

Application of Trees in Range Query with Fenwick
Tree and Segment Tree

Michel Fang 13518137

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
13518137@std.stei.itb.ac.id

Abstract—Range queries are queries in which you are asked to

gather information on the range asked, for example, the sum of a
subarray in an array of numbers. There are naive approach to
this simple problem, however these naive approach sometimes
will not suffice, mostly due to time complexity. In this paper, we’ll
see how we can transform ranges of these sub-array to be nodes in
a tree, then we can gain leverage of the natural structure of tree to
process range queries effectively, reducing time complexity. We
will take a look at two of the most well-known tree-based data
structure in processing range queries, and the basic notion behind
them.

Keywords—fenwick tree, range queries, segment tree, time

complexity.

I. INTRODUCTION

Range queries come up very often in computer science,
usually one kind of range queries is where we retrieve all
records of some value between an upper or lower boundary in
a database (list of records of employees biodata), and the other
is where we are asked to answer a certain characteristic of a
given range/subarray (minimum/maximum of a subarray, sum
of a subarray, consecutive xor of a subarray). In this paper,
we’ll discuss the latter type of range queries exclusively.

There are naive approach in answering such range queries,
such as iterating over the subarray asked and gathering the
relevant information needed. These methods, more often than
not, only suffice for one or few queries only, in multiple
queries, these approach will take a toll on time complexity.

Usually when using trees to optimize range queries, we
preprocess the array and then use the range as nodes in the tree,
and the actual array as leaves in the tree, the tree itself is
usually rooted, with the root representing the whole array.
Storing these preprocessed information and the tree sacrifices
space complexity in turn of time complexity, which more often
than not, is a better approach than the naive one. In this paper,
any code shown will be in C++.

II. BASIC THEORY

A. Graph
A graph is a representation of an object, consisting of two

sets, vertices (often called nodes) set and edge set. The vertices
is a nonempty set. Each edge has either one or two vertices
associated with it, called its endpoints [1]. Formally,

V , E)G = (
where V is a nonempty set of vertices, and E is a set of edges
(may be infinite).

In this paper, we will assume simple graphs, such graphs are
graphs with no different edge connected to the same two
vertex, and no edge connects a vertex to itself.

Figure 1. Simple graph and non simple graph [2]

Graphs can be directed and undirected. An undirected graph
is a graph in which its edge doesn’t have direction, the edges
indicate a two-way relationship between its connected vertices.
A directed graph is a graph in which its edge has a direction,
the edges indicate a one-way relationship between its
connected vertices [3].

Figure 2. Directed graph (left) and undirected graph (right) [3]

B. Tree

A tree is a connected, acyclic graph that consists of nodes n
and edges. Adding any distinct edge to the tree will n − 1
make the tree have a cycle, and removing an edge will make
the tree disconnected, dividing it into two sets of connected
vertices [4].

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2019/2020

Figure 3. A tree with 8 vertices [4]

In a rooted tree, one of the nodes is appointed as the root of
the tree, and all other nodes are placed underneath the root. In
this tree, the children of a node are its lower neighbours, while
the parent of a node is its upper neighbour. It is obvious that
each node has exactly one parent, and that the leaves of a tree
will not have any children. In the following figure, the tree is
rooted at vertice 1, and its leaves are vertices 5, 8, and 7.

Figure 4. A rooted tree [4]

C. Time Complexity

The time complexity of an algorithm estimates how much
time the algorithm will take for a given input. By calculating
time complexity, we can often find out whether the algorithm
is fast enough for solving a problem [4]. A time complexity is
denoted by , where the three dots represent some(...)O
function related to a given dimension, this notation is also
known as the Big-O notation.

