
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2019/2020

Application of Edmonds-Karp Algorithm to Solve
Maximum Cardinality Bipartite Matching Problem

Morgen Sudyanto 13518093

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
13518093@std.stei.itb.ac.id

Abstract—In graph theory, a bipartite graph is a graph that can
be divided into two independent sets. A matching in a bipartite
graph is a set of edges chosen such that no two edges have a same
endpoint. In the maximum matching of a graph, we can find the
maximum number of edges in all possible matching sets. Maximum
Cardinality Bipartite Matching can be used to solve real world
assignment problems. In this paper, I will try to use the Edmonds-
Karp algorithm to determine the maximum matching of a bipartite
graph.

Keywords—graph, bipartite, maximum matching, edmonds-

karp algorithm.

I. INTRODUCTION

 Suppose you are a Human Resources Manager in a company.
There are many people working in your company and you have
some projects that need to be worked on. These people have
different sets of project preferences. Your job is to assign these
people to each of the projects, giving as many people their
preferred projects as possible.

This problem can be modeled as a bipartite graph, with the
first set containing all the workers and the second set containing
all the projects. The edges are each of the workers’ preferences.
In a correct matching, each worker will be assigned to one
preferred project. Thus, in a maximum matching, there will be a
maximum number of workers that are assigned to their preffered
projects.

II. THEORIES

A. Graph
A graph is an object consisting of two sets called its vertex

(node) set and edge set [1]. The vertex set is a nonempty set. The
edge set contains of two element subsets of the vertex set. The
edge set can also be empty. Two different vertices are adjacent
if and only if both of the vertices are contained in the edge set.
The word vertex and node will be interchangeably used in this
paper.

A graph can be undirected or directed. In an undirected graph,
the order of elements in the edge set doesn’t matter (i.e. {A, B}
= {B, A}). In a directed graph, the order of elements in the edge
set matter as it shows that there is an edge from one vertex to
another, but not the opposite.

A path leads from a vertex to another vertex through the edges

of the graph. A cycle is a path where the first and last vertex is
the same. A tree is a graph that does not contain any cycle.

Graph can be represented in many ways, such as adjacency
matrix, adjacency list, and graph diagram.

Figure 1. Different representations of a graph [2]

B. Bipartite Graph
A bipartite graph is a graph whose vertices can be partitioned

into two disjoint sets V1 and V2 and all edges (u, v) in the vertex
set has the property that u ∈ V1 and v ∈ V2 [3]. A graph is
bipartite if it is possible to color its vertices using two colors in
such a way that no adjacent vertices have the same color [4]. A
bipartite graph also has an interesting property: It could not have
a cycle with an odd number of edges.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2019/2020

Figure 2. Graph and its coloring [4]

C. Matching
A matching of a graph is a subset of edges such that no two

edges share the same vertex [3]. In the Maximum Cardinality
matching, we want to know the maximum number of edges that
we can take in our subset. There is also another type of matching
called Perfect Matching, where we can take all of the edges in
our edge set and still achieve a correct matching. Currently, we
are interested in Maximum Cardinality of a bipartite graph.

Figure 3. Maximum Cardinality matching of a bipartite

graph [4]

D. Flow Network
A flow network is a directed graph that contains two special

nodes: a source node with no incoming edges and a sink node
with no outgoing edges [4]. Each vertex in the graph are
connected using directed edges that has a specified capacity. In
each node, the incoming and outgoing flow has to be equal.

In a maximum flow problem, we need to find the maximum
number of flow that we can send from the source node to the
sink node while not exceeding the flow capacity in any edge.

Figure 4. Maximum flow of a flow network [5]

The Maximum Cardinality Bipartite Matching (MCBM)

problem can actually be reduced into a maximum flow problem.
We can call all the vertices in the first set as the “Left” vertices
and all the vertices in the second set as the “Right” vertices.
Then, we add two vertices, a source vertex and a sink vertex.
The source vertex will then be connected to all the left vertices
with a capacity of 1 and the sink vertex connected to all the right
vertices with a capacity of 1. All edges that connect the vertices

from the left set and the right set will also be given a capacity of
1. The maximum flow of the network is the maximum
cardinality of the graph. In order to see the selected edges, we
can “peek” at the flow of each edges. If the flow is 1, then the
edge is contained at the maximum cardinality matching set.

