the form 𝑎𝑏𝑐𝑑 and 

codeword 𝑎𝑏𝑐𝑑𝑥𝑦𝑧 where as 𝑥𝑦𝑧 are the parity bits.  

In parity checking a codeword with (7) we get 𝑠 such that 𝑠 

our corresponding bit location where the error is. In formal form 

for 𝑒  as our error vector which is xored to our codeword 𝑐  
 

𝑠 ⃗⃗ = 𝐻(𝑐 ⊕ 𝑒  )T   
       𝑠 = 𝐻𝑐  𝑇 ⊕ 𝐻𝑒  𝑇           (10) 

 

by definition, 𝐻𝑐  𝑇 = 0⃗ , such 

 

             𝑠 = 𝐻𝑒  𝑇           (11) 

 

where 𝑠  as our syndrome vector which is a column vector in 𝐻 

which we can xor the corresponding bit with position value of 𝑠  
in 𝐻 for bit in 𝑐 . To note, matrix multiplication here defined with 

boolean operations (XOR and  AND). In result, our columns of 

𝑆𝑇 in 𝐺 acts as our parity bits equation such Hamming(𝑛, 𝑘) we 

have 𝑛 − 𝑘 = 𝑚 equations to set our parity bits. The identity 

matrix preserves our message bit to be encoded in our resulting 

codeword. The equation for our setting parity bits by matrix 𝐺 

and encoding our codeword 𝑐   for message �⃗⃗�  defined as 

 

            𝑐 𝑖 = ( �⃗⃗� 1 . 𝐺1𝑖) ⊕ ( �⃗⃗� 2 . 𝐺2𝑖) ⊕ …⊕ ( �⃗⃗� 𝑗  . 𝐺𝑗𝑖)      (12) 

 

and for every row in parity matrix 𝐻 represents equation for 

every 𝑚 parity check bits in our syndrome 𝑠 . 
To generate both matrices 𝐻 and 𝐺, we can simultaneously 

use a function which takes 𝑛 and 𝑘 and will return to matrices 𝐻 

and 𝐺, in python code shown below: 

def Generators (n, k): 

    m = n-k 

    G = [[0 for j in range(n)] for i in range(k)] 

    H = [[0 for j in range(n)] for i in range(m)] 

    for i in range (k): 

        G[i][i] = 1 

    for i in range (m): 

        H[i][k+i] = 1 

    r = 0 

    for i in range (1,n+1): 

        if i == 2**r : 

            r += 1 

        else : 

            bin = format(i,'0'+str(m)+ 'b') 

            for j in range(1,m+1): 

                G[i-r-1][k+j-1] = int(bin[-j]) 

                H[j-1][i-r-1] = int(bin[-j]) 

    return G, H 

 

After which we can encode our message as Hamming Code 

encoding make use given 𝐺 by doing boolean matrix 

mutliplication with operations XOR (⊕) replacing addition and 

AND (.) replacing multiplication. Such for given matrux 𝐻 and 

𝐺 we can encode and decode our codeword. Here are the codes 

to encode and check codeword using 𝐻 and 𝐺 matrix. 

 

def encodeHammingM(msg,G): 

    k = len(G) 

    n = len(G[0]) 

    codeword = [0 for i in range(n)] 

 

    #Matrix Xor Multiplication 

    for i in range(n): 

        for j in range(k): 

            codeword[i] = codeword[i] ^ (int(msg[j]) & G[j][i]) 

    return codeword 

 

def decodeHammingM(codeword, H): 

    n = len(codeword) 

    m = len(H) 

    syndrome = [0 for i in range(m)] 

 

    #Matrix Xor multiplication 

    for i in range(m): 

        for j in range(n): 

            syndrome[i] = syndrome[i] ^ (H[i][j] & 

int(codeword[j]) ) 

 

    #Check any syndrome columns (error correction) 

    for column in range(n): 

        allsame = True 

        for row in range(m): 

            if (H[row][column] != syndrome[row]) : 

                allsame = False 

        if allsame : 

            codeword[column] = int(not codeword[column]) 

            break 

    return codeword 

 

Our encoding and decoding by matrix representation has 

overall time complexity of 𝑂(𝑛 × 𝑘) and 𝑂(𝑚 × 𝑛), which 

compared to non-matrix approach it seems that matrix 

representation is worse in implementation. Another con for 

matrix representation is that it requires us to compute 𝐺 and 𝐻 

matrix such we can perform our linear transformations. Matrix 

representation of Hamming Code can be expanded to its general 

form through finding the number of parity bits 𝑚 and create 

matrices 𝐺 and 𝑀 for length of 𝑛 = 𝑘 + 𝑚 accordingly.  