If a code consists of single commands, its time complexity is
, these constant time operations are usually assignments,(1)O

arithmetic operations, or comparisons.
The time complexity of a loop estimates the number of times

the code inside the loop is executed. For example. the time
complexity of the following C++ code snippet is ,(n)O
assuming the operation inside the loop is (1)O
for (int i = 0; i < n; i++) {

 /* Constant operation */

}

In general, a nested for loops will have time complexity ofk
.(n)O k

By calculating time complexity, we can estimate how long
our algorithm will run. We will start with an estimation; a
modern processor can process operation in a second. So if0 1 8
our algorithm runs in , and , then our algorithm(n)O 2 0 n = 1 5

will approximately run in 100 seconds. Such estimation is key
in designing an algorithm with a constrained time limit. The
following table lists some common algorithm complexity
groups

Big-O Name

(1)O Constant

(log n)O Logarithmic

(n)O Linear

(n log n)O n log n

(n)O 2 Quadratic

(n)O 3 Cubic

(2)O n Exponential

(n!)O Factorial

Table 1. Common algorithm complexity groups

D. Binary Representation of Decimal Numbers

Binary numbers are written with only two symbols - 0 and 1.
For example, . Since symbols 0 and 1 are also a part 101a = 1
of the decimal system and in fact of a positional system with
any base, there's an ambiguity as to what 1101 actually stands
for. We usually write the base explicitly to avoid confusion,
like in or [5].101 a = 1 2 101 b = 1 10

The decimal number uses powers of 10, the number b
previously has a value of

 1b = 1 · 103 + · 102 + 0 · 101 + 1 · 100
101b = 1

The binary number uses powers of 2, the number previouslya
has a value of

 1a = 1 · 23 + · 22 + 0 · 21 + 1 · 20
3a = 1

III. THE PROBLEM

A. Sum Query
On an array with n elements, we are tasked to calculate

, which is the sum of elements from index toum (l, r)s q l
index in an array. Consider the following arrayr

Figure 5. Our input array [4]

in this example, .um (l, r) 4s q = 4 + 6 + 1 + 3 = 1
A simple approach is to iterate over until and sum up l r

all the values of the array

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2019/2020

int sum = 0

for (int i = l; i <= r; i++) {

 sum += array[i];

}

This approach works in time, if we have queries, (n)O q
then all queries will be processed in time, if and is (qn)O n q
large, then this approach will not suffice.

A better approach is to preprocess a prefix sum of the array,
and then answer the query in (1)O

Figure 6. Prefix sum array [4]

Preprocessing the prefix sum array can be done in linear time
for (int i = 0; i < n; i++) {

 if (i == 0) {

prefix[i] = array[i];

 } else {

 prefix[i] = prefix[i-1] + array[i];

 }

}

Then we can answer the query in with (1)O
inclusion-exclusion of the prefix sum array

um (l, r) ref ix[r] ref ix[l]s q = p − p − 1
with if is 0ref ix[l] 0 p − 1 = l

Assuming static queries; queries that do not alter the element
of the array, this approach is much better. We have an (n)O
precomputation of the prefix array, then for queries we q
answer in . If our queries involve updates however, then (q)O
we need to rebuild our prefix sum array, this update of the
prefix sum array will run in time, reverting back to the (n)O
slow time complexity.(qn)O

B. Min/Max Query

Same problem as the previous one, except we need to find
the minimum/maximum of elements in the range .l, r][

The same simple approach as before can be applied here;
instead of summing up the element over the range, we compare
the current element with the best minimum element so far, the
total time taken for queries is still .q (qn)O
int mn = array[l];

for (int i = l + 1; i <= r; i++) {

 mn = min(mn, array[i]);

}

Another approach is to preprocess all where is l, r][r − l + 1
a power of two [4]

l r in (l, r)m q

0 0 1

1 1 3

...

0 1 1

1 2 3

...

0 3 1

1 4 3

...

Table 2. Precomputed values for minimum query
Since there are range lengths that are powers of two, the og nl
total time taken to compute these values is , all of (n log n)O
these values can be computed with the following recurrence

 in (l, r) in(min (l, l), min (a , r))m q = m q + m − 1 q + m
where is .m r)/2(− l + 1

Answering the query can be done in as a minimum of (1)O
two precomputed values. Let be the greatest power of two k
that does not exceed the length of , thenl, r][

in (l, r) in(min (l, l), min (r , r))m q = m q + k − 1 q − k + 1
For example, consider the query in (1, 6)m q

Figure 7. Query over [1, 6] [4]

The largest power of two that doesn’t exceed 6 is 4, then the
range is the union of range [1,4] and [3,6]

 in (1, 6) in(min (1, 1), min (6 , 6))m q = m q + 4 − 1 q − 4 + 1
in (1, 6) in(min (1, 4), min (3, 6))m q = m q q

in (1, 6) in(3, 1)m q = m
in (1, 6)m q = 1

Same as the previous problem, this approach only works
nicely if we are tasked with static queries, if the queries
involve updates however, then we have to do the
precomputation process again, which is expensive.

