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Abstract—There are many problems regarding counting that 

can be solved by the inclusion-exclusion principle, one of those 

problems is The famous hat-check problem, a problem that asks 

for the probability that no person is given the correct hat back by 

a hat-check person who gives the hat back randomly. This problem 

is related to a term in combinatorial mathematics that is called 

derangement. 
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I.   INTRODUCTION 

A lot of interesting problems that includes counting can be 

solved by The inclusion-exclusion principle, a counting 

technique in combinatorics (combinatorial mathematics) which 

generalizes the familiar method of obtaining the number of 

elements in a two or more sets. A simple application of the 

inclusion-exclusion principle is finding the number of elements 

in the union of two finites sets. The inclusion-exclusion 

principle can also be applied to more complex problem, one of 

which is the famous hat-check problem. A problem that asks for 

the probability that no person is given the correct hat back by a 

hat-check person who gives the hat back randomly. This hat-

check problem is related to a term in combinatorics which is 

called a derangement. Derangement is a permutation of 

elements in a set in which there are no element that appear in its 

original position, it can also be said that a derangement is a 

permutation that has no fixed points. In terms of solving 

derangement problems there are two option of familiar 

solutions, one is using recursion and the other one is using 

inclusion-exclusion principle. This paper will mainly discuss the 

inclusion-exclusion principle way of solving problem related to 

derangement. 

 

II.  BASIC THEORY 

It is important to review the basic theory that is related on the 

later explanation of this paper. This will help in gaining a clear 

understanding of what to be explained. 

 

2.1 Set Theory 

In this set theory, there will be the explanation of sets 

regarding definition, membership, cardinality, and basic 

operations. 

  

2.1.1 Definition 

In mathematics, a set is defined as a well-defined collection 

of distinct objects, considered as an object in its own right.[1] 

Sets are often specified with curly brace notation. The set of 

even integers can be written: 

 

{2𝑛 ∶ 𝑛 is an integer} 

 

The opening and closing curly brackets denote a set. 2𝑛 

specifies the member of the set the colon says “such that” or 

“where” and everything following the colon are conditions that 

explain or refine the membership.[2] The objects that make up a 

set is not only elements made of number, it can be anything as 

long as they are well-defined distinct objects. For an example 

the set {red, green, blue} is also a valid set. A set can also have 

no object or elements in it, this is called an empty set which is 

usually denoted by {} or ∅. Sets are conventionally denoted with 

capital letters. For an example, the set 𝐴 with elements 

1, 2, 3, and 4 can be written as: 

 

𝐴 = {1, 2, 3, 4} 

 

It is important to note that because the elements in a set is 

distinct we cannot say for an example {1, 1, 3} as a set, because 

number 1 as an element of the set occurs twice in the set.  

 

   2.1.2  Membership 

   If 𝐴 is a set and 𝑥 is one of the elements in 𝐴, then we can 

denote the symbol 𝑥 ∈ 𝐴 to be understood as “𝑥 is an element of 

the set 𝐴”.[1] On the contrary, if there is an object 𝑦 which is not 

an element of the set 𝐴 we can denote it with the symbol 𝑦 ∉ 𝐴. 

For example, if 𝐴 = {1, 3, 5, 8, 9} then we can say 1 ∈ 𝐴, 3 ∈ 𝐴, 

and 4 ∉ 𝐴. 

  If every element of set 𝐴 is also in set 𝐵, then A is said to be a 

subset of B, written 𝐴 ⊆ 𝐵 (pronounced 𝐴 is contained in 𝐵). 

The relationship between sets established by ⊆ is called 

inclusion or containment. We can say the two sets is equal if 

they contain each other: 

 

𝐴 = 𝐵 ↔ 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴 

 

Where 𝐴 and 𝐵 are well defined sets. It can also be said that two 
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sets are equal if and only if they have precisely the same 

elements. 

 

  2.1.3  Cardinality 

  The cardinality of a set 𝑆, denoted |𝑆|, is the number of 

members in 𝑆.[3] For example, the set 𝐴 = {red, green, blue} has 

3 elements, so we can say |𝐴| = 3. The cardinality of an empty 

set is zero. Some sets have infinite cardinality. The set Ν of 

natural numbers for example has infinite cardinality. 

