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Abstract—Origami as an artform has been rapidly developing 
since the application of mathematical tools in model designing in 
the 1980s. Methods commonly develop a model’s crease patterns, 
whereby creases are represented as a graph with vertices and 
edges. One theorem that a flat-foldable model satisfies is 
Maekawa’s Theorem. This paper derives Maekawa’s Theorem 
using induction and graph theory. 
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I.   INTRODUCTION 

Origami is a form of art which involves folding paper, usually 
a square sheet, into a target model. These models range from 
traditional cranes to complex dragons, but a majority of origami 
techniques were developed relatively recently. In the 1970s, 
insects were generally thought to be very hard to design and 
fold, with at least one book claiming that an origami grasshopper 
was impossible to make using a single square. However, in the 
late 1970s and early 1980s, origami artists began using 
mathematical tools to approach model designing. Notable artists 
include Jun Maekawa and Fumiaki Kawahata. This led to an 
outburst of increasingly complex models and another method of 
model designing, discovered independently by two origami 
artists: Robert J. Lang and Toshiyuki Meguro. This method is 
known as circle-river packing, which takes a weighted tree 
representing the bodies and flaps of a folded model and 
generates a crease pattern to approximate the model. This 
approximation is also called a base, where a single base can 
continue to be folded into multiple distinct models. 

The circle-river packing method of designing a base involves 
three major steps. First, a weighted tree is drawn to represent the 
model. Second, circles are packed onto a square sheet of paper 
to represent the vertices of the tree of degree one (representing 
a flap). Third, rivers and supporting creases are placed such that 
the crease is flat-foldable. Flat-foldable refers to the quality of a 
model being fully flat; that is, all faces of the paper lie on a single 
plane. One challenge in circle-river packing is ensuring a given 
crease pattern yields a flat-foldable model, and while this 
problem is NP-complete, the opposite can be checked [1]. For a 
given model to be flat-foldable, it must obey Maekawa’s 
Theorem [2]. 

Deriving Maekawa’s Theorem can be done using induction 

and graph coloring, by considering the graph representation of a 
crease pattern. 

 
II.  THEORIES 

A. Induction 
Induction is a method of proving statements about discrete 

objects and integers. Induction involves two steps, the basis step 
and the induction step. The basis is a true statement to which 
further statements can be reduced to. The induction state 
involves assuming that the statement is true for some discrete 
condition, e.g., x = n, and showing that the statement holds for x 
= n+1 in order to prove that the statement is true for any x. If the 
statement remains true at x = n+1, then the statement has been 
proven using induction. 

B. Graph 
A graph is a collection of vertices and edges to visually 

represent discrete objects and the relationships between them 
[3]. 

 
Fig. 1 Simple Graph 

 
In Graph Theory, the following terms are often used: 
1. Vertex 

A vertex is a discrete object represented by the graph. 
2. Edge 

An edge represents a connection or relationship between 
two vertices. 

3. Degree 
The degree of a vertex is an integer indicating the number 
of edges connected to the vertex. 

4. Simple Graph 
A simple graph is a graph without parallel edges (more 
than one edge that connects any two vertices). 
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5. Multigraph 
A multigraph is a graph that contains parallel edges 

6. Pseudograph 
A pseudograph is a graph that contains at least one edge 
connecting one vertex to itself (loop). 

7. Path 
A path is a sequence of edges, where the target vertex of 
the first edge is the source vertex of the next edge. 

8. Circuit 
A circuit is a path which ends at the starting vertex. 

9. Dual Graph 
The dual of graph G is the graph formed by considering 
the faces of G as vertices and the edges of G between two 
faces as the edges connecting the vertices represented by 
those two faces. 
 

 
Fig. 2 Dual Graph of Fig. 1 

 
10. Bipartite Graph 

A bipartite graph is a graph that can be divided into two 
sets, where vertices in the same set do not have edges that 
connect each other. Every cycle in a bipartite graph has 
an even length. 

C. Euler Circuit 
An Euler circuit is a circuit which visits every edge of a graph 

exactly once. If a graph has an Euler circuit, then either all of its 
vertices have an even degree or it only has two odd-degree 
vertices whereas the rest are even [3]. 

D. Graph Coloring 
The nodes of a graph can be colored such that no two adjacent 

vertices have the same color. The minimum number of colors 
needed to color a graph is known as the chromatic number of a 
graph. A bipartite graph has a chromatic number of 2. 

