
 

Random Number Generator 
 

Petrus E. Manurung 13518110  
Program Studi Teknik Informatika  

Sekolah Teknik Elektro dan Informatika 
Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia  

elison.petrus@itb.ac.id 
 
 
 

 
Abstract—One use of discrete mathematics (number theory) is        

in making a computer program that can produce random         
numbers. However, because computers are deterministic systems,       
no computer can produce truly random numbers. Instead, what is          
used to generate ‘randomness’ is a modulo operation. This is          
called pseudo random ('false' randomness). 

 
Keywords—generate,mod, pseudo, random.  
 
 

I.   INTRODUCTION 

A random number is a number that cannot be predicted by           
an observer before it is generated. If the number is generated           
within the range [0, N-1], then its value cannot be predicted           
with any better probability than 1/N (this is true even if the            
observer is given all previously generated numbers).  

A cryptographic pseudo-random number generator (PRNG)      
is a mechanism that processes somewhat unpredictable inputs        
and generates pseudo-random outputs. If designed,      
implemented, and used properly, then even an adversary with         
enormous computational power should not be able to        
distinguish the PRNG output from a real random sequence. 

 
Picture 1. From Levente Buttyan. Illustration of pseudo         

random generator. 
A random number generator is an algorithm that, based on          

an initial seed or by means of continuous input, produces a           
sequence of numbers or respectively bits. We demand that this          
sequence appears “random” to any observer. 

This topic leads us to the question: What is random? Most            
people will claim that they know what randomness means, but          
if they are asked to give an exact definition they will have a             
problem doing so. In most cases terms like unpredictable or          
uniformly distributed will be used in the attempt to describe          
the necessary properties of random numbers. However, when        
can a particular number or output string be called unpredictable          
or uniformly distributed?  

In the context of random numbers and RNGs the notions of           
“real” random numbers and true random number generators        
(TRNGs) appear quite frequently. By real random numbers we         

mean the independent realizations of a uniformly distributed        
random variable, by TRNGs we denote generators that output         
the result of a physical experiment which is considered to be           
random, like radioactive decay or the noise of a semiconductor          
diode. In certain circumstances, RNGs employ TRNGs in        
connection with an additional algorithm to produce a sequence         
that behaves almost like real random numbers. 

 
Picture 2. From semanticscholar.org. Illustration of pseudo       

random generator. 
There are many ways of generating pseudo random         

number. One of them is  Linear Congruential Generator(LCG). 
 
 
 

II.  MODULO 

A modulo is an operation that gives the remainder of a           
division as the result. A modulo can be expressed in 

                              a mod n = p; 
where a and n are integer, an p is an integer >=0. 
Example: 

1. 27 mod (5) = 2  
2. 48 mod (7) = 6 

Here are the properties of modulo: 
1. Identity: 

 (a mod n) mod n = a mod n. 
 nx mod n = 0 for all positive integer values of x. 

If p is a prime number which is not a divisor of b, then              
abp−1 mod p = a mod p, due to Fermat's little           

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2019/2020 
 



theorem. 
2. Inverse: 

 [(−a mod n) + (a mod n)] mod n = 0. 
b−1 mod n denotes the modular multiplicative       
inverse, which is defined if and only if b and n are            
relatively prime, which is the case when the left hand          
side is defined: [(b−1 mod n)(b mod n)] mod n = 1. 

3. Distributive: 
 (a + b) mod n = [(a mod n) + (b mod n)] mod n. 
 ab mod n = [(a mod n)(b mod n)] mod n. 

4. Division (definition): a/b mod n = [(a mod n)(b−1         
mod n)] mod n, when the right hand side is defined           
(that is when b and n are coprime). Undefined         
otherwise. 
Inverse multiplication: [(ab mod n)(b−1 mod n)] mod        

n = a mod n. 
 
 

III.   LINEAR CONGRUENTIAL GENERATOR(LCG) 

As a first important class of elementary “classical”        
pseudo-random number generators we consider one-step      
recursive formulas that use linear congruences. They are very         
fast, have long periods, and their quality is easily analyzed due           
to their plain structure. 

