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Abstract—Modelling a mail distribution route for a big city 
requires a precise balance between operational costs and 
interconnectivity. This paper proposes a hypothetical mail 
distribution route for the city of Surabaya, Indonesia by using a 
minimum spanning tree. The minimum spanning tree is found by 
using a classic Prim’s algorithm. This paper also tries to determine 
the center of the minimum spanning tree to represent a central 
office in a network of post or courier offices. 
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I.   INTRODUCTION 
Catering for the needs of 2.87 million souls in a city deeply 

embedded as one of Indonesia’s economic hubs is not a walk in 
the park. Year by year as Surabaya’s economy continues to rise, 
so does the overall quality of life of its citizens. Suddenly not 
only the richest of rich can blow away their money for leisure 
activities and luxury.  

Behind the spectacles, it is truly the emergence of online 
shopping which plays a massive role in accelerating the growth 
of the local economy, as suddenly everyone can open shop while 
having the most adequate of funding which would otherwise be 
impossible in a traditional shop or market.  

Around all corners of Surabaya, a lot of merchants are turning 
to online shopping due to its simplicity and ease. A house that 
may look to be purely inhabitable can be a little warehouse for 
an online boutique shop with boxes upon boxes piled up in the 
front yard, waiting to be delivered by a courier service. 
Moreover, the local city government is very reputable in 
supporting small to medium businesses to be able to grow, as it, 
in turn, helps the local economy to grow as well. 

As the demand for online delivery in Surabaya continues to 
skyrocket in the past few years, postal or courier services should 
seize this opportunity, filling in the gap to be able to supply the 
services needed to deliver these goods.  

This paper aims to accommodate that goal by trying to model 
a hypothetical mail distribution route that is efficient in covering 
every district in Surabaya.  The absolute necessity of a 
connection between one district and another is heavily analyzed 
using a minimum spanning tree which is constructed using a 
classic Prim’s algorithm. Hopefully, this paper can serve its 
function as a guide or reference for postal or courier services 
looking to expand their business in Surabaya, as numerous other 
competitors have.  

 
II.  BASIC THEORY 

A. Graph 
A graph is a discrete set of vertices, each representing a 

distinct point, and edges that bridge the connection between 
these vertices. Formally, a graph can be mathematically 
described as a pair, 

𝐺𝐺 =  (𝑉𝑉,𝐸𝐸) 
where G is the graph itself, V a non-empty set of vertices v1, 

v2, ..., vn, and E a set of edges e1, e2, ..., en which connects a pair 
of vertices.  

Notice that a graph must have at least a vertex. Yet, the same 
does not need to apply for edges, meaning a graph may have 
vertices that are not connected by any edges at all. 

Graphs may have multiple edges connecting the same pair of 
vertices and loops, edges with both ends connected to the same 
vertex. An edge may also have a direction, indicating its starting 
and pointing vertices. The presence of multiple edges and loops 
and the directedness of the edges in a graph determine the type 
of graph it is.  

Based on the existence of multiple edges and/or loops, a graph 
can be categorized as a simple or an unsimple graph. A simple 
graph is a graph that has neither multiple edges nor loops as 
shown in Fig. 2.1a, whereas an unsimple graph is the opposite, 
allowing the presence of these multiple edges and/or loops. 

 

 
Fig. 2.1. (a) simple graph, (b) multigraph, and (c) pseudograph [1]. 

 
An unsimple graph can then be further differentiated between 

a multigraph and a pseudograph. Multigraphs may have multiple 
edges connecting the same vertices as shown in Fig. 2.1b where 
the edges e3 and e4 both connect vertices v1 and v3. On the other 
hand, graphs that may have loops, and possibly multiple edges, 
are called pseudographs. This is shown in Fig. 2.1c where the 
graph has a looping edge on e8 having both ends connecting the 
same vertex v3, while also having multiple edges as does a 
multigraph on edges e3 and e4. 

Based on the directedness of its edges, a graph can be 
classified between an undirected graph and a directed graph.  
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Fig. 2.2. (a) undirected graph and (b) directed graph [2]. 

