

God’s Algorithm in The 2x2x2 Rubik’s Cube

Muhammad Mirza Fathan Al Arsyad - 13518111
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13518111@std.stei.itb.ac.id

Abstract—The Fabulous Rubik’s Cube. A simple idea yet
addicting. People all over the world are trying to solve the puzzle
toy. And then, solving is not enough for them. They started
something that we call the speedcubing, an act of solving the
Rubik’s Cube in the fastest way possible. According to the World
Cube Association (WCA), the current record time for the 3x3x3
sized cube is in unbelievably 3.47 seconds! The 2x2x2 sized
category is crazier, a Polish Cuber solved it in just 0.49 seconds,
which isn’t even a half second! How could that be possible?

Keywords—Cube, DFS, Graph, Permutation.

I. INTRODUCTION

The Rubik’s Cube (will be referred as ‘Cube’) was invented
by a Hungarian Architecture Professor, Erno Rubik in 1974.
Originally it is literally a cube-shaped toy, with 6 faces having
their own colour stickers. The original size 3x3x3 means that it
is 3 cubes in length, width, and height. The same thing is also
applied on the 2x2x2, 4x4x4, 5x5x5, and all nxnxn sized
Rubik. We can conclude that each face (which is square
shaped) has 3x3 cubes or 9 cubes, meaning these 9 little cubes
are covered by 9 stickers with the same colour. If that’s the
case, then the Cube is on the solved state. Else, it is the
unsolved state.

The Cube consists of rotatable layers, as shown in the
picture below. These rotatable layers make it possible for the
cube to have more than one colour in one face, which is the
unsolved state. This is why people are getting addicted to this
little toy. Finding a way to put the Cube in a solved state is
challenging yet fun, for those who love challenge. Once you
succeed, you are a solver.

The Solved State of an Original (3x3x3) Rubik’s Cube

Source: https://www.menkind.co.uk/cube

People are trying to be more than just a solver, once they
solve the Cube. They want to be fast. They compete with each
other.

The Rubik’s Cube are basically consist of states. One solved
state and the other are the unsolved states. And this states can
be stored inside a data structure called graph. This paper is
going to show how the 2x2x2 sized Rubik’s Cube can be
implemented in a graph.

Why graph? Because each state can be obtained from the
other state, by rotating the layers of the Rubik’s Cube, and it
shows how do those graph elements (the Cube’s states)
connected to each other. For example, in the picture below,
picture (b) state can be obtained by rotating one layer from the
picture (a) state (which is the solved state).

And then, we can find the shortest path between two nodes
(graph elements) with a traversal algorithm of graph, which is
going to be the Depth First Traversal.

(a) (b)
Figure 2. Example of state transition from (a) to (b)

Source: Online 2x2x2 Rubik Simulator
https://www.grubiks.com/puzzles/rubiks-mini-cube-2x2x2/

II. BACKGROUND ON GRAPH

A. Definition
A graph G = (V , E) consists of V , a nonempty set of

vertices (or nodes) and E, a set of edges. Each edge has either
one or two vertices associated with it, called its endpoints. An
edge is said to connect its endpoints. (From Reference[1]).
Simple graph, is a graph with no loop or parallel edges
connecting a pair of vertices.

B. Types Of Simple Graph

1. Complete Graphs

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2019/2020

https://www.menkind.co.uk/cube

A complete graph on n vertices, denoted by Kn, is
a simple graph that contains exactly one edge between
each pair of distinct vertices. If there’s any pair of
distinct vertex not connected by an edge is called
noncomplete.

2. Cycle
A cycle Cn, n ≥ 3, consists of n vertices v1, v2,..., vn and

edges {v1, v2}, {v2, v3},...,{vn−1, vn}, and {vn, v1} [1]. It’s
like a circle.

3. Tree
A Graph with no Circuit

4. Regular Graph
A Graph which consist of all vertices having the same number
of degrees. Degree of a vertex is the number of vertices that is
adjacent to a vertex.

And there are still many more but i think it would be

unnecessary to discuss every type of graph, because in the
Rubik’s Cube case we are going to need only regular graphs
because every vertice has the same degree.

