
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

Image Encoding with Error Correction Ability Using

Hamming Code

Ng Kyle - 135200401

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113520040@std.stei.itb.ac.id

Abstract— Data are used in many forms, from simple text to

large files. These data are stored through the encoding of bits of 0’s

and 1’s which are used to transfer data between two subjects and

used as a way to store information as data on storage. These data

in its storage and transfers may have some information corrupted

through many factors. These corruption(s) on data will lead to

wrong information retrieved. Such it is needed for a good data

encoding or better storage/transfer mechanisms. A good encoding

will ensure more reliable data stored/transferred, one of which is

through Hamming Code. This paper will discuss ways we can

encode images through Hamming Code such an image encoded will

be able to self-correct itself up to a certain rate of errors to be

corrected. The resulting encoded data will lead to more reliable

data retrieved and preserve the information of image encoded.

Keywords— Boolean, Data, Encoding, Error Correction,

Hamming Code, Image.

I. INTRODUCTION

Information is of foremost importance in current society, such

misinformation may lead to critical problems. These pieces of

information are stored and transferred as a series of 0’s and 1’s

or in a general term as binary. A flip between 0 and 1 in this

series of data may lead to significantly different data retrieved.

Such there needs to be a form of the mechanism of how data

transferred/stored needs to be stored/packed which will reduce

the risk of a wrong data retrieved. The way data arrangement are

stored in computer science terms is called data encoding.

Data corruption may happen in different ways, either in its

transfer stages or storing stages. To resolve these, there are

multiple solutions, from sending multiple copies of the same

information (also called repetition) to better data transfer

mechanisms. Such in 1950, Richard W. Hamming comes up

with a solution which is a self-correcting code which was

eventually named Hamming Code (named after Hamming).

Hamming Codes are a family of linear error-correcting codes,

which are codes that can self-correct errors in themselves.

Hamming Codes are classified as perfect codes which means

Hamming Codes fall into a category that has the best possible

rate of data stored in a block of information transferred /stored

to the number redundant pieces of information transferred. Yet,

Hamming Codes comes with its limitations wherein a block of

Hamming Code, only ables to correct one error. This limitation

may be improved by dividing the data into smaller blocks which

leads to a worse rate of data stored. It can also be improved to

be able to detect two-bit errors (without correcting them), which

is called as Extended Hamming Code.

This paper focuses on how to implement Hamming Codes to

encode images which in itself is a series of binaries. Hamming

Codes implemented will be varied and compared with different

Hamming Code schemes. Reducing the possibility of wrong

information retrieved which in result image retrieved will have

identical information wise. By which, the encoded information

will be able to handle errors during image transfer as efficient

and effective as possible.

II. THEORITICAL BASIS

A. Binary Code

Binary code is a sequence of data encoded in binary which is

a series of 0’s and 1’s. Binary code is used in computers that

represent data, which may be interpreted as texts, numbers, or

other types of data. Binary codes are interpreted and processed

by computers which the data can be used, stored, and

transferred. These strings of 0’s and 1’s will be processed

computer which also uses boolean algebra in its lowest level of

computation (hardware level).

Binary codes are usually divided into parts, where a single 0

or a 1 in the string is called a bit and 8 bits form 1 byte. The

form of binary code can be interpreted as states of on-offs. This

is most valuable for computer hardware to computations on

which uses transistors which turned on and off with certain

voltage (5 Volts and 0 Volts).

B. Boolean Algebra

1. Definition

Let B a set defined with two binary operators, + and -, and a

unary operator, ‘. 0 and 1 are two different elements in set B, it

follows that for every 𝑎, 𝑏, 𝑐 ∈ 𝐵 [1]:

1. Identity

i. 𝑎 + 0 = 𝑎

ii. 𝑎 . 1 = 𝑎

2. Commutative

i. 𝑎 + 𝑏 = 𝑏 + 𝑎

ii. 𝑎 . 𝑏 = 𝑏 . 𝑎

3. Distributive

i. 𝑎 . (𝑏 + 𝑐) = (𝑎 . 𝑏) + (𝑎 . 𝑐)

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

ii. 𝑎 + (𝑏 . 𝑐) = (𝑎 + 𝑏) . (𝑎 + 𝑐)

4. Complement

For every 𝑎 ∈ 𝐵, there exist a unique element

 𝑎′ ∈ 𝐵 such that :

i. 𝑎 + 𝑎’ = 1

ii. 𝑎 . 𝑎’ = 0

2. Operations

 From the set of three base operators (+, . , ‘), we can derive

other boolean operations and functions. In this scope of the

topic, we will derive a particular binary operator called the XOR

operator. XOR operator, we define as ‘⊕ ‘ operator. For, it holds

that if and only if.In all, for all possible combinations of 𝑎 and

𝑏, we define :