 
An undirected graph does not factor in the directionality of its 

edges, meaning that it is impossible to know the start and end of 
an edge. This is shown in Fig. 2.2a with the two edges between 
vertices va and vb. On the other hand, a directed graph has edges 
that specify their direction. In Fig. 2.2b the direction of the two 
edges between vertices va and ve, is distinguishable as one edge 
starts at va and ends at ve, while the other edge starts at ve and 
ends at va. 

Combining the types of graphs above, it is then possible to 
make other more complicated variations of graphs. A simple 
directed graph has directed edges while having no loops or 
multiple edges. A directed multigraph has directed edges while 
allowing loops and multiple edges. A mixed graph, while also 
having loops and multiple edges, has both directed and 
undirected edges. It then depends on the need in applying it in 
real-life scenarios in which type of graph is to be used. 

There are a few common graph terminologies that will be 
used in this paper: 
1. Adjacency 

A pair of vertices u and v is said to be adjacent if both 
vertices are endpoints of an edge e. Take for example in 
Fig. 2.1b, v1 and v3 are adjacent as edges e3 and e4 connect 
both vertices. In contrast, v1 and v4 are not adjacent. 

2. Incidence 
An edge e = (u, v) is said to be incident with vertices u and 
v if u and v are the endpoints of edge e.   

3. Degree 
The degree of a vertex u is the total number of edges that 
are incident with u. A loop with both endpoints at u adds 
two to the degree of vertex u.  

4. Path 
A path is a sequence of edges that starts at a specific vertex, 
which continues to traverse along its edges and pass 
through their incident vertices. 

5. Circuit or cycle 
A circuit or a cycle is a path that starts and ends at the same 
vertex, having a length greater than zero. If every edge 
visited is different, then the path or circuit is said to be 
simple. 

6. Connectedness 
Two vertices u and v are said to be connected if there exists 
a path that goes from u and v or vice versa. Moreover, a 
graph is said to be a connected graph if for every pair of 
vertices v1 and v2 in the graph, there exists a path that goes 
from v1 and v2 or vice versa. 

7. Subgraph 
There exist a subgraph G1 = (V1, E1) of a graph G = (V, E) 
if V1 ⊆ V and E1 ⊆ E. 

 
Fig. 2.3. (a) graph G and its (b) subgraph G1 [1]. 

 
As can be seen in Fig. 2.3, subgraph G1 has vertices and 
edges which is a subset of all vertices and edges of G. 

8. Spanning subgraph 
A subgraph G1 = (V1, E1) is said to be the spanning 
subgraph of G = (V, E) if V1 = V, that is the vertices of G1 
contain all the vertices of G. 

9. Weighted graph 
A weighted graph is a graph in which each edge is given a 
specific value or weight. This value can represent anything 
in the real world such as price or distance. 

 
Fig. 2.4. A weighted graph [1]. 

 
B. Planar and Dual Graph 
A graph is considered a planar graph if it can be drawn on a 

flat plane without any of its edges crossing each other. Keep in 
mind, a graph does not necessarily have to not have crossings 
when drawn to be considered planar, as it may be possible to 
draw the graph in another way such that there are no crossing 
edges. A drawing of a planar graph in which there are no 
crossing edges is called a planar representation of the graph, or 
a plane graph. The edges of a plane graph can then divide the 
graph into regions or faces. When a graph cannot be represented 
as its planar representation, it is said to be non-planar. 

 
Fig. 2.5. (a) a planar graph and its (b) planar representation or plane graph 

[2]. 
 

As can be seen above, the graph in Fig. 2.5 can be represented 
as a plane graph with no crossing edges, thus confirming that it 
is a planar graph. The plane graph itself has 6 regions/faces, 
including the outer region.  

A plane graph G can then be converted into its dual graph G* 
by turning every face of G as a vertex of G*. Then, draw edges 
connecting all vertices of G*, passing through all the original 
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edges of G.  