IV. FENWICK TREE

A. Theory
Fenwick Tree, also known as Binary Indexed Tree (BIT) is a

data structure used to efficiently store information of an array,
supporting a update, and a query. The (log n)O (log n)O
implementation of a fenwick tree usually is in an array, whose
size is the same as the input array we are processing. The basic
idea of fenwick tree is the responsibility of each index of the
array. In our previous input array, each index is responsible for
the element at that index

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2019/2020

Figure 8. Index responsibility for an array

and in our prefix sum array, each index is responsible for thei
array elements from index to 0 i

Figure 9. Index responsibility for prefix sum array

The range of responsibility of a fenwick array depends on
the indexing convention, for an index :i

 0-based indexing: consider the range for i+1
 1-based indexing: consider the range for i itself
Suppose that the range of responsibility of an index i is

computed by the function . The function is the largest(i)p (i)p
power of two that divides the considered index for i, let’s see
how we can compute this value with an example of (5)p

consider 6 instead of 5 (since 0 based indexing)
6 = 01102

LSB(0110) = 00102

p(5) = 00102 = 2
index 5 is then responsible for 2 elements (itself, and the
elements before it), i.e. responsible for the range [4, 5]

Figure 9. Index 5 responsibility in Fenwick Tree

We can also compute p(i) with the following bit
manipulation

onsider i (if 0 based indexing)c = + 1
onsider i (if 1 based indexing)c =

(i) onsider & (− onsider)p = c c
Formally, for any index i, it is responsible for the range

.i (i) ,][− p + 1 i

index10 binary
considered

LSB Range

0 00012 00012=110 [0,0]

1 00102 00102=210 [0,1]

2 00112 00012=110 [2,2]

3 01002 01002=410 [0,3]

4 01012 00012=110 [4,4]

5 01102 00102=210 [4,5]

6 01112 00012=110 [6,6]

7 10002 10002=810 [0,7]

Table 3. Range of responsibility for indices of an array in
Fenwick Tree

Now we can formally define the value of the fenwick tree array
ree[i] (i (i) ,)t = sumq − p + 1 i

Figure 10. Fenwick Tree of an array

Notice that every index is responsible for k elements, where
k is a power of two. Using a fenwick tree, any value of

can be computed in time, since any range(0, i)sumq (log n)O
[0, i] can be divided into intervals, whose sums are og nl
stored in the fenwick tree. For example, we want to compute

(0, 6)sumq

Figure 10. Answering query (0, 6)sumq

The corresponding sum can be computed as follows
 (0,) (0,) (4,) (6,) sumq 6 = sumq 3 + sumq 5 + sumq 6

 (0,) 16 7sumq 6 = + 7 + 4 = 2
When updating an array value at index i, we also need to

update every indice k where is responsible for the ree[k]t
element in index . Suppose we are updating the element at i
index 2, then the highlighted boxes are the values that need to
be updated as well

Figure 11. Updating array at index 2

, , and need to be updated since theyree[2]t ree[3]t ree[7]t
cover . This operation takes time.rray[2]a (log n)O

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2019/2020

B. Implementation

We will allocate space for the fenwick tree array, whose size
is the same as our input array
array[n];

tree[n];

Then, we will implement function described previously(i)p
int p(int i) {

 int consider = i + 1; // if 0 based idx

 return (consider & -consider);

}

Now, we’ll implement (0,)sumq i
int sum(int i) {

 int ret = 0;

 while (i < n) {

 ret += tree[i];

 i += p(i);

 }

 return ret;

}

and how to update the value at index i
void add(int i, int val) {

//tree update after adding val to array[i]

 while (i < n) {

 tree[i] += val;

 i += p(i);

 }

}

To build the Fenwick Tree itself, we can fill the array reet
with zero, and pretend that we are updating each index with i
the value rray[i]a
for (int i = 0; i < n; i++) {

 tree[i] = 0;

}

for (int i = 0; i < n; i++) {

 add(i, array[i]);

}

To answer the query , we used the same um (l, r)s q
inclusion-exclusion trick as before
int query(int l, int r) {

 int incl = sum(r);

 int excl;

 if (l == 0) excl = 0;

 else excl = sum(l - 1);

 return incl - excl;

}

The query takes time, the update takes (log n)O (log n)O
time, and building the tree takes time. This is a (n log n)O
much better time complexity compared to the previous
approach, other than that, we can answer queries with updates
as well.