 

  2.1.4  Basic Operations 

  There are several fundamental operations for constructing new 

sets from given sets: 

1) Unions 

Two sets can be “added” together. The union of set 𝐴 and 

𝐵, denoted by 𝐴 ∪ 𝐵, is the set of all things that are a 

member of either 𝐴 or 𝐵. 

 

 
Figure 1. Union of set 𝐴 and 𝐵 depicted with the Venn’s 

Diagram.[2]  

 

Here are some of the example of unions: 

 {1, 2} ∪ {1, 2} = {1, 2} 

 {1, 2} ∪ {2, 3} = {1, 2, 3} 

 {1, 2, 3} ∪ {3, 4, 5} = {1, 2, 3, 4, 5} 

 

There are also some basic properties of unions: 

 𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴 

 𝐴 ∪ (𝐵 ∪ 𝐶) = (𝐴 ∪ 𝐵) ∪ 𝐶 

 𝐴 ∪ 𝐴 = 𝐴 

 𝐴 ∪ ∅ = 𝐴 

 

2) Intersections 

A set can also be constructed by determining which 

members two sets have in “common”. The intersection of 

𝐴 and 𝐵, denoted by 𝐴 ∩ 𝐵, is the set of all things that are 

members of both 𝐴 and 𝐵. If 𝐴 ∩ 𝐵 = ∅, then 𝐴 and 𝐵 is 

called to be disjoint. 

 
Figure 2. Intersection of set 𝐴 and 𝐵 depicted with the 

Venn’s Diagram.[2] 

 

Here are some of the example of intersections: 

 {1, 2} ∩ {1, 2} = {1, 2} 

 {1, 2} ∩ {2, 3} = {2} 

 {1, 2} ∩ {3, 4} = ∅ 

 

There are also some basic properties of intersections: 

 𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴 

 𝐴 ∩ (𝐵 ∩ 𝐶) = (𝐴 ∩ 𝐵) ∩ 𝐶 

 𝐴 ∩ 𝐴 = 𝐴 

 𝐴 ∩ ∅ = ∅ 

 

3) Complements 

Two sets can also be “substracted”. The relative 

component of B in A (also called the set-theoric difference 

of 𝐴 and 𝐵), denoted by 𝐴 − 𝐵, is the set of all the 

elements that are members of 𝐴 but are not members of 

𝐵. It is only valid to “substract” members of a set there 

are not in the set, such as removing the element red in the 

set {1,3,5}; doing so has no effect. In certain settings all 

sets under discussion are considered to be subsets of a 

given universal set 𝑈. In such case. 𝑈 − 𝐴 is called the 

absolute component or simply called the 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 of 

𝐴, and is denoted by 𝐴𝑐. 

 

 
Figure 3. The complement of set 𝐴 (𝐴𝑐) depicted with 

the Venn’s Diagram.[2] 

 

Here are some of the example of complements: 

 {1, 2} − {1, 2} = ∅ 

 {1, 2, 3, 4} − {1, 3} = {2, 4} 

 {1, 3, 5, 8} − {1, 5, 9} = {3, 8} 
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There are also some basic properties of intersections: 

 𝐴 − 𝐵 ≠ 𝐵 − 𝐴  for 𝐴 ≠ 𝐵 

 𝐴 − 𝐴𝑐 = 𝑈 

 𝐴 − 𝐴 = ∅ 

 (𝐴𝑐)𝑐 = 𝐴 

 ∅ − 𝐴 = ∅ 

 𝐴 − ∅ = 𝐴 

 𝐴 − 𝐴 = ∅ 

 𝐴 − 𝐵 = 𝐴 ∩ 𝐵𝑐  

 

   2.2  The Inclusion-Exclusion Principle 

   In combinatorial mathematics, The inclusion-exclusion 

principle or Principle of Inclusion and Exclusion (PIE) is a 

counting technique that computes the number of elements that 

satisfy at least one of several properties while guaranteeing that 

elements satisfying more than one property not counted twice.[4] 

This names comes from an idea that principle is based on over-

generous inclusion, followed by compensating exclusion. This 

concepts is attributed to Abraham de Moivre (1718).[5]  

 

An underlying idea behind PIE is that summing the number 

of elements that satisfy at least one categories and subtracting 

the overlap prevents double counting. For an example, the 

number of people that have at least one cat or at least one dog 

can be found by taking the number of people who own a cat, 

adding the number of people that have a dog, then subtracting 

the number of people who own both. 