E. Ford Fulkerson Method
Ford Fulkerson method is an iterative algorithm that

repeatedly finds augmenting path: a path from source vertex to
sink vertex that passes through positive weighted edges in the
residual graph [3]. A residual graph is a graph that contains the
remaining capacity of an edge after some flow pass through it.
After finding an augmenting path, Ford Fulkerson method will
decrease the capacity of forward edges and increase the capacity
of backward edges along path the augmenting path.

This method decreases the capacity of forward edges because
by sending a flow through an augmenting path, we will decrease
the remaining capacities of the forward edges. The increasing of
backward edges capacity allows the algorithm to cancel some of
the capacity used in previous iterations (maybe wrong
augmenting paths have been chosen before). In finding the
augmenting path, we can use the Breadth First Search algorithm
or the Depth First Search algorithm.

An implementation of the Ford Fulkerson method that uses
Depth First Search to find augmenting paths has a complexity of
O(mf * E) where mf is the maximum flow of the flow network
and E is the number of edges. This is clearly not a really good
complexity, especially if the maximum flow may balloon to
increasingly large numbers, even though there is only a small
amount of edges.

Figure 5. Ford Fulkerson Method in finding maximum flow

of a flow network [3]

F. Edmonds-Karp Algorithm
Edmonds-Karp algorithm was discovered by Jack Edmonds

and Richard Manning Karp. Edmonds-Karp algorithm uses
Breadth First Search to find the shortest path in terms of the
number of hops between the source vertex and the sink vertex.
Using the flow network in figure 5, Edmonds-Karp algorithm
only needs 2 paths, namely s-a-t and s-b-t, each sending 100
flows to obtain the maximum flow. BFS makes sure that the path
chosen would not be the longer path (s-a-b-t or s-b-a-t).

With this algorithm, all augmenting paths will be exhausted
after V * E iterations, where V is the number of vertices and E
is the number of edges in the flow network. As one BFS iteration
has a complexity of O (E), then the total complexity of this
algorithm is O (VE2). This means that the total runtime of the
algorithm only depends on the network size and not on
maximum flow.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2019/2020

III. SOLVING THE PROJECT ASSIGNMENT

PROBLEM

A. The Problem
This will be the same problem as stated in the introduction,

but with more details. There are N workers and M projects in a
company. Each worker (numbered from 1 to N) can only take
one project. Each project (numbered from 1 to M) can be
assigned to any number of workers, but with a maximum of Ai

workers. Furthermore, each worker has their preferred projects
(maybe they are more proficient in some programming
languages). This will be represented in a list L of pairs (w, p)
where w is the worker ID and p is the project ID. Find the
maximum number of workers that can get their preferred
project.

Example:
N = 5
M = 3
A = [1, 2, 2]
LSize = 8
L = [[1, 1], [1, 3], [2, 1] , [2, 3] , [3, 2] , [3, 3] , [4, 1] , [5, 2]]

Explanation:
There are 5 workers in the company and 3 projects. Project 1

has a maximum of 1 worker, and project 2 and 3 has a maximum
of 2 workers. Each worker’s preferences:

 Worker 1: Project 1 and 3
 Worker 2: Project 1 and 3
 Worker 3: Project 2 and 3
 Worker 4: Project 1
 Worker 5: Project 2

B. Greedy Solution
There is an obvious (but wrong) greedy solution to this

problem. We can greedily take the possible assignment, starting
from the projects with lower number. In the above example, we
will first assign project 1 to worker 1. Then, as we could not
assign project 1 to any more worker, we will assign project 3 to
worker 2. Next, we assign project 2 to worker 3. Now, we can
see that worker 4 could not be given any projects. Lastly, we
give project 2 to worker 5. We end up with four pairs of workers
working on a project.

Figure 6. Greedy project assignment

Why is this not optimal? If we observe closely, we can

actually give the first worker project 3. That way, worker 4
would be given a project – namely project 1.