V. SEGMENT TREE

A. Theory
A segment tree is a perfect binary tree whose nodes

represent a range in an array, and the left child of a node
represents the first half of the range, and the right child
represents the second half of the range. The leaves of segment
tree represent the actual array itself

Figure 12. Segment tree of an array

The implementation of the segment tree is an array, whose
size is , if the size of the array is a power of two, and n2 − 1

otherwise; since the tree is a perfect binary tree, wen4 − 1
need to find the nearest power of two greater than the size of
the array if it’s not a perfect power of two, and build the tree
from there, we will consider the extra values as garbage when
we are dealing with updates and queries. In the figure, the
number below the range is the index of the node in the array
(e.g. range [0,7] corresponds to index 0, range [4,7]
corresponds to index 2, etc).

When building the tree, we need to traverse the tree in
postorder fashion (left-right-root) since a node’s value is
dependent on its children. The value of a node can be adjusted
to meet our needs, it can be the minimum/maximum or the sum
of its children. Since a node represents a range, then we can
store these values in these nodes, and access these nodes for
queries to come. Since the segment tree array is of size n2 − 1
or , and each node will be visited once, then building n4 − 1
the tree will take time.(n)O

To query a range , we start at the root and do this ql, qr][
procedure:

Let’s denote the range of the current nodel, r][
1. if is inside , then simply return the l, r][ql, qr][

value of the current node
2. if doesn’t intersect with , then we l, r][ql, qr][

return a value that will be ignored
3. if partially intersects with , then we l, r][ql, qr][

recursively repeat this procedure for the left child and
right child, and compute the value based on these
results

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2019/2020

Here is the visited state of the tree after we query range [2,4]

Figure 13. Visited state of the tree after query [2,4]

The green node’s range is inside [2,4], the blue node’s range
partially intersects [2,4], the red node’s range doesn’t intersect
with [2,4], and the grey node is unvisited during the search.

We return a garbage value when we visit a red node, this
garbage value can be 0 if we’re building a segment tree to
answer a sum range query, since it will not contribute to the
result, or an arbitrarily large/small value if we’re building a
segment tree to answer a minimum/maximum query (i.e. return
a really big value if we’re building a minimum query segment
tree, and vice versa), since we will take the
minimum/maximum respectively, this value will be ignored.
When we visit a green or a blue node, we do the procedure
mentioned before (see implementation for more details).

It can be proven that at each level, we only visit at most 4
nodes, since the level of the tree is , the complexity of og nl
the query process is , which is the same as (4 log n)O

.(log n)O
When we update an array at index , we also need to update i

the segment tree, this update process is similar to the update
process for fenwick tree; we update nodes that cover index . i
Suppose we are updating the array at index 2, then the green
nodes are the nodes that need to be updated

Figure 14. Visited state of the tree after updating index 2

We only visit one node per level in this update process, since
the level of the tree is , this update process takes og nl

 time.(log n)O

B. Implementation
First, we need to allocate a segment tree array with an

appropriate size, since in worst-case we’ll have a segment tree
array with elements, we’ll allocate that much in our n4 − 1
program
int array[n];
int tree[4*n];

To build the tree, we will implement a recursive procedure.
When we are at a leaf node, we simply assign the value of the
array to the node, if not, we combine the value of the children
to be the value of the node. We call the procedure build(0,

0, n-1) in our main program to build the entire tree.
void build(int v, int l, int r) {

 if (l == r) {

 tree[v] = array[l];

 } else {

 int m = (l + r) / 2;

 build(2*v + 1, l, m);

 build(2*v + 2, m + 1, r);

 tree[v]=combine(tree[2*v+1], tree[2*v+2]);

 }

}

The combine function above depends on what segment tree
we are building
int combine(int val_left, int val_right) {