 

In the case of objects being separated into two (possibly 

disjoint) sets, the principle of inclusion-exclusion states 

 

|𝐴 ∪ 𝐵| = |𝐴| + |𝐵| − |𝐴 ∩ 𝐵| 
 

where |𝑆| denotes the cardinality of the set 𝑆 in set notation. As 

a Venn diagram, PIE for two sets can be depicted easily: 

 

 
Figure 4. The depiction of |𝐴| + |𝐵| in Venn’s Diagram with 

numbers showing in each subset that represents how many 

times the subset has been counted.[4] 

 
 

Figure 5. The depiction of |𝐴| + |𝐵| − |𝐴 ∩ 𝐵| in Venn’s 

Diagram with numbers showing in each subset that represents 

how many times the subset has been counted.[4] 

 

The inclusion-exclusion principle can also be applied with 

more than two sets, in the case of three sets the PIE states: 

 

|𝐴 ∪ 𝐵 ∪ 𝐶| 
is equal to 

 

|𝐴| + |𝐵| + |𝐶| − |𝐴 ∩ 𝐵| − |𝐴 ∩ 𝐶| − |𝐵 ∩ 𝐶| + |𝐴 ∩ 𝐵 ∩ 𝐶| 
 

We can verify these statements for ourselves by considering 

the Venn diagram events: 

 

 
Figure 6. The depiction of |𝐴| + |𝐵| + |𝐶| in Venn’s 

Diagram with numbers showing in each subset that represents 

how many times the subset has been counted.[4] 
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Figure 7. The depiction of |𝐴| + |𝐵| + |𝐶| − |𝐴 ∩ 𝐵| −

|𝐴 ∩ 𝐶| − |𝐵 ∩ 𝐶| in Venn’s Diagram with numbers showing 

in each subset that represents how many times the subset has 

been counted.[4] 

 

 
Figure 8. The depiction of |𝐴| + |𝐵| + |𝐶| − |𝐴 ∩ 𝐵| −

|𝐴 ∩ 𝐶| − |𝐵 ∩ 𝐶| − |𝐴 ∩ 𝐵 ∩ 𝐶| in Venn’s Diagram with 

numbers showing in each subset that represents how many 

times the subset has been counted.[4] 

 

  More generally, if 𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛 are finite sets, then the 

principle of inclusion and exclusion states: 

 

|⋃ 𝐴𝑖

𝑛

𝑖=1

| = ∑ |𝐴𝑖|

𝑛

𝑖=1

− ∑ |𝐴𝑖 ∩ 𝐴𝑗|

1≤𝑖<𝑗≤𝑛

+ ⋯ + (−1)𝑛−1|𝐴1 ∩ … ∩ 𝐴𝑛| 

 

with this formula we can now have a general way of solving 

problems related to counting. 

 

2.3  Derangement 

In combinatorial mathematics, derangements are 

arrangements of some elements in a set so there is no element 

appears in its original position. The number of derangements of 

a set of size 𝑛 is known as the subfactorial of 𝑛 or the 𝑛-th 

derangement number or the 𝑛-th de Mornmort number. 

Notations for subfactorials in common use include ! 𝑛, 𝐷𝑛, or 

𝑑𝑛.[6] For better understanding, take as an example when 𝑛 = 4 

and the set is 𝐴 = {1, 2, 3, 4}, then we will have 9 set from 

permutations of 𝐴, where every elements does not have the same 

position in its original set: 

1) {2, 1, 4, 3} 

2) {2, 3, 4, 1} 

3) {2, 4, 3, 1} 

4) {3, 1, 4, 2} 

5) {3, 4, 1, 2} 

6) {3, 4, 2, 1} 

7) {4, 1, 2, 3} 

8) {4, 3, 1, 2} 

9) {4, 3, 2, 1} 

 

So we can say that the number 4-th Derangement number is 9, 

or to simply put ! 4 = 9. 