This simple formula generates a sequence of pseudo-random        
numbers: 

        (1)Xn = AXn−1 + B. 
The recursive sequence (Xn)n∈N depends on four integer        

parameters: 
• the module m where m ≥ 2, 
• the multiplier A ∈ [0 . . . M − 1], 
• the increment B ∈ [0 . . . M − 1], 
• the initial value X0 ∈ [0 . . . M − 1]. 
We call this recursive formula a linear congruential        

generator, in the case B = 0 also a multiplicative generator, in            
the case B ≠ 0, a mixed congruential generator. Furthermore          
we call 

       S : Z/mZ −→ Z/mZ, S(X) = AX + B mod M. 
the generating function of the generator. Formula (1) then         

becomes 
Xn = S(Xn−1). 
Programming a congruential random generator is extremely       

easy, even in assembler languages. The algorithm works very         
fast. Moreover the pseudorandom numbers are good if the         
parameters m, a, b are suitably chosen. In contrast the choice of            
the initial value is unrestricted. This freedom allows a         
reasonable variation of the generated pseudo-random numbers. 

Use of the pseudo-random sequence as a bitstream for XOR          
encryption requires that we consider the initial value X0, or the           
complete parameter set (M, A, B, X0), as effective key, and           
keep it secret. 
Remarks and examples of LCG(from K. Pommerening): 
1. Since Xn may assume only m different values the sequence           
is periodic with a period length ≤ M; including a possible           
preperiod. 

 
2. Choosing A = 0 obviously doesn’t make sense. Also for A =             
1 we get a useless sequence, namely X0, X0 + B, X0 + 2B, X0               
+ 3B, . . ., that also mod m contains several regular            
subsequences. 
 
3. For M = 13, A = 6, B = 0, X0 = 1 we get the sequence 6, 10,                    
8, 9, 2, 12, 7, 3, 5, 4, 11, 1 of period length 12 that looks like a                  
fairly random permutation of the integers 1 to 12, despite the           
small module. 
 
4. Choosing the multiplier A = 7 instead of 6 we get a much              
less sympathic sequence: 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1. 
 
5. If A and M are coprime, then the sequence is purely periodic             
(no preperiod). For A mod M is invertible, hence AC ≡ 1 (mod             
M) for some C. Thus always Xn−1 = CXn − CB mod M. If              
Xµ+λ = Xµ with µ ≥ 1, then also Xµ+λ−1 = Xµ−1 etc., finally              
Xλ = X0. 
 
6. By induction we immediately get (2) Xk = X0 + (1 + A +         Ak       
· · · + ) · B mod M for all k—a definite warning about the    Ak−1             
poor randomness of the sequence: Formula (2) allows direct         
access to any element of the sequence. Note that the coefficient           
of b is (  − 1)/(A − 1) where the division is mod m.Ak  
 
7. Let m = and A be even. Then Xk = (1 + A + · · · + )    2e                 Ae−1  
· B mod M for all k ≥ e, hence, after a certain preperiod, the               
period has length 1. More generally common divisors of a and           
m reduce the period. We want to avoid this effect. 
 
8. Let d be a divisor of m. Then the sequence Yn = Xn mod D                
is the analogous congruential sequence for the module d,         
generated by the formula Yn = AYn−1 + B mod D. Hence the             
sequence (Xn), if considered mod D, has a period ≤ D that            
might be very short. 
 
9. This effect is especially inconvenient in the case of a power            
m = : Then the least significant bit of Xn has a period of  2e             
length at most 2, hence alternates between 0 and 1, or is            
constant. And the k least significant bits together have a period           
of at most .2k  
 
10. Thus a module m with many divisors, in particular a power            
of 2, has a serious handicap for random generation compared          
with a prime module. However the quality of the         
pseudo-random sequence is often sufficient for applications       
where the generated numbers are divided by m, that means, are           
used as pseudo-random reals in the interval [0, 1], and are           
rounded by several places at the right end. But in a           
cryptographic setting such numbers are virtually useless. 
 