E. Origami 
The following are common origami terms: 
1. Mountain Fold 

A mountain fold is a fold which forms an angle greater 
than 180°, as measured from the face facing the observer. 
In other words, the moving face of a mountain fold 
moves away from the observer, forming a mountain. By 
convention, mountain folds are represented by straight 
unbroken lines on a paper. 

2. Valley Fold 
3. A mountain fold is a fold which forms an angle less than 

180°, as measured from the face facing the observer. In 
other words, the moving face of a mountain fold moves 
towards the observer, forming a valley. By convention, 

mountain folds are represented by straight dashed lines 
on a paper. 

4. Crease Pattern 
The crease pattern of a model is the set of resulting lines 
visualized upon unfolding a model and laying the paper 
flat in its original form (commonly a square sheet). The 
lines of a crease pattern may show mountain folds and 
valley folds. 

5. Base 
The base of a model is an approximation of the model, 
commonly flat-folded and possessing the same number 
of notable features (such as amount of flaps, flap lengths, 
and flap widths). 

6. Flat-Foldable 
A flat-foldable model is a model in which all faces of the 
paper lie on a single plane. 

F. Maekawa’s Theorem 
At every vertex, the difference between the number of 

mountain folds and valley folds is 2 [2]. Formally, it is written 
as (1): 

 
𝑀 − 𝑉 = ±2 

 
Equation (1), where M is the number of mountain folds and 

V is the number of valley folds. 
 
III.   DERIVATION OF CIRCLE-RIVER PACKING RULES 

A. Representation of Crease Patterns 
Origami crease patterns can be described using a graph, where 

the edges represent folds and the vertices represent where 
creases meet. For the purpose of circle-river packing, crease 
patterns must be flat-foldable to prevent the complication of 
convex and concave vertices inside the model. As such, one can 
attempt to represent the crease pattern of a simple three-flap base 
as Fig. 3. 

 

 
Fig. 3 Three-Flap Base and Associated Graph 

 
An initial observation can be made: anywhere two edges meet 

on the plane is a vertex, and hence the graph is always drawn 
such that its edges intersect only on a common vertex. 
Therefore, all graphs made from flat-foldable crease patterns are 
planar graphs.  

However, the graph in Fig. 3 does not suit the definition of a 
crease pattern’s representation, because the vertices at the edge 
of the paper are not the result of two creases meeting (the paper’s 
edge is unfolded). One must therefore revise the graph. One way 
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might be to not consider the meeting of a fold and the paper’s 
edge as a vertex, however this is problematic because it violates 
the definition of an edge and the definition of a crease pattern’s 
representation, i.e., an edge connects two vertices, and a fold is 
an edge. An alternative way is to consider the paper’s four edges 
as one continuous point, where all folds that meet the paper’s 
edge meet. This is a sufficient rule, because it satisfies all 
definitions. The revised graph becomes Fig. 4. 

 

 
Fig. 4 Revised Graph of the Three-Flap Base 

 
As a consequence, the graph of only a single fold must contain 

a loop, as the crease pattern consists of one fold connecting one 
edge of the paper to another, as shown in Fig. 5. 

 

 
Fig. 5 Graph of Single Fold 

 
B. Weak Form of Maekawa’s Theorem 
Take the case of a paper with one fold, e.g., a model made of 

a single diagonal fold. 
 

 
Fig. 6 Simple Fold 

 
Its graph is depicted in Fig. 5, which consists of one vertex of 

degree 2. This shall be the basis for induction. That is, for a flat-
foldable crease pattern representing one fold, there is an even 
number of edges connected to all its vertices. This is true 
regardless of where the fold is made. The hypothesis is that for 
any flat-foldable crease pattern, there is an even number of edges 
connected to all its vertices. 

To begin the induction step, it is assumed that for a crease 
pattern representing two folds, there is an even number of edges 
connected to all its vertices. One possible crease pattern with 
two folds is shown in Fig. 7.  

 

 
Fig. 7 Two Folds 

 
This is easily verifiable by looking at the graph associated 

with such a crease pattern, as shown in Fig. 8. 
 

 
Fig. 8 Graph of Two Folds 

 
If the hypothesis is true, then there must also be an even 

number of edges connected to all the vertices of a crease pattern 
with three folds. One can generate a three-fold crease pattern by 
folding an additional flap at the point where the two folds meet 
in Fig. 7, as depicted in Fig. 9. 

 

 
Fig. 9 Adding One Fold to Two Folds 

 
By unfolding the paper and constructing the graph, one can 

verify that every vertex is of an even degree. Therefore, the 
hypothesis is true. 