C. Graph Representation

It’s easy for human to represent graph as like what we see in
pictures, using circles as nodes and lines as edges. As
computer store data using the binary numbers, we cannot
easily draw a graph in a computer We need another way that is
possible for the computer to ‘understand’ the graph we are
talking about. There are many methods, but the most well
known is the adjacency list and the adjacency matrix.

III. BACKGROUND ON THE RUBIK’S CUBE AND THEIR

ALGORITHMS

A. Possible Permutations
In the 2x2x2 Cube, there are 8 pieces of cubes. Therefore,

we can conclude that the number of possible permutations for
this kind of Cube is the factorial of eight or usually denoted as
8!.
But we’re not done yet. Each piece of cube has 3 possible
orientations, as shown in the figure below.

Figure 3.Each piece of 2x2x2 Rubik’s Cube has three faces

therefore, it has 3 possible orientations.
Source : solvemyrubikscube.com/images/corner-2300.png

Since those 8 pieces have 3 possible orientations, the total

possibilities can be calculated as 3 to the power of 8.
Therefore, combined with the 8!,

(C) 8!P = • 38

Where P(C) is the number of possible permutations of the
Cube. The number of P(C) would be 264539520 which is not a
bad number for computational problems. We’re going to
represent these permutations as the graph nodes.

B. Cube Algorithms

There are many possible ways to solve this Rubik’s Cube
Puzzle. Cubers called these ‘ways’ as ‘algorithm’, not to be
confused with the algorithm in the programming context.
Fundamentally, both of them (both the algorithm in the cube’s
context and the programming one) are a series of steps that are
needed in problem solving.

The algorithm has several conventions in writing their
notations. Each notation has their own meaning on what to be
done to the cube. Look at the figure below.

Figure 3. 3x3x3 Cube algorithms

Source : https://usercontent2.hubstatic.com/7997215_f520.jpg

The figure visualizes how does the algorithm work on a
3x3x3 Cube. Those U, D, L, R, F, B, E, M, S stand for Up,
Down, Left, Right, Front, Back, Equator, Medium, and Slice
respectively, which are the layer that we’re rotating. In the
2x2x2 Cube that we’re discussing, it has nearly no difference.
The only difference is that in the 2x2x2 Cube we don’t have
the E, M, and S algorithm because we have no central layers in
the 2x2x2 Rubik’s Cube. It makes our task to solve the cube a
lot simpler than the 3x3x3 Cubes.

If you look at the figure above carefully, you would realize
one thing, that all U, D, L, R, F, E, M, S, B are turning the
Cube layer clockwise. How about the notations for the
anti-clockwise turns? It will be U’, D’, L’ R’, F’, and B’.
There’s even a notation about rotating a layer twice, which are
U2, D2, L2, R2, F2, and B2. We don’t need to make a
convention for rotating a layer three times clockwise because it
will definitely be the same as rotating them in the
anti-clockwise way, and vice versa.

These letters (U, L’, B2, and so on) is going to be our edge
in the graph which connect each state of the Cube’s condition.

C. How It Relate to Graph Problem

As already mentioned above, the node of the graph will
represent each possible state of the cube, which is the number
P(C). It is a regular graph since it’s nodes are all having the
same degree, which is 18. The number 18 obtained by counting
the possible move that can be done to the cube, which are the
U, U’, U2, R, R’, R2, L, L’, L2, D, D’, D2, F, F’, F2, B, B2,
and B’. These edges are connecting every possible state.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2019/2020

http://www.solvemyrubikscube.com/images/corner-2300.png
https://usercontent2.hubstatic.com/7997215_f520.jpg

Our task is to find the most optimal solution, which is the
‘God's Algorithm’ for each possible case in solving the 2x2x2
cube. Because the fewer steps you made in solving the cube,
the faster you are going to solve it.

IV. DEPTH-FIRST SEARCH

A. Definitions
Depth-first search (DFS) is an algorithm to traverse, or to

search on a graph data structure. The algorithm starts on the
node called a root, and explore the graph far as possible
through the edges, before backtracking.

