
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2019/2020

Application of Inclusion-Exclusion Principle in

Solving The Famous Hat-Check Problem

Muhammad Hasan 13518012

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13518012@std.stei.itb.ac.id

Abstract—There are many problems regarding counting that

can be solved by the inclusion-exclusion principle, one of those

problems is The famous hat-check problem, a problem that asks

for the probability that no person is given the correct hat back by

a hat-check person who gives the hat back randomly. This problem

is related to a term in combinatorial mathematics that is called

derangement.

Keywords—Combinatorics, Inclusion-Exclusion Principle,

Derangements, Counting.

I. INTRODUCTION

A lot of interesting problems that includes counting can be

solved by The inclusion-exclusion principle, a counting

technique in combinatorics (combinatorial mathematics) which

generalizes the familiar method of obtaining the number of

elements in a two or more sets. A simple application of the

inclusion-exclusion principle is finding the number of elements

in the union of two finites sets. The inclusion-exclusion

principle can also be applied to more complex problem, one of

which is the famous hat-check problem. A problem that asks for

the probability that no person is given the correct hat back by a

hat-check person who gives the hat back randomly. This hat-

check problem is related to a term in combinatorics which is

called a derangement. Derangement is a permutation of

elements in a set in which there are no element that appear in its

original position, it can also be said that a derangement is a

permutation that has no fixed points. In terms of solving

derangement problems there are two option of familiar

solutions, one is using recursion and the other one is using

inclusion-exclusion principle. This paper will mainly discuss the

inclusion-exclusion principle way of solving problem related to

derangement.

II. BASIC THEORY

It is important to review the basic theory that is related on the

later explanation of this paper. This will help in gaining a clear

understanding of what to be explained.

2.1 Set Theory

In this set theory, there will be the explanation of sets

regarding definition, membership, cardinality, and basic

operations.

2.1.1 Definition

In mathematics, a set is defined as a well-defined collection

of distinct objects, considered as an object in its own right.[1]

Sets are often specified with curly brace notation. The set of

even integers can be written:

{2𝑛 ∶ 𝑛 is an integer}

The opening and closing curly brackets denote a set. 2𝑛

specifies the member of the set the colon says “such that” or

“where” and everything following the colon are conditions that

explain or refine the membership.[2] The objects that make up a

set is not only elements made of number, it can be anything as

long as they are well-defined distinct objects. For an example

the set {red, green, blue} is also a valid set. A set can also have

no object or elements in it, this is called an empty set which is

usually denoted by {} or ∅. Sets are conventionally denoted with

capital letters. For an example, the set 𝐴 with elements

1, 2, 3, and 4 can be written as:

𝐴 = {1, 2, 3, 4}

It is important to note that because the elements in a set is

distinct we cannot say for an example {1, 1, 3} as a set, because

number 1 as an element of the set occurs twice in the set.

 2.1.2 Membership

 If 𝐴 is a set and 𝑥 is one of the elements in 𝐴, then we can

denote the symbol 𝑥 ∈ 𝐴 to be understood as “𝑥 is an element of

the set 𝐴”.[1] On the contrary, if there is an object 𝑦 which is not

an element of the set 𝐴 we can denote it with the symbol 𝑦 ∉ 𝐴.

For example, if 𝐴 = {1, 3, 5, 8, 9} then we can say 1 ∈ 𝐴, 3 ∈ 𝐴,

and 4 ∉ 𝐴.

 If every element of set 𝐴 is also in set 𝐵, then A is said to be a

subset of B, written 𝐴 ⊆ 𝐵 (pronounced 𝐴 is contained in 𝐵).

The relationship between sets established by ⊆ is called

inclusion or containment. We can say the two sets is equal if

they contain each other:

𝐴 = 𝐵 ↔ 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴

Where 𝐴 and 𝐵 are well defined sets. It can also be said that two

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2019/2020

sets are equal if and only if they have precisely the same

elements.

 2.1.3 Cardinality

 The cardinality of a set 𝑆, denoted |𝑆|, is the number of

members in 𝑆.[3] For example, the set 𝐴 = {red, green, blue} has

3 elements, so we can say |𝐴| = 3. The cardinality of an empty

set is zero. Some sets have infinite cardinality. The set Ν of

natural numbers for example has infinite cardinality.