 
Fig. 2.6. (a) a map and its (b) dual graph representation [2]. 

 
A dual graph becomes a handy tool to represent a map in the 

form of a graph, as can be seen in Fig. 2.6. Each corresponding 
region is converted into a vertex and edges are drawn for each 
pair of faces/regions that share a common border. 

 
C. Tree 
A tree is a connected, undirected, and simple graph that has 

no circuits. A consequence of not having any circuits means that 
a tree does not have multiple edges or loops either, thus 
confirming the condition of a tree to be a simple graph. 

 
Fig. 2.7. (a) and (b) are trees while (c) and (d) are not trees [2]. 

 
Interestingly, let there be a simple undirected graph G = (V, 

E) with a total number of vertices n. If one of the statements 
below applies, all the other statements apply and are equivalent. 
These statements also make up the properties of a tree: 
1. G is a tree, 
2. Every pair of vertices in G is connected by a unique simple 

path, 
3. G is connected and has n-1 edges, 
4. G does not have any circuits and has n-1 edges, 
5. G does not have any circuits and the addition of an edge in 

the graph will form a circuit, and 
6. G is connected and all its edges are bridges. 

 
D. Center of a Tree  
As proven by Jordan (1869), a tree will always have either a 

single vertex or a pair of adjacent vertices as its center. This can 
be seen in the examples in Fig. 2.8 with X labeled as the center 
of the tree. 

 
Fig. 2.8. Tree with (a) a single vertex and (b) two adjacent vertices as its 

center [4]. 
 
There are two possible methods to find the center of a tree. 

The first method is to find all the longest paths in a tree, and the 
center would be the middle or the two middle vertices in every 
longest path. Finding the longest path itself requires a traversal 
through all the combinations of paths possible in the tree. 

The second method is to iteratively remove the leaves 
(vertices with a degree of 1) of the tree. Gradually remove the 
outermost leaves of the tree successively obtaining smaller trees 
in each step, and in the end, the centermost vertex/vertices are 
left.  

In a network consisting of a weighted tree (as will be 
discussed in the paper), it is more desirable to find the center of 
the unweighted version of the tree, ignoring the complexifying 
effects of the weights on the edges. 

 
G. Minimum Spanning Tree 
A spanning tree of a connected graph is the spanning 

subgraph of a graph that is a tree. It can be obtained by removing 
edges until a circuit can no longer be formed in the graph. A 
property that emerges is that a connected graph will have at least 
a single spanning tree. 

 

 
Fig. 2.9. A graph (leftmost) with its possible spanning trees [1]. 

 
When a graph has weighted edges, it is then possible to 

construct its minimum spanning tree. A minimum spanning tree 
is a spanning tree that has the minimum total weight of edges 
possible for all variations of spanning trees in the graph. An 
important side note is that a graph may have more than one 
minimum spanning tree if several of its edges have the same 
weight, thus forming different combinations of edges while also 
having the same total weight. The application of a minimum 
spanning tree is truly endless and vast. It is commonly used in 
network scenarios trying to strive for the lowest cost, which is 
easily represented in a minimum spanning tree. As such is the 
case for the main discussion of this paper. 

 
H. Prim's Algorithm 
There are several algorithms for constructing the minimum 

spanning tree of a graph. Such algorithms have their own merits 
and demerits in terms of time complexity, depending on how the 
algorithm is run and the data structures used. The two classic 
and most frequently used algorithms are Prim’s algorithm and 
Kruskal’s algorithm. While both have fundamentally similar 
time complexities for sparse graphs, Prim’s algorithm comes 
somewhat ahead in denser graphs that have more edges. 