Figure 7. Optimal project assignment

C. Modelling the Problem as a Flow Network
This problem can actually be modelled into a Maximum

Cardinality Bipartite Matching problem. Each project can be
given a label of 6 to 8 (6 = number of workers + 1 and 8 =
number of workers + number of projects). Then we add two
extra vertices, 0 and 9. Vertex 0 will act as a source and vertex
9 will act as a sink. We will add an edge with a capacity of 1 that
goes from the source vertex to all workers. Then, we also add an
edge with a capacity of Ai from each of the projects to the sink
vertex. Lastly, we connect all the workers with their preferred
projects and give a capacity of 1. Clearly, the workers and
projects make a bipartite graph. The flow network will be
something like this:

Figure 8. The modelled flow network – the edges without

number actually has a capacity of 1.

D. C++ Implementation
To solve this problem, I will use the C++ programming

language. The reason for this is because C++ has a lot of builtin
data structures and functions that can help in solving this
problem.

I. Global Variables

Figure 9. Global variables declared in my implementation

The explanation for each of the global variables are shown

below:

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2019/2020

 Capacity is a 2-D array that stores the capacity of each
edges that are present. The value of capacity[i][j] will
be zero if there is no edge that connects vertex i to
vertex j. This array will not be modified throughout the
maxflow algorithm.

 FlowPassed is a 2-D array that stores the amount of
flow that has passed through a particular edge. This
array is modified after every BFS iteration.

 Path_flow is a 1-D array that stores the amount of flow
that is allowed in a particular BFS iteration. This array
will be reinitialized at the start of every BFS iteration.

 Parent is a 1-D array that stores the parent of a
particular vertex. This allows the backtracking of an
augmenting path. This array will be reinitialized at the
start of every BFS iteration.

 Adj is a 1-D vector that stores the graph, represented as
an adjacency list. This will not be modified throughout
the maxflow algorithm, just like the capacity array.

The number 1005 is my assumption that the number of

workers and projects will not exceed 1000. This can be extended
for larger cases.

II. Maximum Flow Function

Figure 10. Maximum flow algorithm, the iterations of finding

augmenting paths are done by calling the BFS function
repeatedly

My maxflow function simply stores the result of all BFS

iterations. I made an intentionally “infinite” loop with a
while(true) statement. This loop is guaranteed to stop at some
point, as it had been proven that Edmonds-Karp algorithm will
stop after a maximum of V*E iterations. The parent array stores
the augmenting path so that I can backtrack through it from the
sink vertex to the source vertex, and modify the residual graph
accordingly. The number that is returned by this function is the
maximum flow of the flow network.

III. BFS Function

Figure 11. BFS Function for finding augmenting path of a

graph

This function will return the flow of an augmenting path and
shows the path itself (through the parent array). At the start of
this function, I initialized the parent and path_flow array to -1
and 0 respectively. Then, I used a built-in data structure named
queue to simulate the First In First Out nature of the BFS
algorithm. I marked the parent of source vertex with -2.
Actually, any negative number other than -1 will work. The
reason for this is because the source vertex has no parent and
should not be revisited by other vertices. I also give the
path_flow of the source node an arbitrarily large number, INF to
simulate the infinite flow in the source node. INF is actually
defined at the start of my program as 109 + 7. Of course, this
number is also based on my assumption that the maximum flow
of the network will not exceed that number, which is definitely
true, as the number of workers will obviously be lower than 1
billion.

Then, I run a modified BFS algorithm. This BFS algorithm
will save the parents of every chosen vertex. A vertex will also
available to be chosen if the flow is still strictly lower than the

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2019/2020

capacity. After choosing a vertex, I gave a flow of that particular
vertex the minimum of the current vertex and the allowed flow
in that particular edge. I returned the flow of the sink vertex at
the end of our iteration.

IV. Main Program

Figure 12. Main program

This implementation of the main program is straightforward.

First, the program received the number of workers and projects
– denoted as N and M respectively. Then, I created a new vertex
named source and sink (0 and N+M+1). I connected the source
vertex to all the workers, giving each of the edges a capacity of
1. Next up is receiving the array A – the maximum of worker
assigned to one specific project. I did not save the array A, but I
directly add an edge that connects a project ID (N + i) to the sink
vertex, then asked the user to specify the value of Ai and that
value would be that edge’s capacity. After that, I read the
preference list of the workers. I add an edge that connects a
worker to a project ID and give it a capacity of 1.

Done! The flow network is now complete. All that’s left was
to run Edmonds-Karp algorithm by calling the maxflow
function. I then outputted the maxflow of that flow network. In
order to obtain the correct assignments, I looked at the
flowPassed array (only the edges that connects the workers and
project IDs). If the value of that edge is 1, then that edge is
selected to be inside the Maximum Cardinality Bipartite
Matching set. Note that if the edge is not present in the edge set,
its value would be zero – it would be taken.