 // for sum query

 return val_left + val_right;

 // for min query

 return min(val_left, val_right);

 // for max query

 return max(val_left, val_right);

}
The query will be a recursive function as well. We will call

the function query(0, 0, n-1, ql, qr)for a query
[ql, qr]
int query(int v, int l, int r, int ql, int qr) {

 if (ql <= l && r <= qr) {

 return tree[v];

 } else if (qr < l || ql > r) {

 return garbage_value;

 } else {

 int m = (l + r) / 2;

 int val_left = query(2*v + 1,l,m,ql,qr);

int val_right = query(2*v + 2,m+1,r,ql,

qr);

 return combine(val_left, val_right);

 }

}

The update procedure is similar to the build procedure
void update(int v, int l, int r, int idx, int val)

{

 if (l == r) {

 array[idx] += val;

 tree[v] += val;

 } else {

 int m = (l + r) / 2;

 if (l <= idx && idx <= m) {

 // idx lies in [l, m]

 update(2*v + 1,l,m,idx,val);

 } else {

 // idx lies in [m + 1, r]

 update(2*v + 2,m + 1,r,idx,val);

 }

 tree[v] = combine(tree[2*v+1],tree[2*v+2]);

 }

}

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2019/2020

VI. TESTING

We will compare the run time for each approach with
multiple test cases generated with Mike Mirzayanov’s test case
generator, the queries in these test cases involve update
queries, and the type of queries in these test cases are sum
queries

N Q Naive Preproce
ss

Fenwick Segment

10 10 0.004 s 0.001 s 0.001 s 0.001 s

100 100 0.008 s 0.001 s 0.001 s 0.001 s

10000 10000 0.115 s 0.112 s 0.030 s 0.035 s

100000 300000 132.965 s 187.328 s 0.742 s 0.635 s

Table 4. Runtime comparison of different approaches
We can see that the runtime greatly differs when the input

size is large. The naive and preprocess approach runs roughly
in , and the approach with query trees run roughly in (qn)O

.(q log n)O

VII. CONCLUSION

We reduced time complexity for multiple range queries with
the help of these query trees. These data structure can be
further utilized and modified to fit our needs, for example we
can find the Lowest Common Ancestor (LCA) of two nodes in
a graph utilizing these query trees, one of LCA’s applications
in real life is in analysis of multiple species and their lowest
common ancestor. This application of tree in solving a range
query problem is just one of many applications of tree in
computer science.

VIII. ACKNOWLEDGMENT

In this paper, the author thanks the Almighty God for His
grace and guidance so that the author is able to complete this
paper. The author also thanks Mrs. Harlili as a lecturer of
Discrete Mathematics IF2120. The author also thanks his
parents, his colleagues, and many other party related that has
helped in the creation of this paper directly or indirectly.
Lastly, the author apologizes for any mistakes in this paper.

REFERENCES

[1] K. H. Rosen, Discrete Mathematics and Its Applications, 7th ed. New
York: McGraw-Hill, 2012, pp. 641–802.

[2] Simple Graph. (n.d.). Retrieved December 5, 2019, from
http://mathworld.wolfram.com/SimpleGraph.html.

[3] Directed Graphs vs. Undirected Graphs. (n.d.). Retrieved December 5,
2019, from
https://www.educative.io/edpresso/directed-graphs-vs-undirected-graphs.

[4] A. Laaksonen, Guide to Competitive Programming. Switzerland:
Springer, 2017, pp. 122–128 and pp. 131.

[5] A. Bogomolny. (n.d.). History of the Binary System. Retrieved
December 3, 2019, from
http://www.cut-the-knot.org/do_you_know/BinaryHistory.shtml.

[6] https://github.com/MikeMirzayanov/testlib

STATEMENT

With this statement, I hereby declare that this thesis is a
product of my own, not an adaptation, a translation from

another person’s work, nor formed by result of plagiarizing.

Bandung, 5 Desember 2019

Michel Fang 13518137

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2019/2020

http://mathworld.wolfram.com/SimpleGraph.html
https://www.educative.io/edpresso/directed-graphs-vs-undirected-graphs
http://www.cut-the-knot.org/do_you_know/BinaryHistory.shtml
https://github.com/MikeMirzayanov/testlib

