
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2019/2020 
 

Application of Edmonds-Karp Algorithm to Solve 
Maximum Cardinality Bipartite Matching Problem 

 
Morgen Sudyanto 13518093  

Program Studi Teknik Informatika  
Sekolah Teknik Elektro dan Informatika 

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia  
13518093@std.stei.itb.ac.id 

 
 
 

Abstract—In graph theory, a bipartite graph is a graph that can 
be divided into two independent sets. A matching in a bipartite 
graph is a set of edges chosen such that no two edges have a same 
endpoint. In the maximum matching of a graph, we can find the 
maximum number of edges in all possible matching sets. Maximum 
Cardinality Bipartite Matching can be used to solve real world 
assignment problems. In this paper, I will try to use the Edmonds-
Karp algorithm to determine the maximum matching of a bipartite 
graph. 
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I.   INTRODUCTION 

 Suppose you are a Human Resources Manager in a company. 
There are many people working in your company and you have 
some projects that need to be worked on. These people have 
different sets of project preferences. Your job is to assign these 
people to each of the projects, giving as many people their 
preferred projects as possible. 

This problem can be modeled as a bipartite graph, with the 
first set containing all the workers and the second set containing 
all the projects. The edges are each of the workers’ preferences. 
In a correct matching, each worker will be assigned to one 
preferred project. Thus, in a maximum matching, there will be a 
maximum number of workers that are assigned to their preffered 
projects. 

 
II.  THEORIES 

A. Graph 
A graph is an object consisting of two sets called its vertex 

(node) set and edge set [1]. The vertex set is a nonempty set. The 
edge set contains of two element subsets of the vertex set. The 
edge set can also be empty. Two different vertices are adjacent 
if and only if both of the vertices are contained in the edge set. 
The word vertex and node will be interchangeably used in this 
paper. 

A graph can be undirected or directed. In an undirected graph, 
the order of elements in the edge set doesn’t matter (i.e. {A, B} 
= {B, A}). In a directed graph, the order of elements in the edge 
set matter as it shows that there is an edge from one vertex to 
another, but not the opposite. 

A path leads from a vertex to another vertex through the edges 

of the graph. A cycle is a path where the first and last vertex is 
the same. A tree is a graph that does not contain any cycle. 

Graph can be represented in many ways, such as adjacency 
matrix, adjacency list, and graph diagram. 

 

 
 

 
 

 
 

Figure 1. Different representations of a graph [2] 
 

B. Bipartite Graph 
A bipartite graph is a graph whose vertices can be partitioned 

into two disjoint sets V1 and V2 and all edges (u, v) in the vertex 
set has the property that u ∈ V1 and v ∈ V2 [3]. A graph is 
bipartite if it is possible to color its vertices using two colors in 
such a way that no adjacent vertices have the same color [4]. A 
bipartite graph also has an interesting property: It could not have 
a cycle with an odd number of edges. 

 



Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2019/2020 
 

 
Figure 2. Graph and its coloring [4] 

 
C. Matching 
A matching of a graph is a subset of edges such that no two 

edges share the same vertex [3]. In the Maximum Cardinality 
matching, we want to know the maximum number of edges that 
we can take in our subset. There is also another type of matching 
called Perfect Matching, where we can take all of the edges in 
our edge set and still achieve a correct matching. Currently, we 
are interested in Maximum Cardinality of a bipartite graph. 

 

 
Figure 3. Maximum Cardinality matching of a bipartite 

graph [4] 
 

D. Flow Network 
A flow network is a directed graph that contains two special 

nodes: a source node with no incoming edges and a sink node 
with no outgoing edges [4]. Each vertex in the graph are 
connected using directed edges that has a specified capacity. In 
each node, the incoming and outgoing flow has to be equal. 

In a maximum flow problem, we need to find the maximum 
number of flow that we can send from the source node to the 
sink node while not exceeding the flow capacity in any edge. 

