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Machine learning has taken its role in increasing the availability 

of repositories that answers a lot of disputations that are presented by 

the study of chemistry such as predicting mutagenicity, toxicity, and 

anti-cancer activity on three publicly available data sets. In this area, 

machine learning must be capable to define graphs that link covalent 

bonds. This is where graph kernels takes its part to process such 

connections in various sizes and structures.  Trials on graphs from 

chemical informatics show that these techniques are able to fasten 

computation by an order of magnitude or more. Kernels method is 

known not only for its accuracy and comparability throughout trials 

of datasets but also ability to speed up the process of computation. 
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I.   INTRODUCTION 

Computing chemical data used to involve many different 

tasks like clustering, regression, classification, or ranking, most 

of them are related to Structure-Activity Relationship (SAR) 

analysis, that is, finding a relationship between the structures of 

molecules and their activity. The term activity in this area refers 

to a particular biological property the molecules exhibit, such as 

their ability to bind to a particular biological target, their toxicity 

properties, or their Absorption, Distribution, Metabolism, and 

Excretion properties.  

Chemical problems that have been described as above 

learning often require the involvement of variable-sized 

structured data such as strings and orders, trees, and graphs that 

are supported by machine learning. These data, especially 

graphs, have their role on solving retrieval of documents, 

sequences of protein like DNA and RNA, and molecular 

structures. Machine learning helps in the presentation of such 

data in a structural manner to ease the extraction to find 

meaning, patterns, and regularities.  

 To see on the broader spectrum, machine learning methods 

have been utilized to process molecular data problems. Some of 

those methods are differentiated as inductive logic 

programming, genetic algorithm, graphical models, recursive 

neural networks, and kernel methods. This paper is going to 

pivot on the application of graph and the evolvement of kernel 

methods to define the role of informatics in the prediction of the 

toxicity and activity of chemical compounds. 

The graphical model approach is a probabilistic approach 

where random variables are associated with the nodes of a graph 

and in places the intertwinement of the graph is related to 

Markovian independence assumptions between variables. The 

graph here typically consists input nodes to reflect the structure 

of input data, hidden nodes that are associated with masked 

dynamics and context propagation, and output nodes linking to 

classification or regression tasks. The parameter of graphical 

modeled are supported by local conditional distributions of a 

node variable given its neighbor variable. These come in the 

form of translation-invariance assumptions in regularly 

structured graph such as linear chains, bounded degree trees, and 

lattices. 

Later, kernel methods came up as a formidable class of 

machine learning methods that are suitable for variable-size 

structured data. The fundamental idea of kernel methods is to 

construct a kernel based on input objects given to measure the 

similarity between them. This kernel can be seen as the inner 

product of the form k(u, v) = φ(u), φ(v) in an embedding feature 

space determined by the map. 

 
Fig. 1. Kernel method for comparison [1] 

 

Convex methods based on inner products that are computed 

via the kernel embedding space can tackle tasks such as 

regression and classification. 

 
Fig. 2. The kernel approach for classification [1] 

 

Thus, we can make use of kernel methods to answer problems 

like the prediction of toxicity, mutagenicity, and cancer rescue 

activity. 
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II. THEORY 

2.1   Kernel Methods 

Within machine learning, kernel methods are a class of 

algorithms in analyzing pattern to find and study general types 

of relations like clusters, rankings, principal components, 

correlations, and classifications in dataset. In contrast with 

another algorithm that also have means to solve such tasks, 

kernel methods only need a user-specified kernel over pairs of 

data points in raw representation. 

 

 

Fig. 3. Illustration of kernel methods. [2] 

 

Importantly, kernel methods handle non-linear complex tasks 

with linear methods in a new space. To fix the ideas, consider a 

classification problem with training set S = {(𝒖1, 𝑦1)... ( 𝒖𝑙 , 𝑦𝑙)}, 

(𝒖𝑖 , 𝑦𝑖) ∈ X ×Y, 𝑖 = 1..., where X is an inner-product space (e.g. 

Rd) with inner product denoted by ·, ·, and Y = {−1, +1}. In this 

setting, learning is the task of building a function 𝑓 ∈ YX from 

the training set S associating a class 𝑦 ∈ Y to a pattern  𝒖 ∈ X 

such that the generalization error of 𝑓 is as low as possible. 

