
Application of Dijkstra Algorithm for
Robot's Obstacle Avoidance System in A

Simulated Environment Using ROS (Robot
Operating System) and Gazebo Simulator

Farrel Ahmad - 13520110
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13520110@std.stei.itb.ac.id

Abstract—Background : Navigation, especially in robotics is
important for the safe and efficient movement of the robot. The
robot must be able to travel to certain destination as efficient as
possible. Safe movement for the robot means that the robot must
avoid any obstacle while also finding the shortest path. Dijkstra
algorithm is well-known algorithm for finding the shortest path.
In addition, Dijkstra is useful for not only the shortest path but
also the safest path for robot’s path planning system.

Methods : The implementation is based on the basic graph
theory and Dijkstra algorithm. The visibility graph is what will
the Dijkstra process to find the shortest path. ROS (Robot
Operating System) is the program that will instruct the robot
movement and Gazebo Simulator will simulate the movement
based on the ROS program.

Result : Dijkstra algorithm successfully process the graph with
adjacency matrix as the input of the visibility graph. The robot
will travel with the shortest distance from start point to goal point
in the simulator according to the generated node sequence.

Conclusion : From the result, Dijkstra is proven to be useful in
for Obstacle Avoidance System implementation. That is, finding
the shortest path from the visibility graph that shows possible and
safe passage for the robot.

Keywords—Navigation, Dijkstra, Graph, Path Planning

I. BACKGROUND

Navigation is one of the most important aspect in robotics.
This is because robot must be able to travel to the certain point
or destination quickly and safely. During the process of
reaching the destination, the robot should be able to calculate
and determine the best route possible. The things that define
“best route” are the shortest and safest route. The shortest route
means that it has to travel with minimum distance possible
while the safest route means it has to avoid any obstacle
nearby. This method is called path planning.

Generally, programming in robot is divided into two level.
These are low-level implementation program and high-level
implementation program. Each has their own purpose and
work in parallel. The robot type that will be used is a wheeled
robot.

The low-level implementation program is anything that

closely related to the robot’s hardware like motor, vision
camera, sensor, motors, and microcontrollers. It can be divided
into two subsystem, perception system and locomotion system.

 Perception system in low-level implementation controls the
vision camera and sensors to output the data that will be
processed later in high-level implementation program.
Perception system is not only in low-level implementation, but
as mentioned before, it is also in high-level implementation
because the robot must translate the data into something that
can be interpreted (position, velocity, etc).

Locomotion system is used to control the robot’s movement.
Robot’s movement must be accurate without any overshooting
and undershooting. This is usually done by using control
system within locomotion system. One of the most common
control system is PID (Proportional Integral Derivative)
controller. The locomotion system also utilizes microcontroller
to control how much PWM (Pulse Width Modulation) needed
for the motors to move.

The high-level implementation program is anything that is
not closely related to the hardware and mainly used for how
the robot thinks. When the robot receives the data from
perception system’s hardware, the data is then converted into
the robot’s representation of the world by using world model.
In the world model, the robot will be able to know its current
position, current velocity, and nearby obstacle. When the robot
is commanded to move to the certain position, the path
planning system will compute the best route possible by using
the world model’s information. By combining the path result
from path planning system and world model’s information, the
robot will know how it will move to the goal position.

For example, the robot is commanded to move 1 meter
forward from an idle position and there’s an obstacle ahead.
The perception’s system will capture the current position based
on view and obstacle ahead. After that the data will be sent to
world model to know the robot’s coordinate of current
position, coordinate of the obstacle, and coordinate of the goal.
Then, the path planning system will compute the best route
without hitting any obstacle. Further calculation is needed to
calculate the speed needed to reach that position. This is

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

usually done by motion planner system. The calculation will be
sent to locomotion system where the motor will rotate the
wheel and move the robot to reach the speed needed, then
reduce the speed, and eventually stop at the goal position.

Dijkstra algorithm is a well-known algorithm to find the
shortest route possible from a certain point to another point by
using weighted graph. The idea is by using the graph generated
by the robot as the representation of the reachable position, the
Dijkstra algorithm can find the shortest route while also
avoiding any obstacle. Obstacle avoidance system is a crucial
system because if the robot hits obstacle, it can be dangerous
not only for the robots, but for the obstacle itself that also
might be a human, animals, etc.

II. METHODS

A. Graph Theory
Graph is a representation of discrete objects and its relations

[1]. Graph is G = (V,E). V is set of vertex and E is set of
edges.