Table i. Boolean Binary Operators

a b a + b a . b a ⊕ b

0 0 0 0 0

0 1 1 0 1

1 0 1 0 1

1 1 1 1 0

The derivation of ⊕ operator from . and + :

 𝑎 ⊕ 𝑏 = (𝑎 + 𝑏) . (𝑎′ + 𝑏′) (1)

C. Image

Images can be stored as vector (vector graphics) or as a bit-

map (raster/bitmap graphics) [2]. The most basic is bitmap

images which are stored as an array of pixels. Each pixel can

consist of RGB values or Greyscale images. In RGB, each pixel

consists of three values, which usually of 256 levels of each

color. Such a pixel is an array of three values ranging from 0-

255 for each Red, Green, and Blue channel (also called true

color). While, in greyscale images, each pixel will only hold a

value from 0-255. Thus a value can be represented as an 8-bit

value (1 byte).

An image is stored as a series of bits, which takes into account

the number of pixels, the colour scale, and the level of the image.

Such an image with pixels and a level of 256 for each channel :

Table ii. Image Memory Usage

RGB (24 bit) image 𝑤 × ℎ × 8 × 3

Greyscale image 𝑤 × ℎ × 8

These values are calculated without taking into account

compressions, such as the data of the image being stored as a

raw bitmap.

D. Linear Codes

A linear codes (or called linear error correcting code) are

codes which has a structure with linear transformation (matrix

and vector transformations) and ables to detect and correct error

in itself through said transformations. Error detection differs

from error correction. Error detection implies that the code able

to detect error in itself, but it doesn’t have the ability to correct

said errors. Error correction implies that a code able to detect an

error in it and correct said error in itself. Linear codes have their

limitations that are its error detection and error correction

ability. These limitations can be found from its Hamming

Distance (𝑑𝐻), which is the difference between two codewords

(string of bits) of the same length in the same index/position.

Minimum Hamming distance can be calculated as :

𝑑𝑚𝑖𝑛 = min
𝑐𝑖 ≠𝑐𝑗

𝑑𝐻(𝑐𝑖 , 𝑐𝑗)

For a codeword of length of three we can visualize Hamming

Distance as points of a cube, where each point represent it’s

coordinate (codeword).

Figure 1. Cube Representing Codeword

Hamming – The Art of Doing Science and Engineering

Minimum Hamming distance will determine the limitations

of linear code.

Table iii. Hamming Distance and Limitation

Hamming Distance Limitation

1 Unique Decoding

2 Single Error Detection

3 Single Error Correction

4
1 Error Correction and 2 Error

Detection

5 Double Error Correction

2𝑘 + 1 𝑘 Error Correction

2𝑘 + 2
𝑘 Error Correction and 𝑘 + 1 Error

Detection

D. Hamming Codes

Hamming Codes is a binary linear code with a hamming

distance of three which implies it has the ability to correct a

single error in its codeword. It has a property of Hamming

Distance of 3 which will be shown. Hamming codes can be

defined and interpreted in 2 ways, which are in its pure

algorithm of binary operations and through linear

transformations, hence Hamming Code is a linear code.

Hamming code as its pure algorithm form can be seen as for

every message we will encode, we will create a codeword which

includes parity/check bits in it. Hamming code with a codeword

of length n bits and message k bits will be defined as Hamming

Code of Hamming). Such that we have bits as parity/check bits

in the codeword which will be bits in the position of power of

two. The value of n for standard Hamming Code valid for 𝑛 =

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

 2𝑚– 1, for integer 𝑚 ≥ 2. Or formally 𝑛 is defined :

 𝑛 = { 2𝑚 − 1 | 𝑚 ∈ 𝑁 ,𝑚 ≥ 2 } (2)

This means, a codeword for a standard Hamming Code will have

the length of one less power of two (a Hamming Code with 𝑛

other than defined above called as a General Haming Code).