Prim’s algorithm builds a minimum spanning tree by 
progressively adding a new edge to the growing tree. Setting up 
the tree, depending on the variation of the algorithm, start either 
with any arbitrarily chosen vertex or the minimum weight edge 
of the graph. Then, iteratively take the next minimum weight 
edge which connects a vertex on the tree to another vertex not 
yet on the tree. By choosing an edge that connects a vertex on 
the tree to one that is not yet on the tree, it is ensured that no 
circuits will be formed. Repeat the iteration until all the vertices 
in the graph are connected, forming a complete minimum 
spanning tree. 
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III.   CONSTRUCTING THE MAIL DISTRIBUTION ROUTE 

A. Modelling the Problem 
A mail distribution route like the one proposed in this paper 

should in general take two important factors into account. 
Firstly, the route must be able to reach all its intended 
destinations which in this case would be the branches of post or 
courier offices tending the mail services in each district. 
Countless variants and types of graphs or networks should 
suffice in completing this task. However, perhaps the more 
important factor to consider is that the route must also be 
efficient in connecting the various branches of post offices. 
Simply connecting all the branches is not enough as there are 
operational costs involved such as fuel and labor. These 
operational costs should in principle be proportional to the 
distance needed to cover each connection.  

A postal or courier service is a business after all and like all 
conventional businesses should strive for the greatest efficiency 
to minimize costs in its operation while maintaining quality to 
keep its customers happy. By removing a few connections 
between branches, the overall production costs can be reduced. 
However, arbitrarily removing edges may in turn hurt the 
delivery time between a branch and another. This perplexing 
problem to maintain the delicate balance between costs and 
delivery time can be solved by finding the minimum spanning 
tree of the graph. The resulting minimum spanning tree will be 
the final mail distribution route.  

Several studies have been conducted in the past to try to tackle 
distribution route issues like the one at hand. Shahin and Jaferi 
(2015) modelled a minimum spanning tree by Prim’s algorithm 
amongst other algorithms to find the theoretical shortest route 
for an Iranian factory producing car batteries to distribute its 
products from Tehran to every province of Iran. Here the 
collecting points are presumed to be the center of each province, 
which in its modelled tree would be its vertices. Neagu et al. 
(2015) explored the optimization of transportation networks to 
accommodate the delivery needs of the postal services in regions 
of Romania by a Kruskal’s algorithm-generated minimal 
spanning tree. Each vertex in the minimum spanning tree 
represents an already existing post office in each region. 

In modelling the graph and ultimately its minimum spanning 
tree to represent the mail distribution route, several key features 
of the graph or tree must be decided beforehand.  

Firstly, the graph itself is modelled by making the dual graph 
representation of districts in Surabaya. The resulting graph 
would be undirected, simple, and connected which is required to 
find its minimum spanning tree. A vertex represents a post or 
courier office branch unique to each district. An edge represents 
a connection between a pair of office branches, allowing the 
distribution of mail and packages from one branch to another. 
However, edges are only allowed to be drawn when these 
districts share a common border. 

Secondly, it is assumed that all the branches are connected in 
some way, thus validifying the requirement for Prim’s algorithm 
for the graph to be connected. The graph itself would also have 
to have weighted edges, storing the data of distance between 
each branch in the weighted edges, enabling the construction of 
the graph’s minimum spanning tree itself.  

Thirdly, the location of each post or courier office branch 
representing the points or vertices in the graph must be decided 
as the route constructed here and therefore the location of each 
office branch is theoretical. Analyzing the examples mentioned 
before, the network in Neagu et al. (2015) uses preexisting post 
offices as its vertices while Jaferi (2015) assumes each branch 
to be located at the center of each province. It is then decided 
that each branch in its corresponding district is assumed to be 
located in close vicinity to the local district office. This decision 
is based upon the fact that district offices will in most cases be 
in the local central business area of each district, allowing an 
easier reach for local deliveries to be made to the general district 
population. 

Lastly, the weight of an edge is assumed to be the radial 
distance between each pair of adjacent post office branches 
incident with the edge. Rather than following the paths of 
physical roads, this assumption is made for the sake of showing 
the connection between each branch. Due to the characteristic of 
Surabaya’s district borders in which the size of each district is 
somewhat evenly distributed and no district is separated by sea 
borders, all connections should cross through actual land rather 
than crossing any water mass which would further complicate 
any estimation regarding efficiency due to the extra costs needed 
to travel by water. 