I also commented the first line and the third last line of my
program. Those lines are used for debugging purposes - finding
the total time taken used by my program. This program will not
be outputting a non-preferred assignment.

E. Running the Program
We will now run the program, using the example in section III

A.

Figure 13. Running the example

Figure 14. The maximum flow of the example case – edges
colored black, green and red has a final flow of 0, 1 and 2

respectively

Figure 15. The resulting flow graph – rows represent workers

and columns represent projects

With the greedy solution, we obtained the matching set of 4
elements. With the maximum flow solution, we obtained the

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2019/2020

maximum matching of 5 elements. Although this seemed to be
unimpressive, this improvement scales – meaning that if there
are 10000 employees in a particular company, a 20% increase
translates into 2000 more employees getting the projects they
prefer, thus increasing the performance of that particular
company.

IV. TESTING

In order to find out the performance of my program, I created
several test cases of different N, M and L value, and various A
constraints. The test cases are as follows:

1. N = 5, M = 3, L = 8 (Example)
2. N = 50, M = 50, L = 50, 1 <= Ai <= 2
3. N = 50, M = 50, L = 50, 1 <= Ai <= 100000
4. N = 1000, M = 50, L = 10000, Ai = 1
5. N = 50, M = 1000, L = 10000, Ai = 1
6. N = 500, M = 500, L = 250000, 1 <= Ai <= 2
7. N = 500, M = 500, L = 500, 1 <= Ai <= 5

The testcases are generated using Mike Mirzayanov’s testlib

framework [6] with a seed of 682120. All test data, generator,
source code and output can be accessed in my GitHub
repository: https://github.com/moondemon68/MCBM.

The result of the testing phase are as follows:
Testcase N M L Ai Time (s)
1 5 3 8 1 – 2 0.000
2 50 50 50 1 – 2 0.000
3 50 50 50 1 –

100000
0.000

4 1000 50 10000 1 0.015
5 50 1000 10000 1 0.015
6 500 500 250000 1 – 5 0.359
7 500 500 500 1 – 5 0.000

Table 1. Runtime comparison for several testcases

As we can see from the table above, the only variable that
affects the runtime of the program is the number of preferences.
There are two possible causes for this. First, it takes a longer
time to read the input if the number of preferences is high.
Second, the algorithm’s complexity is O(VE2), and the value of
E increases as L increases.

V. CONCLUSION

This project assignment problem is just one out of many other
applications of the Maximum Cardinality Bipartite Matching
Problem. Other than Edmond-Karp algorithm, there are some
more maximum flow algorithms that can solve this type of
problems, such as Dinic, Hopcroft Karp, Edmonds’s Matching.
These algorithms can solve a more generalized version of
Maximum Cardinality Matching, where the graph may not be
bipartite.

VI. ACKNOWLEDGMENT

Firstly, author thanks God for His blessings in helping me
finish this paper.

Author thanks Mrs. Fariska Zakhralativa, M. T as the lecturer

of the IF2120 – Discrete Mathematics course for the guidance
and knowledge that she shared.

Author also thanks my colleagues for all the support and
inspiration that they had given.

Lastly, author apologizes if there are any intentional or
unintentional mistakes in this paper.

REFERENCES

[1] Trudeau, Richard J. Introduction to Graph Theory. New York: Dover
Publications. Accessed on December 3, 2019 from
https://books.google.co.id/books?id=eRLEAgAAQBAJ.

[2] Barnwal, Aashish. Graph and Its Representations. Accessed on December
3, 2019 from https://www.geeksforgeeks.org/graph-and-its-
representations/.

[3] Halim, Steven and Halim, Felix. Competitive Programming 3. Singapore:
Lulu.

[4] Laaksonen, Antti. Guide to Competitive Programming. Switzerland:
Springer.

[5] Halim, Steven. Visualgo. Accessed on December 4, 2019 from
https://visualgo.net/en/maxflow.

[6] Mirzayanov, Mike. Testlib. Accessed on December 4, 2019 from
https://github.com/MikeMirzayanov/testlib.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 4 Desember 2019

Morgen Sudyanto 13518093