This comes from the logic where we will view every bit in

codeword as its binary representation of said position. Trivial

Hamming Code is represented as in Fig.1, where the valid

codeword is 000 and 111, while other combination string of bits

0 and 1 will means it has an error of 1 bit differs from one of the

valid codes and can be corrected two one of valid codes. All

Hamming Code has a hamming distance of 3, for a codeword of

length 3, we can visualize it in 3-Dimension cube form as in

figure 1. For a codeword of length 𝑛, can be represented as 𝑛-

Dimension cube, where every bit in the code represents

coordinate in said dimension. Some of the first values of 𝑛

(codeword length), 𝑘 (number of message bits), 𝑚 (number of

parity bits) and its corresponding Hamming Code category :

Table iv. Hamming Code 𝑛 values

Hamming Code (n,k) n k m

Hamming(3,1) 3 1 2

Hamming(7,4) 7 4 3

Hamming(15, 11) 15 11 4

Hamming(31, 26) 31 26 5

 As we can see, the more message bits we encode for a block

of Hamming Code, the less space of codeword used as

check/parity bits. The efficiency of a the bits transmitted can be

calculated as

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑘

𝑛
=

2𝑚−1−𝑚

2𝑚−1
= 1 −

𝑚

2𝑚−1
 (3)

We can see for larger value of 𝑚 (larger block of codeword),

results to more efficient encoding as Efficiency approaches 1.

As example, for Hamming(15,11) we can encode a message

bits of 01011000111 as codeword 𝑇𝑊𝑋0𝑌101𝑍1000111,

where 𝑊𝑋𝑌𝑍 parity bits with corresponding values of 1110 and

𝑇 can be 0/1 which is redundant (not used as message bit nor

parity bit).

Figure 2(a). Position of Message bits in Hamming(15,11)

Figure 2(b). Complete Hamming(15,11)

Every parity bits will check for all bits with position in binary

corresponding to its bit 1 position and will the value of the parity

bit will be set to 0/1 such that the number (sums) of all bits value

1 with those position will be even. Here are the list of parity bits

position and its corresponding bits to check in Hamming(15,11).

Table v. Parity bit positions Hamming(15,11)

Parity Bit

Position

Binary

Positions
Bits positions (decimal)

0001 _ _ _ 1 1, 3, 5, 7, 9, 11, 13, 15

0010 _ _ 1 _ 2, 3, 6, 7, 10, 11, 14, 15

0100 _ 1 _ _ 4, 5, 6, 7, 12, 13, 14, 15

1000 1 _ _ _ 8, 9, 10, 11, 12, 13, 14, 15

Parity bit positions always placed in positions with bit

representation of exactly one bit 1 (position of power of 2 in

decimal). Each parity bit will record the number of 1s in bits it

checks in forms of rows or columns. Thus this property of parity

checks in a way sets up a binary search for any error in any

positions through checking the number of 1s in the parity blocks

and the status of the parity bit in the block. Another property is,

for every parity block, there will only exist 1 parity bit position.

This holds true for every Hamming Code since every parity

block is defined by the position of 1s.

Figure 3. Parity check blocks in Hamming(15,11)

From those properties, to check a codeword, we can do xor to

all binary representation positions with value of 1. The binary

representations result of those will results to 0 if the codeword

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

is valid (no flipped bits) or will results the position of the flipped

bit for a bit error. For more than 1 error, the resulting xor

operations will results to a single position which may or may not

be one of the flipped bits, means we can’t fix nor determine more

than 1 error, such the nature of a linear code with Hamming

Distance of 3.

In Matrix representation, for a general hamming code, we

need two matrices, which are Generator Matrix and Parity

Matrix. We define Generator Matrix as

 𝐺 = [𝐼𝑘 × 𝑘 | 𝑆] (4)

where 𝐼 is an Identity matrix and 𝑆 is matrix with 𝑘 rows, where

every rows represents all possible 𝑚-bit string with more than

one 1 bits (at least 2 bits of 1), which in term called strings with

weight (the number of 1 bits) at least 2.

For every Generator Matrix G we have a parity matrix 𝐻

which defined as

 𝐻 = [𝑆𝑇| 𝐼𝑘 ×𝑘] (5)

Such for a message string 𝑚⃗⃗ , we encode to a codeword 𝑐 with

a form of Hamming Code encoding by the formula:

𝑐 = 𝑚⃗⃗ 𝐺 (6)

and to check codeword 𝑐 to a resulting vector 𝑠 with formula:

𝑠 = 𝐻𝑐 𝑇 (7)

where 𝑠 called syndrome vector. For a no error codeword, will

results to 0⃗ vector of 𝑠 , and for other value of 𝑠 will give a given

column vector in 𝐻, which the corresponding column index

gives the flipped bit index in 𝑐 for a 1 bit error. More than 1 error

will give a combination of two column vector in 𝐻, which won’t

be detected by Hamming Code encoding. Linear transformation

defined with boolean operations XOR and AND. We may

check, for every column vector in 𝐻 can only be achieved from

combination of 3 other vector columns in 𝐻, thus Minimum

Hamming Distance of a Hamming Code is three. Note : In this

paper, we will refer 𝑚⃗⃗ as our message bits vector and 𝑚 as the

number of parity bits.