Once the weighted graph is modelled, the minimum spanning 
tree is then constructed by applying Prim’s algorithm until all 
branches are connected. Finally, the center vertex/vertices of the 
tree are to be found. This center vertex/vertices acts as the 
central office for Surabaya, becoming a gateway for all 
incoming and outgoing mail and packages connecting the mail 
network of Surabaya to all cities of Indonesia. 

 
B. Collecting Data and Modelling the Weighted Graph 
According to the Body for Government Administration and 

Regional Autonomy of Surabaya, the city has 31 districts in 
which each district has a local district office. To accurately 
pinpoint the location of each district office, their respective 
coordinates are used and can be easily measured using Google 
Maps. The location of each district office then represents its 
respective district vertex vn with n being its numbering. The 
resulting vertices are shown in Table 3.1 below. 

 
Table 3.1. Coordinates for each district vertex. 

Vertex District Latitude Longitude 

v1 Pakal -7.2403488 112.62541 
v2 Benowo -7.2488194 112.63525 
v3 Asemrowo -7.2521531 112.71529 
v4 Tandes -7.2591761 112.67791 
v5 Sambikerep -7.2611079 112.65213 
v6 Lakarsantri -7.3034317 112.63251 
v7 Karang Pilang -7.3333161 112.69941 
v8 Wiyung -7.3144402 112.69525 
v9 Dukuh Pakis -7.2833257 112.68817 
v10 Sukomanunggal -7.2607884 112.71239 
v11 Krembangan -7.2328676 112.72258 
v12 Pabean Cantian -7.2169835 112.72942 
v13 Bubutan -7.2516552 112.73411 
v14 Sawahan -7.2840879 112.71608 
v15 Jambangan -7.3221961 112.71387 
v16 Gayungan -7.3381504 112.71677 
v17 Wonoloco -7.3199923 112.74116 
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v18 Wonokromo -7.2916684 112.73219 
v19 Tegalsari -7.2880078 112.74052 
v20 Genteng -7.2577884 112.75181 
v21 Simokerto -7.2436234 112.75794 
v22 Semampir -7.2253347 112.7445 
v23 Kenjeran -7.2266571 112.77543 
v24 Tambaksari -7.2575164 112.75523 
v25 Gubeng -7.2716891 112.75596 
v26 Tenggilis Mejoyo -7.3139426 112.75699 
v27 Gunung Anyar -7.3409584 112.7833 
v28 Rungkut -7.3229193 112.77099 
v29 Sukolilo -7.2997009 112.77032 
v30 Mulyorejo -7.2614324 112.78484 
v31 Bulak -7.2315981 112.78544 

 
The next step is to examine the edges connecting the vertices. 

For each pair of vertices of districts that share a common border, 
draw an edge that is incident with these vertices. Finding these 
edges can be done by examining a map which in this case is 
based on the map in Fig. 3.1. 

 
Fig. 3.1. A map showing the district borders of Surabaya [12].  

 
The weight of an edge is the distance between its adjacent 

district vertices. This can be measured in Google Maps once 
again which has a feature to calculate the radial distance 
between two points measured in kilometers. In this case the two 
points are the coordinates of the pair of district vertices 
previously measured. Repeat this process until all districts 
sharing common borders are represented by an edge. Finally, the 
resulting edges ex with x being their numbering are shown in 
Table 3.2 below. As can be seen, there are a total of 70 edges 
connecting the districts. 

 
Table 3.2. Edges connecting the district vertices. 