The form 𝑓 can be simplified by the hyper plane 𝑓(𝒖) = sign 

(<𝒘, 𝒖 > + b), where sign (·) is the function returning the sign 

of its argument. The decision function 𝑓 outputs 𝑎 prediction 

depending on which side of the hyper plane w, u + b = 0 the 

input pattern u lies. Under reasonable assumptions discussed in 

the references, solving for the “best” hyper plane leads to a 

convex quadratic optimization problem such that the solution 

vector w is a (usually sparse) linear combination of the training 

vectors: w = ∑ 𝑎𝑖𝑦𝑖𝒖𝒊
𝑙
𝑖=1  for some 𝑎𝑖 ∈ R+ 𝑖,  = 1,...  

𝑓(𝒖) = sign  ∑ 𝑎𝑖𝑦𝑖 < 𝒖𝒊

𝑙

𝑖=1

, 𝒖 > +𝑏  

(1) 

Nevertheless, in complex classification problems, the set of 

all possible linear decision surfaces may not be lavish enough to 

supply adequate classification, no matter what the values of the 

parameters 𝒘 ∈ X and b ∈ ℝ are. The purpose of the kernel trick 

is precisely to overcome such limitation by applying a linear 

approach to the transformed data φ(𝒖𝒊),...,φ(𝒖𝒍) rather than the 

raw data. Here φ denotes an embedding function from the input 

space X to a feature space H, equipped with a dot product. Using 

the previous theorem, the separating function must now be of 

the form: 

𝑓(𝒖) = sign  ∑ 𝑎𝑖𝑦𝑖 < φ(𝒖𝒊)

𝑙

𝑖=1

, φ(𝒖) > +𝑏 

(2) 

The main point of kernels approach is to change the dot 

product in feature space with a kernel (u, i ) = < φ(𝒖), φ(𝒗) > 

utilizing the definition of positive definite kernels, Gram 

matrices, and Mercer’s theorem. 

 

Positive definite kernel: 

Let X be a nonempty space. Let k ∈ ℝ X ×X be a continuous 

and symmetric function. 𝑘 is a positive definite kernel if and 

only if for all ∈ N, for all 𝒖𝟏,..., 𝒖𝒍 ∈ ℝ, the square × matrix 𝐾 

= (𝑘(𝒖𝒊, 𝒖𝒋))𝑖≤𝑗≤𝑙 is positive semi-definite. For a given set 𝑆𝑢 = 

{𝒖𝟏,..., 𝒖𝒍}, K is called the Gram matrix of k with respect to 𝑆𝑢. 

Positive definite kernels are also referred to as Mercer kernels.  

Mercer’s property: 

 For any positive definite kernel function k ℝ ∈ X ×X , there 

exists a mapping φ ∈ 𝑯𝑥 into the feature space H equipped with 

the inner product ·, ·H, such that:  

∀u, v ∈ X k(u, v) = <φ(u), φ(v)>𝐻  

To summarize, the application of kernel methods need two 

independent modules such as module to compute the kernel and 

a module to compute the optimal manifold in feature space. The 

construction of efficient kernels in chemistry is an essential step 

to address the arduous problem like classifying compounds 

according to their properties. An efficient kernels for molecular 

structures can be represented by labeled and undirected graph of 

bonds with labels assigned to both nodes and edges. 

 

2.2.   Graph 

A graph G consists of an ordered set of n vertices V = 

{𝒗1, 𝒗2, … , 𝒗𝑛  }, and a set of directed edges E ⊂V×V.  

 

 

Fig. 4. Example of graph. [4] 

 

Each vertex has its own degree, which can be defined as the 

number of edges that meet with the vertex V. Degree of a vertex 

can be even or odd, depending on the amount of edges that it 

links. If the degree of a vertex is even, the vertex is called an 

even vertex. So goes the other way around. 

The degree of a graph is the largest degree owned by the 

vertices in that graph. In figure 4, the degree of the graph is 

represented by 3. 

In a graph, the sum of all the degrees of all vertices shall be 

equal to twice the number of edges. This is referring to the 

handshaking lemma theorem. 

A vertex 𝑣𝑖 , is said to be a neighbor of another vertex 𝑣𝑖 , if 
they are connected by an edge, that is, if (𝒗𝑖 , 𝒗𝑗) ∈ E; this is also 

denoted 𝒗𝑖∼𝒗𝑗  . This concept does not allow self-loops, that is, 

(𝒗𝑖 , 𝒗𝑖) ∉ E for any i. A walk of length k on G is a sequence of 

indices 𝑖0, 𝑖1, … , 𝑖𝑘 such that 𝒗𝑖𝑟−1 ∼ 𝒗𝑖𝑟  for all 1 ≤ r ≤ k. 