III. HAMMING CODE IMPLEMENTATION ON IMAGE

A. Hamming Codes Implementation Non-Matrix

Standard Hamming Codes in implementation needs us to

divide our data, such that stream of bits will be partitioned to

chunks of message bit vectors. The size of block determined by

the Hamming Code used. For Hamming(𝑛, 𝑘), the data will be

partitioned to blocks of k bits. Thus, we need to consider the

number of bits on said data stream to be transmitted such that

we can encode all said data to a same encoding of Hamming

Code. We want for a bit stream data of length 𝐿 to be divided to

blocks of bits of size 𝑘, such that 𝐿 𝑚𝑜𝑑 𝑘 = 0. For the two

ways of implementation of Hamming Code, we can analyze by

it’s complexity.

Hamming code for Hamming(𝑛, 𝑘) without matrix requires

us to divide data to message string of length 𝑘, after which we

will pad the to corresponding size 𝑛 + 1. Thus giving the length

of codeword to be length of power of two. After which, we

assign the 0th position to as 0/1 (redundant bit) and all position

of power of two as parity bit. After which, we assign the values

of each parity bit corresponding to each parity block (1 for odd

number of 1s or 0 for even number of 1s), thus for every parity

block there are even number of 1s. To check a codeword, we

will xor all the positions with value 1, with resulting bit

representation as the flipped bit (error) for a single error

codeword. We can generalize for all meesage of length arbitrary

𝑘 since we won’t be restricted to the columns nor the rows of

said vector. In all, we can write out the algorithm for encoding

Standard Hamming Code as:

1. Determine the Hamming(n,k).

2. Set 0/1 for the 0th position bit (optional).

3. Set bits in message bit vector to non power of two

positions in codeword consecutively.

4. Set every parity bit according to number 1s in each

parity block as:

 1 for odd number of 1s in parity block

 0 for even number of 1s in parity block

After which, the codeword is said a well-prepared block which

is set for transfer.

Algorithm to check a codeword and correcting the error bit,

which will be done when receiving a codeword, can be listed as:

1. Set an initial value of 0.

2. Enumerate codeword from 1 (or 0) to 2𝑚 − 1 as the

position of said bits.

3. Iterate all bits in codeword, for all bits in codeword,

if the value is 1, then xor the position to current

value.

4. Resulting value indicates the position of flipped bit

in the codeword.

5. Complement the value in said position from step 4.

6. Extract all values not in position of power of two.

Here is a code in python on Encoding Standard Hamming

Code shown below:

def encodeHamming1(msg,n,k) :

 m = n - k

 encoded = []

 r = 0 #rth redundant bit

 #set up codeword loop

 for i in range(1, n+1):

 if i == 2 ** r :

 encoded.append(0)

 r += 1

 else :

 encoded.append(int(msg[i-r-1]))

 #set paritybit values

 rval = 0

 for i in range(m) :

 rval = 2 ** i

 count1 = 0

 for j in range(1,n+1) :

 if ((j & (1 << i)) & rval == rval and encoded[j-1] ==1):

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

 count1 += 1

 if (count1 % 2 == 1) :

 encoded[rval-1] = 1

 return encoded

This code has a time complexity of 𝑂(𝑛 × 𝑚), where 𝑛

represents the length of codeword and 𝑚 represents the number

of parity bits in the codeword. As seen in tge code, we won’t

need to add 0th bit since it won’t effect our calculations as we

will see in code for error correcting Hamming Code in python

shown below:

def Hamming1(encoded):

 error = 0

 idx = 1

 for i in encoded :

 if (i==1) :

 error = error ^ idx

 idx += 1

 if (error > 0 and error < idx) :

 encoded[error-1] = int(not encoded[error-1])

 r = 0

 bits = []

 for i in range(1,len(encoded)+1):

 if (i == 2 ** r) :

 r += 1

 else :

 bits.append(encoded[i-1])

 return bits

Time complexity to check and correct received encoded

Hamming Code is 𝑂(𝑛), where 𝑛 represents the length of list

encoded. Which means, it will take rather longer to encode a

chunk of bit vector than to receive and correct error of a

codeword in Hamming Code.