Edge Vertices Distance 
(km) 

Edge Vertices Distance 
(km) 

e1 (v1, v2) 1.44 e36 (v14, v19) 2.73 
e2 (v2, v3) 8.83 e37 (v14, v20) 4.91 
e3 (v2, v4) 4.85 e38 (v15, v16) 1.80 
e4 (v2, v5) 2.31 e39 (v15, v18) 3.95 
e5 (v3, v4) 4.19 e40 (v16, v17) 3.36 
e6 (v3, v10) 1.01 e41 (v16, v18) 5.44 
e7 (v3, v11) 2.29 e42 (v17, v18) 3.30 
e8 (v3, v13) 2.09 e43 (v17, v25) 5.62 
e9 (v3, v14) 3.55 e44 (v17, v26) 1.87 
e10 (v4, v5) 2.85 e45 (v18, v19) 1.00 
e11 (v4, v9) 2.91 e46 (v18, v25) 3.44 
e12 (v4, v10) 3.81 e47 (v19, v20) 3.58 
e13 (v5, v6) 5.18 e48 (v19, v25) 2.49 
e14 (v5, v8) 7.60 e49 (v20, v21) 1.71 

e15 (v5, v9) 4.68 e50 (v20, v24) 0.38 
e16 (v6, v7) 8.09 e51 (v20, v25) 1.61 
e17 (v6, v8) 7.03 e52 (v21, v22) 2.52 
e18 (v7, v8) 2.15 e53 (v21, v23) 2.70 
e19 (v7, v15) 2.02 e54 (v21, v24) 1.57 
e20 (v8, v9) 3.55 e55 (v22, v23) 3.41 
e21 (v8, v15) 2.23 e56 (v23, v24) 4.09 
e22 (v9, v10) 3.66 e57 (v23, v31) 1.23 
e23 (v9, v14) 3.08 e58 (v24, v25) 1.58 
e24 (v9, v15) 5.17 e59 (v24, v30) 3.30 
e25 (v9, v18) 4.94 e60 (v24, v31) 4.41 
e26 (v10, v14) 2.63 e61 (v25, v26) 4.70 
e27 (v11, v12) 1.92 e62 (v25, v29) 3.49 
e28 (v11, v13) 2.45 e63 (v25, v30) 3.38 
e29 (v12, v13) 3.89 e64 (v26, v27) 4.17 
e30 (v12, v20) 5.17 e65 (v26, v28) 1.84 
e31 (v12, v21) 4.32 e66 (v26, v29) 2.16 
e32 (v12, v22) 1.91 e67 (v27, v28) 2.42 
e33 (v13, v14) 4.12 e68 (v28, v29) 2.58 
e34 (v13, v20) 2.07 e69 (v29, v30) 4.54 
e35 (v14, v18) 1.97 e70 (v30, v31) 3.32 

 
From the vertices and edges previously obtained, a simple, 

undirected, connected, and weighted graph can then be 
constructed as can be seen in Fig. 3.2. It is important to note that 
the graphical representation presented is not scaled 
proportionally in all its edges as the vertices are placed merely 
as a representing point of the districts, rather than in its precise 
location of a post office branch coordinate. However, this 
information of distance is still held by the weight of the edges.  

 
Fig. 3.2. Graph of post office branches in Surabaya and their possible 

distribution routes. 
 

C. Finding the Minimum Spanning Tree 
Prim’s algorithm is run to obtain the minimum spanning tree 

of the graph. As a few edges have identical weights, multiple 
variations of the minimum spanning tree are possible. From the 
two variations of the algorithm discussed in the previous section, 
the start with the minimum weight edge of the graph is chosen.  

 
Fig 3.3. Start with edge e50  

with weight 0.38 km. 
 

 
Fig. 3.4. Add edge e54  

with weight 1.57 km. 

 
Fig. 3.5. Add edge e58  

with weight 1.58 km. 

 
Fig. 3.6. Add edge e34  

with weight 2.07 km. 
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Fig. 3.7. Add edge e8  

with weight 2.09 km. 
 

  
Fig. 3.8. Add edge e6 with  

weight 1.01 km. 

 
Fig. 3.9. Add edge e7  

with weight 2.29 km. 
 

 
Fig. 3.10. Add edge e27  

with weight 1.92 km. 

 
Fig. 3.11. Add edge e32  

with weight 1.91 km. 
 

 
Fig. 3.12. Add edge e48  

with weight 2.49 km. 

  
Fig. 3.13. Add edge e45  

with weight 1.00 km. 
 