 

C. Hamming Codes Implementation on Image 

Image is a matrix of values, where each element in matrix we 

call pixel which values represents the colour of said pixel. As 

we discussed before, there are multiple types of image colours. 

In most cases, for grey-scale image, each pixel consists of a 

value ranging from 0-255. While in colour image, each pixel 
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consists of three values with range 0-255 each representing the 

colour RGB (Red-Green-Blue). We can inspect that each values 

both coloured and greyscale has the same range and can be 

represented in binary form of 8 bit pattern. These values can be 

represented as unsigned 8 bit integers. 

Considering these, to encode our image, we need to partition 

our datas such accordingly. We can encode all the image in a 

single chunk of code. Yet, as Hamming Code limitation, this 

chunk of code will only able to correctly corrects one bit error. 

Thus, we need to partition our image to smaller chunks. If we 

use our Standard Hamming Code, the most suitable would be 

Hamming(7,4) since we can send 4 bits (half of the data for each 

value of unsigned integer). But, this come to a cost since we only 

have efficiency of  
4

7
 which is not great. We may need to consider 

larger chunk of codes. We can extend our Hamming Code such 

that it will encode every pixel in our image into a single chunk 

of code and transmit it, such for image with size 𝑤 × ℎ, the 

transmitted image can correct itself for a single error in every 

chunk of code totalling of  𝑤 × ℎ errors. 

The length of chunk code to transmitted can be choosen 

accordingly, with larger chunk code will be encoded more 

efficiently, it comes with less ability as of how much error it may 

able to correct. To note, the error can be handled is only 1 bit for 

every chunk of code, such even if we have the ability to handle 

𝑤 × ℎ errors in total, it still limits us with the ability of 

correcting one bit error for every block. 

Case for Greyscale coloured image, we may want to partition 

it such that every chunk of code will contain a 1 byte (8 bits) 

information which we encode by Hamming(12,8). The value of 

𝑚 need will be 4 by checking our requirement of parity check 

bits in (d). Below is the code for reading an image, encoding the 

image as Hamming(12,8), and decoding with error correction 

the ‘received’ image. 

import cv2 

import numpy as np 

from hamming1 import encodeHamming1 

from hamming1 import Hamming1 

 

def bitstouint(bits): 

    uint = 0 

    for bit in bits: 

        uint = (uint <<1) | bit 

    return uint 

 

img = cv2.imread("Lena.png",0) 

height = img.shape[0] 

width = img.shape[1] 

codewords = [[0 for j in range(width)] for i in range(height)] 

received = [[0 for j in range(width)] for i in range(height)] 

 

#encoding every pixel as Hamming(12,8) 

for i in range(height): 

    for j in range(width): 

        codewords[i][j] = 

encodeHamming1(format(img[i][j],'08b'), 12,8) 

 

#read and correct every pixel 

for i in range(height): 

    for j in range(width): 

        received[i][j] = bitstouint(Hamming1(codewords[i][j])) 

received = np.array(received,dtype=np.uint8) 

cv2.imwrite("Lena1.jpg", received) 

 

For the test image Lena.png : 

 

  
Figure 4(a) Lena.jpg          Figure 4(b) Lena1.jpg 

 

Fig. 4(a) is the initial image, and Fig 4(b) on the right is the 

resulting image after encoding and reconstruction without any 

error along the proccess. Simulating random single bit error for 

every pixel in Lena.jpg and save it as Error1.jpg we get an image 

of : 

 

  
Figure 5(a) Error1.jpg          Figure 5(b) Lena2.jpg 

 

Fig. 5(a) is the image which we introduce a single bit error for 

every pixel. Fig. 5(b) is the resulting image after error correction 

of Hamming Code. We can see the results of Fig. 5(b) is 

identical with the initial image in Fig. 4(a) as also the case for 

Fig. 4(b). We can modify our code such that we will able to 

encode more than 1 pixel in a chunk of code, but it gives us a 

problem which it won’t be able to handle error in every pixel. 

We will simulate to create a multiple bit error for every pixel 

in the image in the process of ‘transferring’.  

 

  
Figure 6(a) Error2.jpg          Figure 6(b) Lena3.jpg 

 

Resulting image after error introducement  shown in Fig. 6(a) 

with resulting image after error correction in Fig. 6(b). The 

resulting image got more distorted from the error introduced 
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image, this shows the inablity of Hamming Codes as a code with 

Hamming Distance of three to correct error more than 1 bit. The 

resulting error may not detected Hamming Code completely or 

a false correction happened, thus creating more distorted result. 