Fig.1 Route Map Example

For example, the picture above is a graph that represent a
map with routes. Each point (A, B, C, D, E, and F) is a vertex.
Vertex is also usually called as node. Each line that connects
two vertexes is an edge. If two vertexes are connected by an
edge, it means the two vertexes are related. In the picture
above, the robot can go from point A to point C because they
are connected but cannot go from point A to point F because
they are not connected. Because this is weighted graph, each
edge is labeled with cost. Because this is a route map, the cost
is in form of distance unit (meters)

The graph can be represented in many ways like adjacency
matrix, adjacency list, and incidency list. For this experiment,
the map will use adjacency matrix.

B. Dijkstra Algorithm
Dijkstra Algorithm is an algorithm to find the shortest path.

Using the graph from Picture 1, the shortest path to each point
can be computed using this algorithm. The algorithm works as
follows (using Picture 1 Graph as example):

1. Make a list of shortest distance of each node and set
all of the elements to infinity, with index 0
corresponds to A, index 1 to B, and so on. The length
is total nodes. For example,
dist = [INF,INF,INF,INF,INF,INF].

2. Make a list of visited node boolean and set all of the
elements as false. The length is total nodes. For
example,
vis = [false,false,false,false,false,false].

3. For this example, the algorithm will start at point A.
Then, distance to point A is set to 0.0 because it is a
starting point. Thus dist[0] = 0.0
dist = [0.0,INF,INF,INF,INF,INF]
vis = [false,false,false,false,false,false].

4. Find node in dist list with shortest distance and has
not been visited. In this case from previous step, is
node A.

5. Currently is checking node A. Find nodes that
connect to point A and replace the distance value of
the corresponding nodes in distance list if the value +
node A is less than the value of the node in distance
list. After that, mark node A as visited.
(curr_node : A)
dist = [0.0, 2.5, 5.0, INF, INF, INF]
vis = [true, false, false, false, false, false]

6. Repeat like step 4, find node in dist list with shortest
distance and has not been visited. In this case from
previous step, is node B.

7. Currently is checking node B, find nodes that connect
to point B and replace the distance value of the
corresponding nodes in distance list if the
value+nodeB is less than the value of the node in the
distance list. After that, mark node B as visited.
(curr_node : B)
dist = [0.0, 2.5, 5.0, 12.5, 15.4, INF]
vis = [true, true, false, false, false, false]

note : 12.5 = 2.5 + 10.0 and 15.4 = 2.5 + 12.9

8. Repeat like step 6 until all vis list is true (all node has
been visited).
(curr_node : C)
dist = [0.0, 2.5, 5.0, 12.5, 13.5, INF]
vis = [true, true, true, false, false, false]

note : node E’s distance replaced

9. Next iteration:
(curr_node : D)
dist = [0.0, 2.5, 5.0, 12.5, 13.5, 16.2]
vis = [true, true, true, true, false, false]

10. Next iteration:
(curr_node : E)
dist = [0.0, 2.5, 5.0, 12.5, 13.5, 15.5]
vis = [true, true, true, true, true, false]

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

11. Next iteration:
(curr_node : F)
dist = [0.0, 2.5, 5.0, 12.5, 13.5, 15.5]
vis = [true, true, true, true, true, true]

12. Result :
dist = [0.0, 2.5, 5.0, 12.5, 13.5, 15.5]
vis = [true, true, true, true, true, true]

13. Process ends.

Based on the result, each element in dist list is the shortest
distance of each node. For example, the shortest distance to
point D (Index 3) is 12.5 distance unit. However, with that
information, the sequence of which node should be visited to
reach the designated final point is still unknown. Thus the list
of previous node is needed to find the sequence of the shortest
route. The additional list is previous list with initial value as -1
and with the length of total nodes. For example,

prv = [-1, -1, -1, -1, -1 , -1]

Using the steps as mentioned before. The additional step is
as follows,

5. (curr_node : A)
dist = [0.0, 2.5, 5.0, INF, INF, INF]
vis = [true, false, false, false, false, false]
prv = [-1, 0, 0, -1, -1 , -1]

note : assign prev node of B and C as A (index 0)

7. (curr_node : B)
dist = [0.0, 2.5, 5.0, 12.5, 15.4, INF]
vis = [true, true, false, false, false, false]
prv = [-1, 0, 0, 1, 1, -1]

8. (curr_node : C)
dist = [0.0, 2.5, 5.0, 12.5, 13.5, INF]
vis = [true, true, true, false, false, false]
prv = [-1, 0, 0, 1, 2, -1]

9. (curr_node : D)
dist = [0.0, 2.5, 5.0, 12.5, 13.5, 16.2]
vis = [true, true, true, true, false, false]
prv = [-1, 0, 0, 1, 2, 3]