This algorithm is the most intuitive, since it acts as how

Hamming Code in essence. It xor all bit representation of

positions with value 1. Since we have prepared the codeword

such for every parity block, we will always have even number

of 1s, which means when we xor the bits, we will eventually

ends up to 0 value, since every 1 bit has a pair and counted once

(since every parity check are unique). But, this algorithm has its

own cons. As we find, we won’t need to track 0th position value,

as it is redundant and doesn’t contain our message bit

information, where as when we xor 0th position (which in binary

representation will be 𝑚 number of 0s), it will not effect our

calculation. Thus, as mentioned before, 0th position can be

completely discarded or set as abritary value of 0/1.

Con of above algorithm are it doesn’t have the capability to

encode message with length that doesn’t follow definition in (2).

We can expand our Hamming Code out of its standard forms,

which in term we need to find the least parity bits we need to

encode the message bit, yet it is sufficient to parity check all bits

in the message. Formally we need to find 𝑚 known length of

string 𝑘 :

 𝑚 | 𝑘 + 𝑚 + 1 ≤ 2𝑚 < 2𝑚+1 − 1 (8)

Yet, this will results to a higher complexity of encodin since we

will need to find such 𝑚 that follows (y). Snippet of expanded

algorithm for encoding Hamming Code which is put in the

beginning of encoding (replacing line 1 in function

encodeHamming1) shown below :

def encodeHamming2(msg) :

 k = len(msg)

 m = 1

 while (2**m < k + m + 1):

 m += 1

 n = k + m

 …

For a uniform and repeated use of the same Hamming(n,k), it is

most beneficial to determine 𝑛, 𝑘, and 𝑚 values beforehand

rather than adding another redundant loop as above.

B. Hamming Codes Implementation Matrix Form

In formal matrix representation of Haming Code, we need to

generate matrix 𝐺 and 𝐻 to encode and check message and

codeword by applying linear transformation to message 𝑚⃗⃗ and

codeword 𝑐. For a Hamming Code with form Hamming(𝑛, 𝑘),

we can create a Parity Matrix 𝐻 such that:

1. Parity Matrix 𝐻 will be formed from every possible

combination of 0s and 1s (excluding binary

representation for 0).

2. Matrix 𝐻 will have 𝑚 rows and 2𝑚 − 1 rows.

3. Every column vector is a binary representation for

every number 1 through 2𝑚 − 1.

 As example, for Hamming(7,4), we will have parity matrix

𝐻 with the form

𝐻(7,4) = [
1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

]

Where column 1 through 7 are column vector for its

coressponding column. This matrix representation is analog

with its representation as in Fig. 2 for 𝐻(15,11) which has a

parity matrix in the form

𝐻(15,11)

= [

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

]

In general, we want 𝐻 to be in systematic form such that in

the form as in (z) by moving all columns with one 1s to the right

of the matrix. Such for 𝐻(7,4) in its systematic form will be

𝐻(7,4) = [
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

]

To form our generating matrix G, we transpose 𝑆 in 𝐻 and

concatenate Identity matrix (𝐼𝑘×𝑘) to the left of said 𝑆𝑇.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

Generating matrix for Hamming(7,4) is

𝐺(7,4) = [

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

]

 Such we can encode a message 𝑚⃗⃗ by (6) and check encoded

codeword by (7). With the form of systematic 𝐺 and 𝐻, for

Hamming(𝑛, 𝑘) and a message with length 𝑘, we will get

codeword length 𝑛 = 𝑘 + 𝑚 such that first 𝑘 bits are the

message bits and consecutive 𝑚 bits as parity bits. For

Hamming(7,4) we have message bit of the form 𝑎𝑏𝑐𝑑 and

codeword 𝑎𝑏𝑐𝑑𝑥𝑦𝑧 where as 𝑥𝑦𝑧 are the parity bits.

In parity checking a codeword with (7) we get 𝑠 such that 𝑠

our corresponding bit location where the error is. In formal form

for 𝑒 as our error vector which is xored to our codeword 𝑐

𝑠 ⃗⃗ = 𝐻(𝑐 ⊕ 𝑒)T
 𝑠 = 𝐻𝑐 𝑇 ⊕ 𝐻𝑒 𝑇 (10)

by definition, 𝐻𝑐 𝑇 = 0⃗ , such

 𝑠 = 𝐻𝑒 𝑇 (11)

where 𝑠 as our syndrome vector which is a column vector in 𝐻

which we can xor the corresponding bit with position value of 𝑠
in 𝐻 for bit in 𝑐 . To note, matrix multiplication here defined with