Here we have a difference between Standard Hamming Codes 

where length of codeword of the form 2𝑛 − 1 and Expanded 

Hamming Code. Standard Hamming Code will always detect an 

error in its codeword (resulting XOR operations will not exceed 

the index of the codeword), while Expanded form in some cases 

have index which is not stored (larger than the size of the 

codeword), such it will pass the error. 

 

IV. HAMMING CODE IMPROVEMENTS 

In practice, error can occur in consecutive in transmission, 

called as burst error. Normal implementation of Hamming Code 

is not effective for such cases. To handle this case, we will need 

to interlace of blocks of encoded message. Such, when we 

decode our message these burst of errrors will be 

“redistributed”.

 
Figure 7. Interlacing of 4 Block Hamming(3,1) 

 

This interlacing will give the ability to correct burst of errors, 

since on transmission, for given transmission block of data, a 

burst of errors will be single error for multiple blocks of encoded 

data. We will first encode our image as usual, after which rather 

than we straightly transfer our blocks of data, we first interlace 

our blocks of data. When we receive our data, we also need to 

deinterlace our data before decoding our data. This 

implementation still have problem if the error have a periodicity 

of the blocks of data we interlace. As example, in Fig. 7, we find 

if the error have a periodicity of 4, we have multiple error for a 

single block of encoded data. Yet, this will add much more time 

for interlacing and deinterlacing of our data that may takes us 

the same proccessing or longer time compared to our encoding 

time. Code for interlace and deinterlace given below : 

def interlace(encodedMat): 

    codelen = len(encodedMat[0][0]) 

    width = len(encodedMat[0]) 

    height = len(encodedMat) 

    blocks = width*height 

    totalbits = blocks * codelen 

    interlaced = [[[0 for k in range(codelen)] for j in 

range(width)] for i in range(height)] 

    n = 0 

    for i in range(height): 

        for j in range(width): 

            for k in range(codelen): 

                row = n // (codelen * width) 

                col = (n - row *(codelen * width)) // codelen 

                bits = n % codelen 

                interlaced[row][col][bits] = encodedMat[i][j][k] 

                n = n + blocks 

                if n >= totalbits : 

                    n = (n%totalbits) + 1 

    return interlaced 

def deinterlace(trfMat): 

    codelen = len(trfMat[0][0]) 

    width = len(trfMat[0]) 

    height = len(trfMat) 

    blocks = width*height 

    totalbits = blocks * codelen 

    result = [[[] for j in range(width)] for i in range(height)] 

    n= 0 

    for i in range(height): 

        for j in range(width): 

            for k in range(codelen): 

                row = (n // width) % height 

                col = n % width 

                result[row][col].append(trfMat[i][j][k]) 

                n+=1 

    return result 

  

Using interlace and deinterlace add two extra steps from 

encode-transfer-decode to encode-interlace-transfer-

deinterlace-decode. By interlacing, we will in general have 

better image for any pattern of error on transferring since it can 

handle burst errors. Simulating 1 in 8 error chance for every bit 

on transferring (uniform probability/chance) for both with and 

without interlace with same pattern of error, resulting decoded 

image: 

 

       
    Figure 8(a) Non-Interlaced        Figure 8(b) Interlaced 

 

Resulting image shows a better image from interlacing in Fig. 

8(b) compared to without interlacing in Fig. 8(a). 

 

Another room for improvement in Hamming Code is by using 

the 0th bit as our total parity bit. Thus, the algorithm will be able 

to detect for a double bit error without the ability to correcting it 

while still having the ability to error a single bit error. This 

algorithm is called as SECDED (Single Error Correction, 

Double Error Detection). By extending our Hamming Code, we 

need to transfer an extra 0th bit, which in effect our total 

codeword will have a total length of 2^m. In general, we can 
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extend our Hamming(n,k) codes into Extended 

Hamming(n+1,k). This in implementation can help by giving an 

error status for a double bit error (which can’t be corrected) and 

to request retransfering of said data with the downside of more 

redundant data to be transferred. 

 

V.   CONCLUSION 

Hamming Code in its implementation can be used as 

encoding of any binary code other than image. Hamming Code 

encoding for image is best use to ensure data transffered while 

using as little space used for redundant/parity check bits as 

possible. Hamming Code also can be “expanded” and 

“extended” from it’s base forms such it can encode variety 

length of message and able two detect two bit errors. To make 

use of our hamming code, we need to determine how many 

message bits to be encoded for every block of data. The more 

blocks we use, the more single bit errors that our algorithm can 

corrects, with the drawback of less efficiency for every block 

and overall data. Interlacing also provides better encoding such 

it will handle burst errors up to certain limitations with the con 

of extra steps it takes to encode-transfer-decode sequence. 
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