 2.1.4 Basic Operations

 There are several fundamental operations for constructing new

sets from given sets:

1) Unions

Two sets can be “added” together. The union of set 𝐴 and

𝐵, denoted by 𝐴 ∪ 𝐵, is the set of all things that are a

member of either 𝐴 or 𝐵.

Figure 1. Union of set 𝐴 and 𝐵 depicted with the Venn’s

Diagram.[2]

Here are some of the example of unions:

 {1, 2} ∪ {1, 2} = {1, 2}

 {1, 2} ∪ {2, 3} = {1, 2, 3}

 {1, 2, 3} ∪ {3, 4, 5} = {1, 2, 3, 4, 5}

There are also some basic properties of unions:

 𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴

 𝐴 ∪ (𝐵 ∪ 𝐶) = (𝐴 ∪ 𝐵) ∪ 𝐶

 𝐴 ∪ 𝐴 = 𝐴

 𝐴 ∪ ∅ = 𝐴

2) Intersections

A set can also be constructed by determining which

members two sets have in “common”. The intersection of

𝐴 and 𝐵, denoted by 𝐴 ∩ 𝐵, is the set of all things that are

members of both 𝐴 and 𝐵. If 𝐴 ∩ 𝐵 = ∅, then 𝐴 and 𝐵 is

called to be disjoint.

Figure 2. Intersection of set 𝐴 and 𝐵 depicted with the

Venn’s Diagram.[2]

Here are some of the example of intersections:

 {1, 2} ∩ {1, 2} = {1, 2}

 {1, 2} ∩ {2, 3} = {2}

 {1, 2} ∩ {3, 4} = ∅

There are also some basic properties of intersections:

 𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴

 𝐴 ∩ (𝐵 ∩ 𝐶) = (𝐴 ∩ 𝐵) ∩ 𝐶

 𝐴 ∩ 𝐴 = 𝐴

 𝐴 ∩ ∅ = ∅

3) Complements

Two sets can also be “substracted”. The relative

component of B in A (also called the set-theoric difference

of 𝐴 and 𝐵), denoted by 𝐴 − 𝐵, is the set of all the

elements that are members of 𝐴 but are not members of

𝐵. It is only valid to “substract” members of a set there

are not in the set, such as removing the element red in the

set {1,3,5}; doing so has no effect. In certain settings all

sets under discussion are considered to be subsets of a

given universal set 𝑈. In such case. 𝑈 − 𝐴 is called the

absolute component or simply called the 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 of

𝐴, and is denoted by 𝐴𝑐.

Figure 3. The complement of set 𝐴 (𝐴𝑐) depicted with

the Venn’s Diagram.[2]

Here are some of the example of complements:

 {1, 2} − {1, 2} = ∅

 {1, 2, 3, 4} − {1, 3} = {2, 4}

 {1, 3, 5, 8} − {1, 5, 9} = {3, 8}

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2019/2020

There are also some basic properties of intersections:

 𝐴 − 𝐵 ≠ 𝐵 − 𝐴 for 𝐴 ≠ 𝐵

 𝐴 − 𝐴𝑐 = 𝑈

 𝐴 − 𝐴 = ∅

 (𝐴𝑐)𝑐 = 𝐴

 ∅ − 𝐴 = ∅

 𝐴 − ∅ = 𝐴

 𝐴 − 𝐴 = ∅

 𝐴 − 𝐵 = 𝐴 ∩ 𝐵𝑐

 2.2 The Inclusion-Exclusion Principle

 In combinatorial mathematics, The inclusion-exclusion

principle or Principle of Inclusion and Exclusion (PIE) is a

counting technique that computes the number of elements that

satisfy at least one of several properties while guaranteeing that

elements satisfying more than one property not counted twice.[4]

This names comes from an idea that principle is based on over-

generous inclusion, followed by compensating exclusion. This

concepts is attributed to Abraham de Moivre (1718).[5]

An underlying idea behind PIE is that summing the number

of elements that satisfy at least one categories and subtracting

the overlap prevents double counting. For an example, the

number of people that have at least one cat or at least one dog

can be found by taking the number of people who own a cat,

adding the number of people that have a dog, then subtracting

the number of people who own both.