10. (curr_node : E)
dist = [0.0, 2.5, 5.0, 12.5, 13.5, 15.5]
vis = [true, true, true, true, true, false]
prv = [-1, 0, 0, 1, 2, 4]

11. (curr_node : F)
dist = [0.0, 2.5, 5.0, 12.5, 13.5, 15.5]
vis = [true, true, true, true, true, true]
prv = [-1, 0, 0, 1, 2, 4]

12. Result :
prv = [-1, 0, 0, 1, 2, 4]

From the result, the order of the node to reach the certain
final point can be found by backtracking the prv list. This is
because the previous node is guaranteed to be in the shortest
distance. For example, to find the order of node from point A
to point F. The value of point F (index 5) in prv is 4, means
that the previous node before index 5 is index 4 (node E). Then
the previous of node E (index 4) is node A (index 0) based on
prv list. The value of index 0 is -1, means that the backtracking
process has finished and reached the starting position. The
sequence is 0 → 2 → 4→5. In order to reach node F (Index 5),
the system (or robot) will follow the generated sequence.

C. ROS (Robot Operating System)
The Robot Operating System (ROS) is a set of libraries and

tools that can help users build robot program mainly in C++ or
python or both [5]. Although the name has “Operating System”
in it. It is actually not an operating system. It is actually closer
to a framework that is commonly used in robotics world.

The program works by having nodes that can communicate
to each other by publish-subscribe method and server-client
(service-request) method.

D. Gazebo Simulator
Gazebo Simulator is a 3D robot simulator that is usually

used for robotics. It can simulate accurate robot movements
and simulate as in controlling real robot. During robot
development, it is important to use simulator to simulate the
performance of the robot first before testing it directly to the
robot. Testing it directly in the robot is more risky because if
there is a bug, the robot can be in a state of unwanted behavior
like going out of control or anything dangerous. The ROS
program that has been made can be connected to Gazebo
Simulator to test the code.

E. Robot Specification
The robot that will be used in a simulator is based on a real

world robot called ROBOTIS TurtleBot3 Burger. This is a
small kit robot that is usually used for educational purpose.
The robot has a dimension of 13.8 cm x 17.8 cm x 19.2 cm (L
x W x H). The length and width size of the robot will
determine the offset of the node’s position.

F. Visibility Graph
The idea for robot’s path planner is using visibility graph.

That is, each node is the edge of the obstacle and the edge of
the graph connects two nodes that are visible. However
because robot has size and mass, the path needs to move a little
bit away from the obstacle to give spaces for the robot.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

Fig.2 Visibility Graph Example
Source : Columbia University COMS W4733

G. Route Map Experiment

Fig.3 Route Map Experiment
For this experiment, the simulator only simulates the robot’s

shortest path using Dijkstra algorithm and its movement from
each node sequentially. In addition, the simulation does not
simulate the sensors needed to make a visibility graph. Thus,
the graph is assumed ready to use, making the robot able to
compute the shortest path.

The map consist of three squares with size 0.1m x 0.1m, the
start point (0,0), and the goal point (1.5,1.5). The squares in the
map will be a 0.1m x 0.1m x 0.2m cube in Gazebo Simulator
to simulate the obstacle. Fig.3 shows the map setup.

H. Simulator World

Fig,4 Simulator World

The simulator world is the setup of the experiment. It will
spawn the robot at the point of origin (0.0, 0.0), Obstacle 1 at
(0.45, 0.55), Obstacle 2 at (0.61, 1.18), and Obstacle 3 at (1.25,
0.75). The goal point will be (1.5, 1.5). The unit of coordinate
are in meters. The world in Fig.4 is based on the map in Fig.3.

I. Expanded Obstacle
However, the route map in Fig.3 only treats the robot as a

single point or particle. Robot has dimension, in which it needs
plenty of space to move around the obstacle. To overcome this
problem, the obstacle in the graph in which the robot reads
should be expanded. This will give spaces for the robot when
going to certain node or around obstacles.

As mentioned before, the robot has a width of 17.8 cm. It is
fine to assume that the robot has 17.8 cm in diameter or 8.9 cm
in radius. In theory, the obstacle in the graph needs to be
expanded to (original_length + 0.089 m + 0.089 m) . It is ideal
to round the expansion from 0.089 m to 0.1 m thus each side of
the obstacle will be expanded to (original_length + 0.1 m + 0.1
m). Because of the size change in the obstacle, the coordinate
of each node were moved making the edges in the graph a little
bit different than the original graph. Fig.5 shows the expanded
obstacle in the graph.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

2

1

Robot
Obs1

Obs2

Obs3
Goal
.