B. Pseudocode and How it Works

In the following graph, as an example, we start the
search/traversal from the vertex 2. When we arrive in the
vertex 0, we have to find all adjacent vertices/neighbouring
vertices. Then check if it is visited or not. If it isn’t then we
visit that vertex. If it is, then we start to do the backtracking. A
DFS for the graph on the figure below will be 2, 0, 1, 3.

Figure 4. Depth First Search

Source:
geeksforgeeks.org/depth-first-search-or-dfs-for-a-graph

The pseudocode below is explaining how does the DFS work
briefly.
procedure DFS(G,v):
 vertex v is visited

for all nodes from v to w that are in

G.neighbor(v) do
 if vertex w is not visited then
 DFS(G,w)

C. Solving the Cube with DFS

We are going to need vertex to represent every state !8 • 38
of the Cube. Even though it is possible for the computer to
store all of them, it would be a waste of time if we have to
generate each state. We aren’t going to have the vertex of the
graph before implementing the DFS algorithm like the usual
graph problems due to that reason.

We are going to generate the graph with their node while
doing the search algorithm. It’s actually a bit different than the
pure DFS algorithm, but fundamentally, we implement the
concept of traversing a graph as deep as possible until either
we find the node that we are looking for or we are going too
far so that we have to stop the traversal because if it is too far

that it shouldn’t be the God’s Algorithm. We can limit the
number of vertices to be traversed to a certain number, let’s say
100, to prevent the possibilities of infinite recursions. (Let’s
say if we are traversing through a cyclic graph). The number
100 is reasonable and should be considered high enough
because first, even the most simple Cube algorithms such as
the LBL can solve the cube below that number of steps,
second, it's the ‘God's Algorithm’ so that if it takes 100 steps it
shouldn’t be it, third, if it’s possible for a human to put it into a
solved state in under a half second (a Polish Cuber Maciej
Czapiewski solved it in just 0.49 seconds, current record
holder for the 2x2x2 Cube), then how it could be possible to
make 100 moves in such a little amount of time?

Then if we are about to implement the concept of DFS to
traverse the vertices of Cube states, then doesn’t DFS have a
starting node called a root? Would we need that?

The answer is yes. The root vertices will be the solved state.
After assigning the solved state to the root of the graph
structure, then we start traversing all the states by doing some
rotations to the Cube such as R, L2, and so on. As mentioned
before, we are going to stop the traversal until we find the node
that we are looking for. What node is it? It’s the current Cube
state (the current situation that we are going to solve). After we
find the cube state that we are facing then the traversal has
come to its end.

Don’t forget that we have to store the number of vertices we
traverse so that the program knows how far it is from the
beginning vertex the solved state. If it arrives at the node that
we are looking for, then store the number of steps in an array.
If it doesn’t find the destination vertex until it comes to the
hundredth step, then store the 100 to the array. We will need at
least 18 for the array size since we have 18 kinds of slice
rotations (U, U2, U’, R, R2, and so on). Dynamic array would
be preferred since we are going to need many allocations so
that we can store it to the heap memory.

After that, we still have to traverse the vertices through
another path (edges or the Cube layer rotations). After the
array are all filled, then we will return the minimum value of
the array, which is the shortest path. Each step in finding the
current state from the starting solved state will also be
memorized in an array so that we know how can we solve the
cube in an efficient algorithm.

We will add another stop condition, which will happen if the
traversal arrives to the starting solved state to optimize the
program a bit.

We are solving the cube backward, by starting on something
that should be the destination. There’s also another difference
from the original DFS algorithm. The DFS won’t visit a node
that it has already visited in the previous traversal. It can't be
the case when we are solving a Rubik’s cube. DFS algorithm’s
main purpose is just to traverse all the element while we are
trying to find a vertice, and it’s a different thing.

D. Complexity Analysis

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2019/2020

https://en.wikipedia.org/wiki/Algorithm
https://www.geeksforgeeks.org/depth-first-search-or-dfs-for-a-graph/

Since there are 18 choices of neighboring vertices from the
root, and suppose the number of traversals is N, then there will
be traversal, which can be denoted the in the big-O 18N)O(2N
notations. This is another difference of this algorithm to solve
the 2x2x2 Cube and the original DFS, which has as it’s (|V |)O
complexity value in the big-O notation, where |V| is the
number of vertices in the graph data structure. We are actually
preventing that from happening because in our case, we will
have as the number of vertices and it is not a small !8 • 38
number, and seems to be a waste of memory.