 

   To find the number of derangements, one can probably just 

use brute force all the way on 𝑛 elements with 𝑛! tries, but of 

course that will be to tedious, so in order to find that we could 

use The inclusion-exclusion principle, but for now it is sufficient 

to only know the meaning of derangement. The part in using the 

inclusion-exclusion principle will be explained later on. 

 

III.   SOLVING THE FAMOUS HAT-CHECK PROBLEM 

   The famous hat-check problem goes by many name 

(originally described by Montmort in 1713).[7] This problem is 

generally described as: 

 

A group of 𝑛 men enter a restaurant and check their hats. 

The hat-checker is absent minded, and upon leaving, she 

redistributes the hats back to the men at random. What is the 

probability 𝑃𝑛 that no men gets his correct hat ? 

 

 

by the description above, we could see quite clearly that this 

problem is very similar to that of derangement, in fact to 

answer the probability 𝑃𝑛 we might have to only find 𝐷𝑛, the 

𝑛-th Derangement, divided with every possibility which is 𝑛! 
so we could state: 

𝑃𝑛 =
𝐷𝑛

𝑛!
 

 

so now the only problem is how to find 𝐷𝑛, and that is where 

The inclusion-exclusion principle comes in place. Without any 

further ado, let’s get to the solution. 

 

Let 𝑁 denote the total number of permutations of 𝑛 hats. To 

calculate the number of derangements, 𝐷𝑛 , we want to exclude 

all permutations possessing any of the attributes 𝑎1, 𝑎2, … , 𝑎𝑛 

where 𝑎𝑖 is the attribute that man 𝑖 gets his correct hat for all 𝑖, 
such that 1 ≤ 𝑖 ≤ 𝑛. Let 𝑁(𝑖) denote the number of 

permutations possessing attribute 𝑎𝑖 (and possibly others), 

𝑁(𝑖, 𝑗) the number of permutations possessing attribute 𝑎𝑖 and 

𝑎𝑗 (and possibly others), and so on. Then the inclusion-

exclusion principle will state that: 

 

𝐷𝑛 = 𝑁 − ∑ 𝑁(𝑖)

1≤𝑖≤𝑛

+ ∑ 𝑁(𝑖, 𝑗)

1≤𝑖,𝑗≤𝑛

+ ⋯ + (−1)𝑛𝑁(1, 2, … , 𝑛) 
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By symmetry, we could see that 

 

𝑁(1) = 𝑁(2) = ⋯ = 𝑁(𝑖). 
 

and also 

 

𝑁(1, 2) = 𝑁(1, 3) = ⋯ = 𝑁(𝑖, 𝑗) 

 

and so on. Because of that, we will have: 

 

𝐷𝑛 = 𝑁 − (
𝑛

1
) 𝑁(1) + (

𝑛

2
) 𝑁(1, 2) − ⋯ + (−1)𝑛 (

𝑛

𝑛
) 𝑁(1, 2, … , 𝑛) 

 

Now, 𝑁(1), the number of permutation where man 1 gets his 

correct hat, is simply (𝑛 − 1)!, since the remaining hats can be 

distributed in any order. Similarly, we would also have that 

𝑁(1, 2) = (𝑛 − 2)!, 𝑁(1, 2, 3) = (𝑛 − 3)!, and so forth.  

 

Therefore, we now have: 

 

𝐷𝑛 = 𝑁 − (
𝑛

1
) (𝑛 − 1)! + (

𝑛

2
) (𝑛 − 2)! − ⋯ + (−1)𝑛 (

𝑛

𝑛
) (𝑛 − 𝑛)! 

 

Replacing 𝑁, the total permutation for 𝑛 hats by 𝑛!, and we 

will have our final expression: 

 

𝐷𝑛 = 𝑛! (1 −
1

1!
+

1

2!
−

1

3!
+ ⋯ + (−1)𝑛

1

𝑛!
 ) 

 

or in a short way, we could say: 

 

𝐷𝑛 = 𝑛! ∑
(−1)𝑖

𝑖!