3

Fig.5 Route Map (Expanded Obstacles)

III. RESULT

A. Adjacency Matrix

Fig.6 Adjacency Matrix

Fig.6 shows the adjacency matrix of the expanded obstacle
graph (Fig.5) with zero is not connected and non-zero is
connected with the value as the distance of connected nodes.

B. Program Execution
Source Code : https://github.com/farrel-a/robot-nav-simulator

Full documentation and source code are available from the
link above. The documentation consist of program setup and
execution tutorial. Read the “Dijkstra Obstacle Avoidance” by
clicking it at the “Table of Contents” part because that is the
program (called robot_2) that will be used in the Dijkstra
Obstacle Avoidance System as this repository also holds
another program for Fig.1 implementation (called robot_1).

Once the program runs, the terminal will show some
informations as follows

Fig.7 Terminal Log
Prev List is the prv list as explained in the previous part

where every element is the nearest node to that node index. For
example Node Goal is node at index 13 according to the
documentation. The value is 2 meaning that the shortest edge
to node Goal or node 13 is node 2 or node D. The node
sequence is the sequence that the robot must travel between
nodes. Starting from node S, the robot will travel to node D
and then will directly to node GL or node goal. This sequence
is the shortest and safest route generated by Dijkstra algorithm.

Fig.8 shows the robot moving to the goal point and avoiding
any obstacles by following the generated path. Configuration
for the robot’s linear speed and angular speed are also
configurable in robot_2.cpp.

[1]

[2]

Fig.8 Robot Navigating through Obstacles

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

2

1

3

https://github.com/farrel-a/robot-nav-simulator

IV. CONCLUSION

The Dijkstra implementation is useful for navigating through
obstacles. In real world application, sensors or vision camera
are needed to generate the visibility graph. Using the visibility
graph, the algorithm can find the shortest route possible while
also avoiding any obstacles as shown in the execution result.

REFERENCES

[1] Munir, Rinaldi. “Graf-2020-Bagian-1”,
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-
2021/Graf-2020-Bagian1.pdf, Accessed on 12 December 2021.

[2] Educative.io,
https://www.educative.io/edpresso/how-to-implement-dijkstras-
algorithm-in-cpp. Accessed on 12 December 2021.

[3] Fiset, William. “Dijkstra Shortest Path Algorithm | Graph
Theory”. https://www.youtube.com/watch?v=pSqmAO-m7Lk.
Accessed on 13 December 2021.

[4] GeeksforGeeks. “Dijkstras Shortest Path Algorithm Greed
Algo”.
https://www.geeksforgeeks.org/dijkstras-shortest-path-
algorithm-greedy-algo-7/ . Accessed on 13 December 2021.

[5] ROS. “Ros Documentation”. http://wiki.ros.org/Documentation.
Accessed on 13 December 2021.

[6] CS Columbia University. “Robot Path Planning”.
http://www.cs.columbia.edu/~allen/F17/NOTES/lozanogrown.pd
f .. Accessed on 13 December 2021.

[7] Robot Advance. “Robotis TurtleBot3 Burger”.
https://www.robot-advance.com/EN/art-turtlebot3-burger-
1997.htm. Accessed on 14 December 2021.

DECLARATION

I hereby declare that my paper is my own writing, not a
summary, nor a translation from other’s writing, and not a
plagiarism.

Bandung, 14 December 2021

Farrel Ahmad - 13520110

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

https://www.robot-advance.com/EN/art-turtlebot3-burger-1997.htm
https://www.robot-advance.com/EN/art-turtlebot3-burger-1997.htm
http://www.cs.columbia.edu/~allen/F17/NOTES/lozanogrown.pdf
http://www.cs.columbia.edu/~allen/F17/NOTES/lozanogrown.pdf
http://wiki.ros.org/Documentation
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/
https://www.youtube.com/watch?v=pSqmAO-m7Lk
https://www.educative.io/edpresso/how-to-implement-dijkstras-algorithm-in-cpp
https://www.educative.io/edpresso/how-to-implement-dijkstras-algorithm-in-cpp
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian1.pdf

	I. Background
	II. Methods
	​ A. Graph Theory
	​ B. Dijkstra Algorithm
	​ C. ROS (Robot Operating System)
	​ D. Gazebo Simulator
	​ E. Robot Specification
	​ F. Visibility Graph
	​ G. Route Map Experiment
	​ H. Simulator World
	​ I. Expanded Obstacle

	​ III. Result
	​ A. Adjacency Matrix
	​ B. Program Execution

	​ IV. Conclusion
	​ References
	DECLARATION