 

 
Figure 4. Maximum flow of a flow network [5] 

 
The Maximum Cardinality Bipartite Matching (MCBM) 

problem can actually be reduced into a maximum flow problem. 
We can call all the vertices in the first set as the “Left” vertices 
and all the vertices in the second set as the “Right” vertices. 
Then, we add two vertices, a source vertex and a sink vertex. 
The source vertex will then be connected to all the left vertices 
with a capacity of 1 and the sink vertex connected to all the right 
vertices with a capacity of 1. All edges that connect the vertices 

from the left set and the right set will also be given a capacity of 
1. The maximum flow of the network is the maximum 
cardinality of the graph. In order to see the selected edges, we 
can “peek” at the flow of each edges. If the flow is 1, then the 
edge is contained at the maximum cardinality matching set. 

 
E. Ford Fulkerson Method 
Ford Fulkerson method is an iterative algorithm that 

repeatedly finds augmenting path: a path from source vertex to 
sink vertex that passes through positive weighted edges in the 
residual graph [3]. A residual graph is a graph that contains the 
remaining capacity of an edge after some flow pass through it. 
After finding an augmenting path, Ford Fulkerson method will 
decrease the capacity of forward edges and increase the capacity 
of backward edges along path the augmenting path. 

This method decreases the capacity of forward edges because 
by sending a flow through an augmenting path, we will decrease 
the remaining capacities of the forward edges. The increasing of 
backward edges capacity allows the algorithm to cancel some of 
the capacity used in previous iterations (maybe wrong 
augmenting paths have been chosen before). In finding the 
augmenting path, we can use the Breadth First Search algorithm 
or the Depth First Search algorithm. 

An implementation of the Ford Fulkerson method that uses 
Depth First Search to find augmenting paths has a complexity of 
O(mf * E) where mf is the maximum flow of the flow network 
and E is the number of edges. This is clearly not a really good 
complexity, especially if the maximum flow may balloon to 
increasingly large numbers, even though there is only a small 
amount of edges. 

 
Figure 5. Ford Fulkerson Method in finding maximum flow 

of a flow network [3] 
 

F. Edmonds-Karp Algorithm 
Edmonds-Karp algorithm was discovered by Jack Edmonds 

and Richard Manning Karp. Edmonds-Karp algorithm uses 
Breadth First Search to find the shortest path in terms of the 
number of hops between the source vertex and the sink vertex. 
Using the flow network in figure 5, Edmonds-Karp algorithm 
only needs 2 paths, namely s-a-t and s-b-t, each sending 100 
flows to obtain the maximum flow. BFS makes sure that the path 
chosen would not be the longer path (s-a-b-t or s-b-a-t).  

With this algorithm, all augmenting paths will be exhausted 
after V * E iterations, where V is the number of vertices and E 
is the number of edges in the flow network. As one BFS iteration 
has a complexity of O (E), then the total complexity of this 
algorithm is O (VE2). This means that the total runtime of the 
algorithm only depends on the network size and not on 
maximum flow. 
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III.   SOLVING THE PROJECT ASSIGNMENT 

PROBLEM 

A. The Problem 
This will be the same problem as stated in the introduction, 

but with more details. There are N workers and M projects in a 
company. Each worker (numbered from 1 to N) can only take 
one project. Each project (numbered from 1 to M) can be 
assigned to any number of workers, but with a maximum of Ai 

workers. Furthermore, each worker has their preferred projects 
(maybe they are more proficient in some programming 
languages). This will be represented in a list L of pairs (w, p) 
where w is the worker ID and p is the project ID. Find the 
maximum number of workers that can get their preferred 
project. 

Example: 
N = 5 
M = 3 
A = [1, 2, 2] 
LSize = 8 
L = [[1, 1], [1, 3], [2, 1] , [2, 3] , [3, 2] , [3, 3] , [4, 1] , [5, 2]] 
 
Explanation: 
There are 5 workers in the company and 3 projects. Project 1 

has a maximum of 1 worker, and project 2 and 3 has a maximum 
of 2 workers. Each worker’s preferences: 

 Worker 1: Project 1 and 3 
 Worker 2: Project 1 and 3 
 Worker 3: Project 2 and 3 
 Worker 4: Project 1 
 Worker 5: Project 2 

 
B. Greedy Solution 
There is an obvious (but wrong) greedy solution to this 

problem. We can greedily take the possible assignment, starting 
from the projects with lower number. In the above example, we 
will first assign project 1 to worker 1. Then, as we could not 
assign project 1 to any more worker, we will assign project 3 to 
worker 2. Next, we assign project 2 to worker 3. Now, we can 
see that worker 4 could not be given any projects. Lastly, we 
give project 2 to worker 5. We end up with four pairs of workers 
working on a project. 