𝑛

𝑖=0

 

 

With this expression, we will have our final answer for 𝑃𝑛 that 

is: 

 

𝑃𝑛 =
𝐷𝑛

𝑛!
= (1 −

1

1!
+

1

2!
−

1

3!
+ ⋯ + (−1)𝑛

1

𝑛!
 ) 

 

Now, it’s actually interesting to see that this is very similar to 

the series approaching 1/𝑒 as 𝑛 approaches infinity.[7] 

 

IV.   IMPLEMENTION CODE IN C++ 

After having the final expression, it’s quite easy to find the 

result with programming. But for that sake matter, it’s probably 

not that interesting to only find the final result, in this part we 

will see also on how to see all the permutations in the given 𝑛-

th Derangement. 

 

Now, we will begin with finding the probability for the 

famous hat-check problem, we already know that the solution 

for the problem has a straightforward formula, so it will be very 

easy to implement in C++. Here is the implementation: 

  
#include <bits/stdc++.h> 
 
using namespace std; 
 
int main() { 

  int n; 
  cout << "Input the number of hats : "; 
  cin >> n; 
  long double fact[n + 1]; 
  fact[0] = 1.0; 
  for (int i = 1; i <= n; i++) { 
    fact[i] = (long double) i * fact[i - 1]; 
  } 
  long double Pn = 0; 
  for (int i = 0; i <= n; i++) { 
    Pn += (i & 1 ? -1 / fact[i] : 1 / fact[i]); 
  } 
  cout << "The answer for P(" << n << ") is : "; 
  cout << fixed << setprecision(9) << Pn << '\n'; 
 
  return 0; 

} 

After compiling and executing the code, we can have the 

answer for 𝑛 = 10: 

 

 
Figure 9. The result of 𝑃10 of the hat-problem checker using 

the C++ implementation code. 

 

We could see that for a bigger 𝑛, we might have some problem 

in precision, because the long double on C++ does not handle 

really large number and can only hold up to a number of 264 −
1. So it might only be precise for 𝑛 ≤ 20. 

 

Now, we will continue with finding the permutation in the 

given 𝑛-th Derangement. Of course, it’s quite hard to find a 

direct answer, so I will only use brute-force to find the 

permutation. Luckily, the chosen C++ programming language 

has very good Standard Template Library (STL) that we could 

work with, so it is actually quite easy to implement. For the sake 

of simplicity, we will see permutations on the first 𝑛 number 

only, so if 𝑛 = 4 as an example we will have the set {1, 2, 3, 4}, 

and so goes for any other value of 𝑛. Without any more 

hesitation, here is the implementation: 

 
#include <bits/stdc++.h> 

 
using namespace std; 

 
int main() { 
   // number of the n-th derangement 
   int n; 
   cout << "Input your n-th derangement : "; 
   cin >> n; 
   vector<int> v(n); 
   iota(v.begin(), v.end(), 0); 
   int k = 0; 
   cout << "The result of the permutations is:\n"; 
   do { 
       bool isValid = true; 
       for (int i = 0; i < n; i++) { 
           // if the element has the same position 
           if (v[i] == i) { 
               // than this is not a valid permutation 
               isValid = false; 
               break; 
           } 
       } 
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       // if we have found a valid permutation 
       if (isValid) { 
           // print the permutation 
           cout << ++k << “ : “; 
           for (int i = 0; i < n; i++) { 
               cout << v[i] + 1 << " "; 
            } 
           cout << '\n'; 
       } 
   } while (next_permutation(v.begin(), v.end())); 

 
  return 0; 
} 

 

 

And so after we compile and execute the code we can see the 

result when we input 𝑛 = 4: 

 

 
Figure 10. The result of every permutation on the 4-th 

Derangement using the C++ implementation code. 

 

Note that it might not be a good idea to input a large number 

on this particular code, because this code works on 𝑂(𝑁!) Time 

Complexity which is quite slow, so it might be good to input only 

𝑛 ≤ 11. 

 

V.   CONCLUSION 

With The inclusion-exclusion principle, we can solve many 

problems in mathematics regarding counting. One of that is The 

famous hat-check problem, a problem that asks for the 

probability that no person is given the correct hat back by a hat-

check person who gives the hat back randomly. 
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