V. IMPLEMENTATIONS IN C++ PROGRAM

In the C++, I construct an abstract data type called the
RUBIK, which is structed from another abstract data type
called SIDE. The RUBIK represent the current condition of the
cube, and SIDE represent the face of the Cube. For the color, I
made another program to modify the I/O interface colours so
that it can show colours even if it’s only a command line based
program.

a. The SIDE Data Type

typedef struct {
int TabSide[2][2];
int Left[2], Right[2], Up[2],

Down[2];
} SIDE;

Figure 5. SIDE Data Type
Source: Author

The SIDE data type is constructed from a 2 dimensional

array and some arrays. The TabSide is a two dimensional array
of integers to store the data of what colour the SIDE is. The
Left, Right, Up, and Down is representing the layers, that can
be twisted/rotated. Some selectors would also be needed to
make a more readable code.

#define Elmt(S,i,j) (S).TabSide[i][j]

#define Left(S) (S).Left

#define Right(S) (S).Right

#define Up(S) (S).Up

#define Down(S) (S).Down

Figure 6. SIDE Data Type Selectors
Source: Author

b. The RUBIK Data Type

typedef struct {
SIDE TOP;

SIDE DOWN;

SIDE RIGHT;

SIDE LEFT;

SIDE FRONT;

SIDE BACK;

} RUBIK;

Figure 7. The RUBIK data structure.
Source: Author

The RUBIK data type is constructed from 6 SIDEs, which

represent the 6 faces of a Rubik’s Cube (surely every cube has
6 faces). The SIDE name corresponds to the face it’s
representing, for example, SIDE DOWN is the down face/layer
of the Rubik’s cube, the SIDE LEFT is the left hand face/layer
of the Rubik’s cube, and so on. We would need to implement
selectors too, to make our code readable.

#define TOP(R) (R).TOP

#define DOWN(R) (R).DOWN

#define RIGHT(R) (R).RIGHT

#define LEFT(R) (R).LEFT

#define FRONT(R) (R).FRONT

#define BACK(R) (R).BACK
Figure 8. The RUBIK Selectors

Source : Author
c. Movement Algorithms

Movement such as rotations to the layers need to be
implemented to, like the R, or L, and so on. The figure below
shows an R algorithm

void R(RUBIK *Rb) {
int temp[2] = {Elmt(TOP(*Rb),0,1),

Elmt(TOP(*Rb),1,1)}; // top
Elmt(TOP(*Rb),0,1) =

Elmt(FRONT(*Rb),0,1);
Elmt(TOP(*Rb),1,1) =

Elmt(FRONT(*Rb),1,1);
Elmt(FRONT(*Rb),0,1) =

Elmt(DOWN(*Rb),0,1);
Elmt(FRONT(*Rb),1,1) =

Elmt(DOWN(*Rb),1,1);
 Elmt(DOWN(*Rb),0,1) =
Elmt(BACK(*Rb),0,1);

Elmt(DOWN(*Rb),1,1) =
Elmt(BACK(*Rb),1,1);

Elmt(BACK(*Rb),0,1) = temp[0];
Elmt(BACK(*Rb),1,1) = temp[1];

int temp2 = Elmt(RIGHT(*Rb),0,0);
Elmt(RIGHT(*Rb),0,0) =

Elmt(RIGHT(*Rb),1,0);
Elmt(RIGHT(*Rb),1,0) =

Elmt(RIGHT(*Rb),1,1);
Elmt(RIGHT(*Rb),1,1) =

Elmt(RIGHT(*Rb),0,1);
Elmt(RIGHT(*Rb),0,1) = temp2;

}

Figure 9 . The R procedure, or twisting the Right layer of the
cube in a clockwise direction.

Source: Author

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2019/2020

Fundamentally, it is no more than a series of swapping

procedures. At first, the right layer from the top side will be
stored in a temporary variable, and then the right layer of the
top side will be overwritten with the right layer elements in the
front side. The front side will be overwritten from the down
side, the down side from the back side and the values that were
previously stored in the temporary variable will be copied and
overwrite the back side right layer elements.