boolean operations (XOR and AND). In result, our columns of

𝑆𝑇 in 𝐺 acts as our parity bits equation such Hamming(𝑛, 𝑘) we

have 𝑛 − 𝑘 = 𝑚 equations to set our parity bits. The identity

matrix preserves our message bit to be encoded in our resulting

codeword. The equation for our setting parity bits by matrix 𝐺

and encoding our codeword 𝑐 for message 𝑚⃗⃗ defined as

 𝑐 𝑖 = (𝑚⃗⃗ 1 . 𝐺1𝑖) ⊕ (𝑚⃗⃗ 2 . 𝐺2𝑖) ⊕ …⊕ (𝑚⃗⃗ 𝑗 . 𝐺𝑗𝑖) (12)

and for every row in parity matrix 𝐻 represents equation for

every 𝑚 parity check bits in our syndrome 𝑠 .
To generate both matrices 𝐻 and 𝐺, we can simultaneously

use a function which takes 𝑛 and 𝑘 and will return to matrices 𝐻

and 𝐺, in python code shown below:

def Generators (n, k):

 m = n-k

 G = [[0 for j in range(n)] for i in range(k)]

 H = [[0 for j in range(n)] for i in range(m)]

 for i in range (k):

 G[i][i] = 1

 for i in range (m):

 H[i][k+i] = 1

 r = 0

 for i in range (1,n+1):

 if i == 2**r :

 r += 1

 else :

 bin = format(i,'0'+str(m)+ 'b')

 for j in range(1,m+1):

 G[i-r-1][k+j-1] = int(bin[-j])

 H[j-1][i-r-1] = int(bin[-j])

 return G, H

After which we can encode our message as Hamming Code

encoding make use given 𝐺 by doing boolean matrix

mutliplication with operations XOR (⊕) replacing addition and

AND (.) replacing multiplication. Such for given matrux 𝐻 and

𝐺 we can encode and decode our codeword. Here are the codes

to encode and check codeword using 𝐻 and 𝐺 matrix.

def encodeHammingM(msg,G):

 k = len(G)

 n = len(G[0])

 codeword = [0 for i in range(n)]

 #Matrix Xor Multiplication

 for i in range(n):

 for j in range(k):

 codeword[i] = codeword[i] ^ (int(msg[j]) & G[j][i])

 return codeword

def decodeHammingM(codeword, H):

 n = len(codeword)

 m = len(H)

 syndrome = [0 for i in range(m)]

 #Matrix Xor multiplication

 for i in range(m):

 for j in range(n):

 syndrome[i] = syndrome[i] ^ (H[i][j] &

int(codeword[j]))

 #Check any syndrome columns (error correction)

 for column in range(n):

 allsame = True

 for row in range(m):

 if (H[row][column] != syndrome[row]) :

 allsame = False

 if allsame :

 codeword[column] = int(not codeword[column])

 break

 return codeword

Our encoding and decoding by matrix representation has

overall time complexity of 𝑂(𝑛 × 𝑘) and 𝑂(𝑚 × 𝑛), which

compared to non-matrix approach it seems that matrix

representation is worse in implementation. Another con for

matrix representation is that it requires us to compute 𝐺 and 𝐻

matrix such we can perform our linear transformations. Matrix

representation of Hamming Code can be expanded to its general

form through finding the number of parity bits 𝑚 and create

matrices 𝐺 and 𝑀 for length of 𝑛 = 𝑘 + 𝑚 accordingly.

C. Hamming Codes Implementation on Image

Image is a matrix of values, where each element in matrix we

call pixel which values represents the colour of said pixel. As

we discussed before, there are multiple types of image colours.

In most cases, for grey-scale image, each pixel consists of a

value ranging from 0-255. While in colour image, each pixel

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

consists of three values with range 0-255 each representing the

colour RGB (Red-Green-Blue). We can inspect that each values

both coloured and greyscale has the same range and can be

represented in binary form of 8 bit pattern. These values can be

represented as unsigned 8 bit integers.

Considering these, to encode our image, we need to partition

our datas such accordingly. We can encode all the image in a

single chunk of code. Yet, as Hamming Code limitation, this

chunk of code will only able to correctly corrects one bit error.

Thus, we need to partition our image to smaller chunks. If we

use our Standard Hamming Code, the most suitable would be

Hamming(7,4) since we can send 4 bits (half of the data for each

value of unsigned integer). But, this come to a cost since we only

have efficiency of
4

7
 which is not great. We may need to consider

larger chunk of codes. We can extend our Hamming Code such

that it will encode every pixel in our image into a single chunk

of code and transmit it, such for image with size 𝑤 × ℎ, the

transmitted image can correct itself for a single error in every

chunk of code totalling of 𝑤 × ℎ errors.