In the case of objects being separated into two (possibly

disjoint) sets, the principle of inclusion-exclusion states

|𝐴 ∪ 𝐵| = |𝐴| + |𝐵| − |𝐴 ∩ 𝐵|

where |𝑆| denotes the cardinality of the set 𝑆 in set notation. As

a Venn diagram, PIE for two sets can be depicted easily:

Figure 4. The depiction of |𝐴| + |𝐵| in Venn’s Diagram with

numbers showing in each subset that represents how many

times the subset has been counted.[4]

Figure 5. The depiction of |𝐴| + |𝐵| − |𝐴 ∩ 𝐵| in Venn’s

Diagram with numbers showing in each subset that represents

how many times the subset has been counted.[4]

The inclusion-exclusion principle can also be applied with

more than two sets, in the case of three sets the PIE states:

|𝐴 ∪ 𝐵 ∪ 𝐶|
is equal to

|𝐴| + |𝐵| + |𝐶| − |𝐴 ∩ 𝐵| − |𝐴 ∩ 𝐶| − |𝐵 ∩ 𝐶| + |𝐴 ∩ 𝐵 ∩ 𝐶|

We can verify these statements for ourselves by considering

the Venn diagram events:

Figure 6. The depiction of |𝐴| + |𝐵| + |𝐶| in Venn’s

Diagram with numbers showing in each subset that represents

how many times the subset has been counted.[4]

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2019/2020

Figure 7. The depiction of |𝐴| + |𝐵| + |𝐶| − |𝐴 ∩ 𝐵| −

|𝐴 ∩ 𝐶| − |𝐵 ∩ 𝐶| in Venn’s Diagram with numbers showing

in each subset that represents how many times the subset has

been counted.[4]

Figure 8. The depiction of |𝐴| + |𝐵| + |𝐶| − |𝐴 ∩ 𝐵| −

|𝐴 ∩ 𝐶| − |𝐵 ∩ 𝐶| − |𝐴 ∩ 𝐵 ∩ 𝐶| in Venn’s Diagram with

numbers showing in each subset that represents how many

times the subset has been counted.[4]

 More generally, if 𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛 are finite sets, then the

principle of inclusion and exclusion states:

|⋃ 𝐴𝑖

𝑛

𝑖=1

| = ∑ |𝐴𝑖|

𝑛

𝑖=1

− ∑ |𝐴𝑖 ∩ 𝐴𝑗|

1≤𝑖<𝑗≤𝑛

+ ⋯ + (−1)𝑛−1|𝐴1 ∩ … ∩ 𝐴𝑛|

with this formula we can now have a general way of solving

problems related to counting.

2.3 Derangement

In combinatorial mathematics, derangements are

arrangements of some elements in a set so there is no element

appears in its original position. The number of derangements of

a set of size 𝑛 is known as the subfactorial of 𝑛 or the 𝑛-th

derangement number or the 𝑛-th de Mornmort number.

Notations for subfactorials in common use include ! 𝑛, 𝐷𝑛, or

𝑑𝑛.[6] For better understanding, take as an example when 𝑛 = 4

and the set is 𝐴 = {1, 2, 3, 4}, then we will have 9 set from

permutations of 𝐴, where every elements does not have the same

position in its original set:

1) {2, 1, 4, 3}

2) {2, 3, 4, 1}

3) {2, 4, 3, 1}

4) {3, 1, 4, 2}

5) {3, 4, 1, 2}

6) {3, 4, 2, 1}

7) {4, 1, 2, 3}

8) {4, 3, 1, 2}

9) {4, 3, 2, 1}

So we can say that the number 4-th Derangement number is 9,

or to simply put ! 4 = 9.

 To find the number of derangements, one can probably just

use brute force all the way on 𝑛 elements with 𝑛! tries, but of

course that will be to tedious, so in order to find that we could

use The inclusion-exclusion principle, but for now it is sufficient

to only know the meaning of derangement. The part in using the

inclusion-exclusion principle will be explained later on.

III. SOLVING THE FAMOUS HAT-CHECK PROBLEM

 The famous hat-check problem goes by many name

(originally described by Montmort in 1713).[7] This problem is

generally described as:

A group of 𝑛 men enter a restaurant and check their hats.