 

 
Figure 6. Greedy project assignment 

 
Why is this not optimal? If we observe closely, we can 

actually give the first worker project 3. That way, worker 4 
would be given a project – namely project 1. 

 

 
Figure 7. Optimal project assignment 

 
C. Modelling the Problem as a Flow Network 
This problem can actually be modelled into a Maximum 

Cardinality Bipartite Matching problem. Each project can be 
given a label of 6 to 8 (6 = number of workers + 1 and 8 = 
number of workers + number of projects). Then we add two 
extra vertices, 0 and 9. Vertex 0 will act as a source and vertex 
9 will act as a sink. We will add an edge with a capacity of 1 that 
goes from the source vertex to all workers. Then, we also add an 
edge with a capacity of Ai from each of the projects to the sink 
vertex. Lastly, we connect all the workers with their preferred 
projects and give a capacity of 1. Clearly, the workers and 
projects make a bipartite graph. The flow network will be 
something like this: 

 
Figure 8. The modelled flow network – the edges without 

number actually has a capacity of 1. 
 

D. C++ Implementation 
To solve this problem, I will use the C++ programming 

language. The reason for this is because C++ has a lot of builtin 
data structures and functions that can help in solving this 
problem. 

 
I. Global Variables 

 

 
Figure 9. Global variables declared in my implementation 

 
The explanation for each of the global variables are shown 

below: 
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 Capacity is a 2-D array that stores the capacity of each 
edges that are present. The value of capacity[i][j] will 
be zero if there is no edge that connects vertex i to 
vertex j. This array will not be modified throughout the 
maxflow algorithm. 

 FlowPassed is a 2-D array that stores the amount of 
flow that has passed through a particular edge. This 
array is modified after every BFS iteration. 

 Path_flow is a 1-D array that stores the amount of flow 
that is allowed in a particular BFS iteration. This array 
will be reinitialized at the start of every BFS iteration. 

 Parent is a 1-D array that stores the parent of a 
particular vertex. This allows the backtracking of an 
augmenting path. This array will be reinitialized at the 
start of every BFS iteration. 

 Adj is a 1-D vector that stores the graph, represented as 
an adjacency list. This will not be modified throughout 
the maxflow algorithm, just like the capacity array. 

 
The number 1005 is my assumption that the number of 

workers and projects will not exceed 1000. This can be extended 
for larger cases. 

 
II. Maximum Flow Function 

 

 
Figure 10. Maximum flow algorithm, the iterations of finding 

augmenting paths are done by calling the BFS function 
repeatedly 

 
My maxflow function simply stores the result of all BFS 

iterations. I made an intentionally “infinite” loop with a 
while(true) statement. This loop is guaranteed to stop at some 
point, as it had been proven that Edmonds-Karp algorithm will 
stop after a maximum of V*E iterations. The parent array stores 
the augmenting path so that I can backtrack through it from the 
sink vertex to the source vertex, and modify the residual graph 
accordingly. The number that is returned by this function is the 
maximum flow of the flow network. 

 
III. BFS Function 

 

 

 
Figure 11. BFS Function for finding augmenting path of a 

graph 
 

This function will return the flow of an augmenting path and 
shows the path itself (through the parent array). At the start of 
this function, I initialized the parent and path_flow array to -1 
and 0 respectively. Then, I used a built-in data structure named 
queue to simulate the First In First Out nature of the BFS 
algorithm. I marked the parent of source vertex with -2. 
Actually, any negative number other than -1 will work. The 
reason for this is because the source vertex has no parent and 
should not be revisited by other vertices. I also give the 
path_flow of the source node an arbitrarily large number, INF to 
simulate the infinite flow in the source node. INF is actually 
defined at the start of my program as 109 + 7. Of course, this 
number is also based on my assumption that the maximum flow 
of the network will not exceed that number, which is definitely 
true, as the number of workers will obviously be lower than 1 
billion. 

Then, I run a modified BFS algorithm. This BFS algorithm 
will save the parents of every chosen vertex. A vertex will also 
available to be chosen if the flow is still strictly lower than the 
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capacity. After choosing a vertex, I gave a flow of that particular 
vertex the minimum of the current vertex and the allowed flow 
in that particular edge. I returned the flow of the sink vertex at 
the end of our iteration. 