The length of chunk code to transmitted can be choosen

accordingly, with larger chunk code will be encoded more

efficiently, it comes with less ability as of how much error it may

able to correct. To note, the error can be handled is only 1 bit for

every chunk of code, such even if we have the ability to handle

𝑤 × ℎ errors in total, it still limits us with the ability of

correcting one bit error for every block.

Case for Greyscale coloured image, we may want to partition

it such that every chunk of code will contain a 1 byte (8 bits)

information which we encode by Hamming(12,8). The value of

𝑚 need will be 4 by checking our requirement of parity check

bits in (d). Below is the code for reading an image, encoding the

image as Hamming(12,8), and decoding with error correction

the ‘received’ image.

import cv2

import numpy as np

from hamming1 import encodeHamming1

from hamming1 import Hamming1

def bitstouint(bits):

 uint = 0

 for bit in bits:

 uint = (uint <<1) | bit

 return uint

img = cv2.imread("Lena.png",0)

height = img.shape[0]

width = img.shape[1]

codewords = [[0 for j in range(width)] for i in range(height)]

received = [[0 for j in range(width)] for i in range(height)]

#encoding every pixel as Hamming(12,8)

for i in range(height):

 for j in range(width):

 codewords[i][j] =

encodeHamming1(format(img[i][j],'08b'), 12,8)

#read and correct every pixel

for i in range(height):

 for j in range(width):

 received[i][j] = bitstouint(Hamming1(codewords[i][j]))

received = np.array(received,dtype=np.uint8)

cv2.imwrite("Lena1.jpg", received)

For the test image Lena.png :

Figure 4(a) Lena.jpg Figure 4(b) Lena1.jpg

Fig. 4(a) is the initial image, and Fig 4(b) on the right is the

resulting image after encoding and reconstruction without any

error along the proccess. Simulating random single bit error for

every pixel in Lena.jpg and save it as Error1.jpg we get an image

of :

Figure 5(a) Error1.jpg Figure 5(b) Lena2.jpg

Fig. 5(a) is the image which we introduce a single bit error for

every pixel. Fig. 5(b) is the resulting image after error correction

of Hamming Code. We can see the results of Fig. 5(b) is

identical with the initial image in Fig. 4(a) as also the case for

Fig. 4(b). We can modify our code such that we will able to

encode more than 1 pixel in a chunk of code, but it gives us a

problem which it won’t be able to handle error in every pixel.

We will simulate to create a multiple bit error for every pixel

in the image in the process of ‘transferring’.

Figure 6(a) Error2.jpg Figure 6(b) Lena3.jpg

Resulting image after error introducement shown in Fig. 6(a)

with resulting image after error correction in Fig. 6(b). The

resulting image got more distorted from the error introduced

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

image, this shows the inablity of Hamming Codes as a code with

Hamming Distance of three to correct error more than 1 bit. The

resulting error may not detected Hamming Code completely or

a false correction happened, thus creating more distorted result.

Here we have a difference between Standard Hamming Codes

where length of codeword of the form 2𝑛 − 1 and Expanded

Hamming Code. Standard Hamming Code will always detect an

error in its codeword (resulting XOR operations will not exceed

the index of the codeword), while Expanded form in some cases

have index which is not stored (larger than the size of the

codeword), such it will pass the error.

IV. HAMMING CODE IMPROVEMENTS

In practice, error can occur in consecutive in transmission,

called as burst error. Normal implementation of Hamming Code

is not effective for such cases. To handle this case, we will need

to interlace of blocks of encoded message. Such, when we

decode our message these burst of errrors will be

“redistributed”.

Figure 7. Interlacing of 4 Block Hamming(3,1)

This interlacing will give the ability to correct burst of errors,

since on transmission, for given transmission block of data, a

burst of errors will be single error for multiple blocks of encoded

data. We will first encode our image as usual, after which rather

than we straightly transfer our blocks of data, we first interlace

our blocks of data. When we receive our data, we also need to

deinterlace our data before decoding our data. This

implementation still have problem if the error have a periodicity

of the blocks of data we interlace. As example, in Fig. 7, we find

if the error have a periodicity of 4, we have multiple error for a

single block of encoded data. Yet, this will add much more time

for interlacing and deinterlacing of our data that may takes us

the same proccessing or longer time compared to our encoding

time. Code for interlace and deinterlace given below :

def interlace(encodedMat):

 codelen = len(encodedMat[0][0])

 width = len(encodedMat[0])

 height = len(encodedMat)