The hat-checker is absent minded, and upon leaving, she

redistributes the hats back to the men at random. What is the

probability 𝑃𝑛 that no men gets his correct hat ?

by the description above, we could see quite clearly that this

problem is very similar to that of derangement, in fact to

answer the probability 𝑃𝑛 we might have to only find 𝐷𝑛, the

𝑛-th Derangement, divided with every possibility which is 𝑛!
so we could state:

𝑃𝑛 =
𝐷𝑛

𝑛!

so now the only problem is how to find 𝐷𝑛, and that is where

The inclusion-exclusion principle comes in place. Without any

further ado, let’s get to the solution.

Let 𝑁 denote the total number of permutations of 𝑛 hats. To

calculate the number of derangements, 𝐷𝑛 , we want to exclude

all permutations possessing any of the attributes 𝑎1, 𝑎2, … , 𝑎𝑛

where 𝑎𝑖 is the attribute that man 𝑖 gets his correct hat for all 𝑖,
such that 1 ≤ 𝑖 ≤ 𝑛. Let 𝑁(𝑖) denote the number of

permutations possessing attribute 𝑎𝑖 (and possibly others),

𝑁(𝑖, 𝑗) the number of permutations possessing attribute 𝑎𝑖 and

𝑎𝑗 (and possibly others), and so on. Then the inclusion-

exclusion principle will state that:

𝐷𝑛 = 𝑁 − ∑ 𝑁(𝑖)

1≤𝑖≤𝑛

+ ∑ 𝑁(𝑖, 𝑗)

1≤𝑖,𝑗≤𝑛

+ ⋯ + (−1)𝑛𝑁(1, 2, … , 𝑛)

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2019/2020

By symmetry, we could see that

𝑁(1) = 𝑁(2) = ⋯ = 𝑁(𝑖).

and also

𝑁(1, 2) = 𝑁(1, 3) = ⋯ = 𝑁(𝑖, 𝑗)

and so on. Because of that, we will have:

𝐷𝑛 = 𝑁 − (
𝑛

1
) 𝑁(1) + (

𝑛

2
) 𝑁(1, 2) − ⋯ + (−1)𝑛 (

𝑛

𝑛
) 𝑁(1, 2, … , 𝑛)

Now, 𝑁(1), the number of permutation where man 1 gets his

correct hat, is simply (𝑛 − 1)!, since the remaining hats can be

distributed in any order. Similarly, we would also have that

𝑁(1, 2) = (𝑛 − 2)!, 𝑁(1, 2, 3) = (𝑛 − 3)!, and so forth.

Therefore, we now have:

𝐷𝑛 = 𝑁 − (
𝑛

1
) (𝑛 − 1)! + (

𝑛

2
) (𝑛 − 2)! − ⋯ + (−1)𝑛 (

𝑛

𝑛
) (𝑛 − 𝑛)!

Replacing 𝑁, the total permutation for 𝑛 hats by 𝑛!, and we

will have our final expression:

𝐷𝑛 = 𝑛! (1 −
1

1!
+

1

2!
−

1

3!
+ ⋯ + (−1)𝑛

1

𝑛!
)

or in a short way, we could say:

𝐷𝑛 = 𝑛! ∑
(−1)𝑖

𝑖!

𝑛

𝑖=0

With this expression, we will have our final answer for 𝑃𝑛 that

is:

𝑃𝑛 =
𝐷𝑛

𝑛!
= (1 −

1

1!
+

1

2!
−

1

3!
+ ⋯ + (−1)𝑛

1

𝑛!
)

Now, it’s actually interesting to see that this is very similar to

the series approaching 1/𝑒 as 𝑛 approaches infinity.[7]

IV. IMPLEMENTION CODE IN C++

After having the final expression, it’s quite easy to find the

result with programming. But for that sake matter, it’s probably

not that interesting to only find the final result, in this part we

will see also on how to see all the permutations in the given 𝑛-

th Derangement.

Now, we will begin with finding the probability for the

famous hat-check problem, we already know that the solution

for the problem has a straightforward formula, so it will be very

easy to implement in C++. Here is the implementation:

#include <bits/stdc++.h>

using namespace std;

int main() {

 int n;
 cout << "Input the number of hats : ";
 cin >> n;
 long double fact[n + 1];
 fact[0] = 1.0;
 for (int i = 1; i <= n; i++) {
 fact[i] = (long double) i * fact[i - 1];
 }
 long double Pn = 0;
 for (int i = 0; i <= n; i++) {
 Pn += (i & 1 ? -1 / fact[i] : 1 / fact[i]);
 }
 cout << "The answer for P(" << n << ") is : ";
 cout << fixed << setprecision(9) << Pn << '\n';

 return 0;

}

After compiling and executing the code, we can have the

answer for 𝑛 = 10:

Figure 9. The result of 𝑃10 of the hat-problem checker using

the C++ implementation code.