 

 
Fig. 10 Graph of Three Folds 
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C. Coloration of Flat-Folded Graphs 
As a direct consequence of every vertex being an even degree, 

all flat-foldable crease patterns have Euler circuits. From here, 
it can be proven that it is possible to color the faces of a crease 
pattern using only two colors without any two adjacent faces 
having the same color. 

Let G be the graph associated with a flat-foldable crease 
pattern. One can then construct the dual graph of G – G’. If the 
faces of G can be colored using only two colors, then the vertices 
of G’ can be colored using only two colors; i.e., it has a 
chromatic number of 2. In other words, G’ should be bipartite. 
One can prove this by showing that the opposite yields a 
contradiction [4]. 

If G’ is not bipartite, then G’ contains an odd cycle. If G’ 
contains an odd cycle, then there exists a vertex in G with an odd 
degree (in order to connect an odd number of faces). However, 
as all vertices in G has an even degree (from III.B.), G’ cannot 
contain an odd cycle. Therefore, G’ cannot be not bipartite; G’ 
is bipartite. Therefore, it is possible to color every face of a flat-
foldable crease pattern using only two colors without 
neighboring faces having the same color. 

 
D. Maekawa’s Theorem 
Taking the definition of a flat-foldable model, it is clear that 

a fold reverses the orientation of a face, as shown in Fig. 10. 
 

 
Fig. 11 Orientation of Faces around a Fold 

 
If the angle between the top flap and the bottom flap were not 

zero, the model would not, by definition, be flat. As every fold 
is the locally the same (a region of paper that is folded), it 
follows that the two faces divided by every fold has reverse 
orientations. In other words, the orientation of every face is 
different from the orientation of its neighboring faces. 
Therefore, one can use the fact proven in III.C. to further state 
that the two colors represent a face’s orientation. 

It logically follows that every face about a vertex alternates 
between facing upwards and facing downwards. Because every 
face either faces upwards or downwards of the plane, every fold 
reverses the orientation of the paper, and there are an even 
number of folds around every vertex, one can recognize that 
save for the topmost folds, it is possible to pair every mountain 
and valley fold around a vertex. 

As the topmost folds define the upper face around the vertex, 
they must be valley folds relative to the inner face of the fold. 
Relative to the outer face of the fold, however, they must be 
mountain folds. What this means is that around any vertex, there 
are two folds of the same type which do not have a pair. 
Consequently, the difference between the number of mountain 
folds and valley folds is two, which is what Maekawa’s 
Theorem states. 

 
IV.   CONCLUSION 

There are applications of graph theory and induction in fields 
other than maths and science, with one of its utilizations shown 
in this paper. Maekawa’s Theorem, as proved using graph 
theory and induction in this paper, is further used in conjunction 
with other mathematical tools such as Kawasaki’s Theorem and 
the Augmented Lagrangian method in order to develop 
algorithms for optimum circle-river packing in complex origami 
design [5]. 

 
VII.   ACKNOWLEDGMENT 

The author thanks Robert J. Lang whose TED Talk was a 
huge inspiration for the writing of this paper. The author also 
thanks Dr. Ir. Rinaldi Munir as the Discrete Mathematics 
professor for K-01, without whose guidance this paper would 
not have been possible. 

 
REFERENCES 

[1] Bern, Marshall; Hayes, Barry (1996), "The complexity of flat origami", 
Proc. 7th ACM-SIAM Symposium on Discrete algorithms (SODA '96), 
pp. 175–183. 

[2] Kasahara, K.; Takahama, T. (1987), Origami for the Connoisseur, New 
York: Japan Publications. 

[3] Rosen, K. (2012). Discrete mathematics and its applications (7th ed.). 
McGraw-Hill. pp. 641–809. 

[4] Welsh, D. J. A. (1969), "Euler and bipartite matroids", Journal of 
Combinatorial Theory, 6 (4). pp. 375–377, 

[5] ang, R. J. (2009). Mathematical Methods in Origami Design. Bridges 
2009: Mathematics, Music, Art, Architecture, Culture. pp. 11-20. 

 

PERNYATAAN 

Dengan ini saya menyatakan bahwa makalah yang 
saya tulis ini adalah tulisan saya sendiri, bukan 

saduran, atau terjemahan dari makalah orang lain, 
dan bukan plagiasi. 

 
Bandung, 11 Desember 2020    

 
Muhammad Rifat Abiwardani – 13519205 