 blocks = width*height

 totalbits = blocks * codelen

 interlaced = [[[0 for k in range(codelen)] for j in

range(width)] for i in range(height)]

 n = 0

 for i in range(height):

 for j in range(width):

 for k in range(codelen):

 row = n // (codelen * width)

 col = (n - row *(codelen * width)) // codelen

 bits = n % codelen

 interlaced[row][col][bits] = encodedMat[i][j][k]

 n = n + blocks

 if n >= totalbits :

 n = (n%totalbits) + 1

 return interlaced

def deinterlace(trfMat):

 codelen = len(trfMat[0][0])

 width = len(trfMat[0])

 height = len(trfMat)

 blocks = width*height

 totalbits = blocks * codelen

 result = [[[] for j in range(width)] for i in range(height)]

 n= 0

 for i in range(height):

 for j in range(width):

 for k in range(codelen):

 row = (n // width) % height

 col = n % width

 result[row][col].append(trfMat[i][j][k])

 n+=1

 return result

Using interlace and deinterlace add two extra steps from

encode-transfer-decode to encode-interlace-transfer-

deinterlace-decode. By interlacing, we will in general have

better image for any pattern of error on transferring since it can

handle burst errors. Simulating 1 in 8 error chance for every bit

on transferring (uniform probability/chance) for both with and

without interlace with same pattern of error, resulting decoded

image:

 Figure 8(a) Non-Interlaced Figure 8(b) Interlaced

Resulting image shows a better image from interlacing in Fig.

8(b) compared to without interlacing in Fig. 8(a).

Another room for improvement in Hamming Code is by using

the 0th bit as our total parity bit. Thus, the algorithm will be able

to detect for a double bit error without the ability to correcting it

while still having the ability to error a single bit error. This

algorithm is called as SECDED (Single Error Correction,

Double Error Detection). By extending our Hamming Code, we

need to transfer an extra 0th bit, which in effect our total

codeword will have a total length of 2^m. In general, we can

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

extend our Hamming(n,k) codes into Extended

Hamming(n+1,k). This in implementation can help by giving an

error status for a double bit error (which can’t be corrected) and

to request retransfering of said data with the downside of more

redundant data to be transferred.

V. CONCLUSION

Hamming Code in its implementation can be used as

encoding of any binary code other than image. Hamming Code

encoding for image is best use to ensure data transffered while

using as little space used for redundant/parity check bits as

possible. Hamming Code also can be “expanded” and

“extended” from it’s base forms such it can encode variety

length of message and able two detect two bit errors. To make

use of our hamming code, we need to determine how many

message bits to be encoded for every block of data. The more

blocks we use, the more single bit errors that our algorithm can

corrects, with the drawback of less efficiency for every block

and overall data. Interlacing also provides better encoding such

it will handle burst errors up to certain limitations with the con

of extra steps it takes to encode-transfer-decode sequence.

VII. ACKNOWLEDGMENT

I wish to show my appreciation Mr. Rinaldi Munir as this

assignment encourages me to do deeper research into other parts

in discrete mathematics and to practice on writing research

papers. I wish to extend my special thanks to Mr. Grant

Sanderson from channel 3blue1brown as his video to introduce

me to the field of Error Correcting Codes and its elegance in

implementation which is the reason for me to choose this topic

as my research.

REFERENCES

[1] Hamming, R. W. The Art of Doing Science and Engineering: Learning to

 Learn. Australia: Gordon and Breach, 1997.
[2] Andrew.cmu.edu. 2021. [online] Available:

 https://www.andrew.cmu.edu/user/nbier/15110/lectures/lec15a_sound_vi

deo.pdf [Accessed 05-Dec-2021].
[3] Math.mit.edu, 2021. [Online]. Available:

https://math.mit.edu/~goemans/18310S15/Hamming-code-notes.pdf.

[Accessed: 05- Dec- 2021].
[4] Math.ryerson.ca, 2021. [Online]. Available:

 https://math.ryerson.ca/~danziger/professor/MTH108/Handouts/codes.pd
 f. [Accessed: 06- Dec- 2021].

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 3 Desember 2020

Ng Kyle 13520040

https://www.andrew.cmu.edu/user/nbier/15110/lectures/lec15a_sound_video.pdf
https://www.andrew.cmu.edu/user/nbier/15110/lectures/lec15a_sound_video.pdf
https://math.mit.edu/~goemans/18310S15/Hamming-code-notes.pdf
https://math.ryerson.ca/~danziger/professor/MTH108/Handouts/codes.pd
https://math.ryerson.ca/~danziger/professor/MTH108/Handouts/codes.pd