We could see that for a bigger 𝑛, we might have some problem

in precision, because the long double on C++ does not handle

really large number and can only hold up to a number of 264 −
1. So it might only be precise for 𝑛 ≤ 20.

Now, we will continue with finding the permutation in the

given 𝑛-th Derangement. Of course, it’s quite hard to find a

direct answer, so I will only use brute-force to find the

permutation. Luckily, the chosen C++ programming language

has very good Standard Template Library (STL) that we could

work with, so it is actually quite easy to implement. For the sake

of simplicity, we will see permutations on the first 𝑛 number

only, so if 𝑛 = 4 as an example we will have the set {1, 2, 3, 4},

and so goes for any other value of 𝑛. Without any more

hesitation, here is the implementation:

#include <bits/stdc++.h>

using namespace std;

int main() {
 // number of the n-th derangement
 int n;
 cout << "Input your n-th derangement : ";
 cin >> n;
 vector<int> v(n);
 iota(v.begin(), v.end(), 0);
 int k = 0;
 cout << "The result of the permutations is:\n";
 do {
 bool isValid = true;
 for (int i = 0; i < n; i++) {
 // if the element has the same position
 if (v[i] == i) {
 // than this is not a valid permutation
 isValid = false;
 break;
 }
 }

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2019/2020

 // if we have found a valid permutation
 if (isValid) {
 // print the permutation
 cout << ++k << “ : “;
 for (int i = 0; i < n; i++) {
 cout << v[i] + 1 << " ";
 }
 cout << '\n';
 }
 } while (next_permutation(v.begin(), v.end()));

 return 0;
}

And so after we compile and execute the code we can see the

result when we input 𝑛 = 4:

Figure 10. The result of every permutation on the 4-th

Derangement using the C++ implementation code.

Note that it might not be a good idea to input a large number

on this particular code, because this code works on 𝑂(𝑁!) Time

Complexity which is quite slow, so it might be good to input only

𝑛 ≤ 11.

V. CONCLUSION

With The inclusion-exclusion principle, we can solve many

problems in mathematics regarding counting. One of that is The

famous hat-check problem, a problem that asks for the

probability that no person is given the correct hat back by a hat-

check person who gives the hat back randomly.

VI. ACKNOWLEDGMENT

In this paper, the author would like to first and foremost

thanks to the Almighty God, Allah Azza Wa Jalla, for His Grace

and Guidance so that the Auther was able to compete this paper.

The author will also like to Mrs. Fariska Zakhralativa, M. T as

the lecturer of IF2120, Author would also like to thanks all my

colleagues or all the support and inspiration that they had given

to me. Lastly, Author would like to apologize if there any many

mistakes throughout this paper.

REFERENCES

[1] P. K. Jain; Khalil Ahmad; Om P. Ahuja (1995). Functional Analysis. New

Age International.

[2] https://www.math.uh.edu/~dlabate/settheory_Ashlock.pdf accessed at 4
December 2019.

[3] Yiannis N. Moschovakis (1994). Notes on Set Theory. Springer Science &

Business Media.
[4] https://brilliant.org/wiki/principle-of-inclusion-and-exclusion-pie/

accessed at 5 December 2019..

[5] Allenby, R.B.J.T.; Slomson, Alan (2010), How to Count: An Introduction
to Combinatorics, Discrete Mathematics and Its Applications (2 ed.), CRC

Press, pp. 51–60

[6] Ronald L. Graham, Donald E. Knuth, Oren Patashnik, Concrete
Mathematics (1994), Addison–Wesley, Reading MA.

[7] http://homepages.math.uic.edu/~kauffman/OldHats.pdf accessed at 5

December 2019

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 5 Desember 2019

Muhammad Hasan 13518012

https://www.math.uh.edu/~dlabate/settheory_Ashlock.pdf
https://brilliant.org/wiki/principle-of-inclusion-and-exclusion-pie/