  
Fig. 3.14. Add edge e35  

with weight 1.97 km. 
 

  
Fig. 3.15. Add edge e53  

with weight 2.70 km. 
 

  
Fig. 3.16. Add edge e57  

with weight 1.23 km. 

  
Fig. 3.17. Add edge e23  

with weight 3.08 km. 

  
Fig. 3.18. Add edge e11  

with weight 2.91 km. 
 

 
Fig. 3.19. Add edge e10 with weight 2.85 km. 

 

 
Fig. 3.20. Add edge e4 with weight 2.31 km. 

 

 
Fig. 3.21. Add edge e1 with weight 1.44 km. 

 

 
Fig. 3.22. Add edge e59 with weight 3.30 km. 

 

 
Fig. 3.23. Add edge e42 with weight 3.30 km. 

 

 
Fig. 3.24. Add edge e44 with weight 1.87 km. 
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Fig. 3.25. Add edge e65 with weight 1.84 km. 

 

 
Fig. 3.26. Add edge e66 with weight 2.16 km. 

 

 
Fig. 3.27. Add edge e67 with weight 2.42 km. 

 

 
Fig. 3.28. Add edge e40 with weight 3.36 km. 

 

 
Fig. 3.29. Add edge e38 with weight 1.80 km. 

 

 
Fig. 3.30. Add edge e19 with weight 2.02 km. 

 

 
Fig. 3.31. Add edge e18 with weight 2.15 km. 

 

 
Fig. 3.31. Add edge e13 with weight 5.18, 

the final minimum spanning tree. 
 

Once the edge e13 is added, all the vertices are connected thus 
making the minimum spanning tree. For a graph of 31 vertices, 
the algorithm goes through 30 steps including the setup of the 
minimum weight edge of the graph. 

 
D. Finding the Center of the Tree 
As the minimum spanning tree is obtained, its center can also 

be identified by examining its unweighted representation. 
Looking at the resulting tree at hand, even though it seems as 
though the tree has a simple structure, finding the tree center 
proves to be somewhat of a challenge. 

Using the second method as discussed in the previous section, 
start by removing outermost vertices having a degree 1 or leaves 
which in the first iteration would be vertices v1, v6. v8, v10, v22, 
v27, v29, v30, and v31. As a result of removing these vertices, some 
of their parent vertices then become leaves as well. Remove 
these vertices as well and repeat. In the end, there should only 
be one or two vertices that cannot be removed as they will 
always have a degree not equal to 1, thus being the center of the 
tree.  
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However, trying to apply the second method leaves an 
ambiguous situation in which depending on which leaves are to 
be removed first, the center of the tree changes. This can be due 
to the tree’s unbalanced structure in which the bulk of the tree 
lies northside of the branch at v18.  On the other hand, with 
intuitive thinking, it can be assumed that the center of the tree 
lies somewhere in vertices close to v19 as the tree seems to divide 
in that general vicinity. 

Finding the center of the tree with the first method previously 
discussed gives a more definite answer. The longest path 
possible in the tree is the path from v1 to v22, passing through 15 
edges. As the vertices visited is 16 which is even, therefore the 
center of the tree consists of the two adjacent vertices v19 and v25. 
 

IV.   ANALYSIS 
As the tree has two center vertices, it is justifiable to assign 

these two office branches to be the central offices. Looking at 
the fact that v19 is the district Tegalsari and v25 is the district 
Gubeng, The Tegalsari branch can oversee operations such as 
incoming and outgoing mail and packages while Gubeng 
oversees more administrational issues. This is because while 
Tegalsari is in the middle of the city just like Gubeng, the roads 
there are more friendly for delivery needs. In contrast, Gubeng 
is right down the middle of the city with roads that are usually 
congested, therefore potentially putting a burden on delivery 
times and labor cost.  