 
 
LCG has a disadvantages of being ‘easily’ spotted periodic          

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2019/2020 
 



‘loop’, when used in small numbers. To counter this it is           
recommended to choose M: 
• M = that exhausts the 32 bit range and moreover is   232           
computationally efficient, 
• M = − 1 that is the maximum 32 bit integer, and   231            
computationally almost as efficient as a power of 2. Another          
advantage: This number is prime (claimed by Mersenne in         
1644, proved by Euler in 1772), and this enhances the quality           
of the pseudo-random sequence. More generally these       
arguments apply to Fermat primes  + 1 and Mersenne2k  
primes  − 1. The next prime of this kind is  − 1.2k 261  

 
Picture 3. From K.M. Uma Maheswari et al. Truly random          

vs Pseudo random.  
 

LCG example 1: 
Xn = f(Xn-1, Xn-2,...) 
Xn = 5Xn-1 + 1 (mod 16) 
Starting with X0=5: 
X1 = 5(5) + 1 (mod 16) = 26 (mod 16) = 10 
The first 32 numbers obtained by the above procedure 10, 3, 0, 
1, 6, 15, 12, 13, 2, 11, 8, 9, 14, 7, 4, 5 ,10, 3, 0, 1, 6, 15, 12, 13, 
2, 11, 8, 9, 14, 7, 4, 5. 
In this example there is periodic looping after 16 numbers. 
 
LCG example 2: 
Table below shows the first 100 members of a sequence that is            
generated with the module M = − 1 = 2147483647, the      231       
multiplier A = 397204094, the increment B = 0, and the initial            
value X0 = 58854338. The picture below illustrates the table.          
Here we cannot see any visible patterns because of the big           
numbers, not like previous example. 

 
Picture 4. From K. Pommerening. X axis is 0 to 100. Y axis is              
0 to  − 1.231  

 
Table for example 2. 

 

 

 

Picture 5. From Prof. Dr. Mesut Güneş Ch. 6 Random-Number 
Generation. Above is bad generator, below is the good one. 
Look at how random it is compared to the bad one. 
 
 
 
 

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2019/2020 
 



IV.   TRUE RANDOM NUMBER GENERATOR 

Unlike the pseudo random one, true random generates its         
random number from something that is really hard to model          
with mathematics. For example, www.random.org generates      
random number from observing the noise from the atmosphere.         
There is many thing that can generate true random beside noise           
from the atmosphere, such as thermal noise, photoelectric        
effect, and other phenomenon involving quantum properties.       
So because we observe, we cannot create any algorithm that          
can generate true random generator. But we create a hardware          
that observe these phenomenons, the, gather data from them         
thus creating true random number.  

 
REFERENCES 

[1] Prof. Dr. Mesut Güneş , Ch. 6 Random-Number Generation. 
[2] Gentle, J. E. (1998, 2003). Random Number Generation and Monte          

Carlo Methods.Springer-Verlag: NY. 
[3] Pommerening, K., Bitstream Ciphers, Ch 1.3 Linear Congruential        

Generator. 
[4] Dutang, Cristophe. et al. “A note on random number generation,” 2009. 
[5] Uma Maheswari, K. M..et al. “PSEUDO RANDOM NUMBER        

GENERATORS ALGORITHMS AND APPLICATION,” International     
Journal of Pure and Applied Mathematics, Volume 118 No. 22 2018,           
331-336. 

[6] https://www.random.org/randomness. 
 

 
PERNYATAAN 

Dengan ini saya menyatakan bahwa makalah yang saya tulis 
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan 

dari makalah orang lain, dan bukan plagiasi. 
 

Bandung, 5 Desember 2019  
 

 
 
 

Petrus E. Manurung 13518110 

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2019/2020 
 

http://www.random.org/