 
IV. Main Program 

 

 

 
Figure 12. Main program 

 
This implementation of the main program is straightforward. 

First, the program received the number of workers and projects 
– denoted as N and M respectively. Then, I created a new vertex 
named source and sink (0 and N+M+1). I connected the source 
vertex to all the workers, giving each of the edges a capacity of 
1. Next up is receiving the array A – the maximum of worker 
assigned to one specific project. I did not save the array A, but I 
directly add an edge that connects a project ID (N + i) to the sink 
vertex, then asked the user to specify the value of Ai and that 
value would be that edge’s capacity. After that, I read the 
preference list of the workers. I add an edge that connects a 
worker to a project ID and give it a capacity of 1. 

Done! The flow network is now complete. All that’s left was 
to run Edmonds-Karp algorithm by calling the maxflow 
function. I then outputted the maxflow of that flow network. In 
order to obtain the correct assignments, I looked at the 
flowPassed array (only the edges that connects the workers and 
project IDs). If the value of that edge is 1, then that edge is 
selected to be inside the Maximum Cardinality Bipartite 
Matching set. Note that if the edge is not present in the edge set, 
its value would be zero – it would be taken. 

I also commented the first line and the third last line of my 
program. Those lines are used for debugging purposes - finding 
the total time taken used by my program. This program will not 
be outputting a non-preferred assignment. 

 
E. Running the Program 
We will now run the program, using the example in section III 

A.  
 

 
Figure 13. Running the example 

 

 
Figure 14. The maximum flow of the example case – edges 
colored black, green and red has a final flow of 0, 1 and 2 

respectively 
 

 
Figure 15. The resulting flow graph – rows represent workers 

and columns represent projects 
 

With the greedy solution, we obtained the matching set of 4 
elements. With the maximum flow solution, we obtained the 
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maximum matching of 5 elements. Although this seemed to be 
unimpressive, this improvement scales – meaning that if there 
are 10000 employees in a particular company, a 20% increase 
translates into 2000 more employees getting the projects they 
prefer, thus increasing the performance of that particular 
company. 

 
IV.   TESTING 

In order to find out the performance of my program, I created 
several test cases of different N, M and L value, and various A 
constraints. The test cases are as follows: 

1. N = 5, M = 3, L = 8 (Example) 
2. N = 50, M = 50, L = 50, 1 <= Ai <= 2 
3. N = 50, M = 50, L = 50, 1 <= Ai <= 100000 
4. N = 1000, M = 50, L = 10000, Ai = 1 
5. N = 50, M = 1000, L = 10000, Ai = 1 
6. N = 500, M = 500, L = 250000, 1 <= Ai <= 2 
7. N = 500, M = 500, L = 500, 1 <= Ai <= 5 

 
The testcases are generated using Mike Mirzayanov’s testlib 

framework [6] with a seed of 682120. All test data, generator, 
source code and output can be accessed in my GitHub 
repository: https://github.com/moondemon68/MCBM. 

 
The result of the testing phase are as follows: 
Testcase N M L Ai Time (s) 
1 5 3 8 1 – 2 0.000 
2 50 50 50 1 – 2 0.000 
3 50 50 50 1 – 

100000 
0.000 

4 1000 50 10000 1 0.015 
5 50 1000 10000 1 0.015 
6 500 500 250000 1 – 5 0.359 
7 500 500 500 1 – 5 0.000 

Table 1. Runtime comparison for several testcases 
 

As we can see from the table above, the only variable that 
affects the runtime of the program is the number of preferences. 
There are two possible causes for this. First, it takes a longer 
time to read the input if the number of preferences is high. 
Second, the algorithm’s complexity is O(VE2), and the value of 
E increases as L increases. 

 
 

V.   CONCLUSION 

This project assignment problem is just one out of many other 
applications of the Maximum Cardinality Bipartite Matching 
Problem. Other than Edmond-Karp algorithm, there are some 
more maximum flow algorithms that can solve this type of 
problems, such as Dinic, Hopcroft Karp, Edmonds’s Matching. 
These algorithms can solve a more generalized version of 
Maximum Cardinality Matching, where the graph may not be 
bipartite. 
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