After that, we have to rotate the right face too, by swapping
it’s elements in a clockwise variable, by using the help of a
temporary variable as well.

The R’ algorithm, is equivalent to the R repeated three
times, and I implemented it only by repeating the R procedure
three times, as the figure shown below.

void r(RUBIK *Rb) {
/* The R' Algorithm */

R(Rb);

R(Rb);

R(Rb);

}

 Figure 10. The r procedure, which is turning the right layer
in an anti-clockwise direction, and it’s equivalent to repeating

the procedure R three times.
Source: Author

The R2 works in the same way, by just repeating the R

twice. It would be inefficient as the program would do
swapping assignment more than once. It would be more
efficient if we just swap it like how the R procedure works, but
this time, I am just trying to make the program shorter and
easier to debug. The other algorithms, L, U, D, and so on,
works in a similar manner, so it wouldn’t be necessary to show
the implementation in this paper.

d. Solving

And finally, the solving algorithm.

RUBIK Search;

RUBIK Problem;

int Solve(RUBIK *Search) {
vector<int> count

if (IsSameState(Problem, *Search)) {
/* State found! */

}

if !(IsSameState(Problem, *Search)) {
R(Search);

Solve(Search);

count[0]++;
r(Search); /* Back to the

previous state */

r(Search);

Solve(Search);

count[1]++;
R(Search);

/* .. The full code is at

github.com/mirzaalarsyad/Pocket-Cube-Solver

*/

}

return MinimumArray(count);
}

Figure 11 . The Rubik Solving Procedures.
Source: Author

The section IV.d. already explained a lot about the

algorithm. But as an additional brief explanations, the Search
RUBIK global variable is the RUBIK that we are going to use
as a comparison to the Problem, another RUBIK global
variable while we traverse the graph. The Search rubik is going
to be twisted and compared, and when the
IsSameState(Problem, *Search) returns a true value, it
means that the Search RUBIK is the same with the Problem
RUBIK and it means that the Cube is solved.
IsSameState(RUBIK Rb1, RUBIK Rb2) is nothing more
than an additional function that I’ve defined in another section
of the program which returns true if and only if Rb1 equals to
the Rb2. The Solve will return the minimum value of dynamic
array count. MinimumArray is another defined function that
returns an integer value, the minimum size of an array.

After several test cases, the program seems to return various
values, all below 20. Mostly between 15 to 19, sometimes
under 10. Which is considered to be the number of steps
required to finish the current state. The true ‘God’s Number’
for the 2x2x2 Rubik’s Cube is actually 11, based on the World
Cube Association. If it’s more than 11, then it’s inefficient, like
what I got in the test cases. This could be because there are
some other Cube Algorithm which isn’t implemented, like the
whole cube rotation (rotating the Cube’s orientation). And the
IsSameState(RUBIK Rb1, RUBIK Rb2) returns false
even if Rb1 and Rb2 are actually the same state, but in
different orientation. Let’s say, two solved Cubes are
considered different if one cube has the yellow face in the top
side, while the other has the red colour.

VI. CONCLUSION

The DFS is just an alternative to find the God’s Algorithm
to the Rubik’s Cube. While the number 11 is considered as the
number of maximum steps needed to solve a 2x2x2 Rubik’s
Cube, it makes sense if world class Cubers can solve in just 1
second or below.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2019/2020

VII. ACKNOWLEDGMENT

First, the author would like to thank God for giving the
author the ability and chance to finish the paper. The author
would also like to thank Ms. Fariska Zakhralativa, S.T., M.T..
as the lecturer of Discrete Mathematics for the guidance given
for this semester. In addition, the author would also thanks to
author’s parents, family, and everyone who supports the author
in finishing the paper.

REFERENCES

[1] K. H. Rosen, Discrete Mathematics and Its Applications, 7th Edition,
2013

[2] World Cube Association,
https://www.worldcubeassociation.org/ accessed December 6, 2019

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 6 Desember 2019

Muhammad Mirza Fathan Al Arsyad - 13518111

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2019/2020

https://www.worldcubeassociation.org/