The Tegalsari branch can oversee the distribution of mail and 
packages to districts south of the tree, that is a district in which 
it is connected to the Tegalsari branch through the Wonokromo 
branch at v18. The Gubeng branch the opposite as it oversees 
districts north of the tree that are connected to the Gubeng 
branch through the Tambaksari branch at v24. Even though both 
the Tegalsari and Gubeng branch is supposedly at the center of 
the tree, the Tegalsari branch oversees 17 other branches while 
Gubeng oversees only 12 branches. This fact confirms that the 

tree is unbalanced, with the root represented by the Tegalsari 
branch having more descendants than the Gubeng branch. 

With the two central offices at the Tegalsari and Gubeng 
branches in mind, the mail distribution route can then be made 
by replacing the vertex variable with the original district that it 
represents. The final mail distribution route is as shown in Fig. 
4.1. 

Reviewing back to the original dual graph used to construct 
the minimum spanning tree, it is apparent that distributing a 
package from branch A to branch B in the dual graph can be 
done through several different paths. On the other hand, the 
minimum spanning tree forces the distribution from a branch to 
another branch through a single path and no other.  

Although the dual graph itself is already usable as a route for 
a mail distribution system, it is inefficient in terms of operational 
costs. Assuming if the overall operational cost is directly 
proportional to the total distance covered by the graph, the more 
connections there are, the more extra labor and fuel costs are 
needed to serve these connections. Yet, some of these 
connections may be unnecessary and was not needed in the first 
place. The total distance covered by the dual graph can be 
calculated by summing up all the weighted edges, which is 
234.56 kilometers. Contrast that to the minimum spanning tree 
which has total distance 61.91 kilometers. The minimum 
spanning tree only needs a quarter of the distance of the dual 
graph to be able to connect every district in the city, thus greatly 
reducing operational costs. 

Say, a parcel needs to be delivered from Dukuh Pakis to 
Sukomanunggal. In the dual graph as each districts sharing the 
same border is connected, the parcel can reach Sukomanunggal 
directly. In the minimum spanning tree however, the parcel 
needs to first go through Sawahan, Tegalsari, Gubeng, Genteng, 
Bubutan, Asemrowo and then it will finally reach 
Sukomanunggal. This becomes the downside of a minimum 
spanning tree as there may be points that are close to each other 
but unconnected due to the way the tree is modelled. 

 
Fig. 4.1. Mail distribution route of Surabaya 

(Red: operational central office, blue: administrational central office). 
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V.   CONCLUSION 
A mail distribution route for every district in Surabaya is 

successfully modelled by using a minimum spanning tree. A 
dual graph of the districts of Surabaya is first drawn, containing 
31 vertices for each district and 70 edges for every district that 
share a common border. Prim’s algorithm then finds the 
minimum spanning tree from an undirected connected, and 
weighted graph such as the dual graph by adding minimum 
weight edges one by one until all the tree’s vertices are 
connected. From the minimum spanning tree its center can be 
obtained by either finding the middle vertex/vertices of the 
longest path or by iteratively removing the leaves off the tree. 
Interestingly, the mail distribution tree has two adjacent central 
vertices. These two central vertices are then designated as 
central offices which maintain the other office branches. The 
mail distribution route in the form of a minimum spanning tree 
reduces total distance needed to connect all the districts of 
Surabaya by three quarters when compared to its original graph. 

While modelling the mail distribution route, numerous 
assumptions were made for the sake of simplifying the problem. 
The author recommends that for future studies, especially ones 
in analyzing an application to be used in real life scenarios, that 
these complexifying factors be studied and be examined at how 
they influence the problem.  

Lastly, the author would like to address some of the 
difficulties faced during the writing of this paper. Constructing 
the dual graph of a map proves to be a challenging task, 
especially in this case where there are 31 districts to be checked 
which district shares the same border with which another 
district. Running through Prim’s algorithm by hand is time 
consuming as in most cases dozens of edges needs to be checked 
to find which has the minimum weight. The author recommends 
Kruskal’s algorithm instead as the edges to be added to the tree 
is simple chosen in ascending order, rather than painstakingly 
checking edges incident to vertices in the tree. 
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