To show the connection between the nodes, an adjacency 

matrix is introduced to the game. It has a normalized cousin, 

defined A:=𝐴̅𝐷−1 , with the property that each of its columns 

sums to one, and it can therefore serve as the transition matrix 

for a stochastic process. Here, D is a diagonal matrix of node 
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degrees, that is, 𝐷𝑖𝑗= 𝑑𝑖 =∑𝑗  𝐴̅𝑖𝑗. A random walk on G is a 

process generating sequences of vertices 𝑣1, 𝑣2, … , 𝑣𝑛 

according to ℙ(𝑖𝑘+1|𝑖1... 𝑖𝑘+1) =𝐴𝑖𝑘+1𝑗𝑘, that is, the probability 

at vik of picking 𝒗𝑖𝑘+1 next is proportional to the weight of the 

edge (𝒗𝑖𝑘 , 𝒗𝑖𝑘+1). The 𝑡𝑡ℎ power of A thus describes t-length 

walks, that is, 𝐴𝑡
𝑖𝑗 is the probability of a transition from vertex 

𝑣𝑗 to vertex 𝑣𝑖 via a walk of length t. If 𝑝0 is an initial probability 

distribution over vertices, then the probability distribution 𝑝𝑡 

describing the location of our random walker at time t is 𝑝𝑡 = 

𝐴𝑡𝑝0. The 𝑗𝑡ℎ component of 𝑝𝑡 denotes the probability of 

finishing a t-length walk at vertex  𝑣𝑗 . 

The adjacency matrix A of G is defined as 

[A]ij = {1  if (𝑣𝑖  , 𝑣𝑗) ∈  E 

0
 

  

  
Fig. 5.  The Adjacency Matrix of a Graph [4] 

 

Graphs have a lot of properties that can differentiate 

themselves into several types such as: 

 

2.2.1. Null Graph 

This kind of graph has no edges. It is denoted by 𝑵𝑛. 

 
Fig. 6. Null Graph [4] 

2.2.2. Simple Graph 

A graph is considered as a simple graph if he graph is neither 

directed nor containing any loops or multiple edges. 

 
Fig. 7. Simple Graph [4] 

 

2.2..3. Multi-Graph 

When several edges between the same set of vertices are 

allowed, it is called Multi-graph.  

 
Fig. 8. Multi-Graph [4] 

 

2.2.4. Connected and Disconnected Graph 

A graph is connected if any two vertices of the graph are 

linked by a path; while a graph is disconnected if at least two 

vertices of the graph are not linked by a path. If a graph G is 

disconnected, then every maximal connected sub-graph 

of GG is called a connected component of the graph GG. 

 
Fig. 9. Connected and Disconnected Graph [4] 

 

   2.2.5. Regular Graph 

   Regular graph is a graph which vertices have the same 

degree. In a regular graph G of degree rr, the degree of each 

vertex of GG is r. 

 
Fig. 10. Regular Graph [4] 

 

   2.2.6. Complete Graph 

   A complete graph is a graph with every two vertices pair are 

connected by exactly one edge. The complete graph with n 

vertices is denoted by KnKn. 

 
Fig. 11. Complete Graph [4] 

 

   2.2.7. Cycle Graph 

   Cycle graph happens when a graph consists of a single cycle, 

The cycle graph with n vertices is denoted by CnCn. 

 
Fig. 12. Cycle Graph [4] 

2.3.    Tree 

Tree is a connected graph with no cycle. There exist a 

different path for each pair of vertices in graph G.  A tree with 

N number of vertices has (N−1) number of edges. The vertex 

which is of 0 degree is called root of the tree. The vertex which 

is of 1 degree is called leaf node of the tree and the degree of an 

internal node is at least 2.  
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Fig. 13. Tree [4] 

    2.3.1. Labeled Trees 

    Labeled tree is basically a tree whose vertices are signed 

unique numbers from 1 to n It can counted as  such trees for 

small values of n by hand so as to conjecture a general formula. 

The number of labeled trees of n number of vertices is n−2. 

Two labeled trees are isomorphic if their graphs are isomorphic 

and the corresponding points of the two trees have the same 

labels. 

 

 
   Fig. 14. .Labeled Trees [4] 

 

     2.3.2. Unlabeled Trees 

   An unlabeled tree is a tree the vertices of which are not 

assigned any numbers. The number of labeled trees of n 
number of vertices is (2n)!(n+1)!n! with nth as Catalan number. 

 

 
     Fig. 15. Unlabeled. Trees [4] 

 

    2.3.2. Rooted Tree 
   Rooted tree GG is a connected acyclic graph with a special 

node that is called the root of the tree and every edge directly or 

indirectly originates from the root. An ordered rooted tree is a 

rooted tree where the children of each internal vertex are 

ordered. When every internal vertex of a rooted tree has not 
more than m children, it is called an m-ary tree. If every internal 

vertex of a rooted tree has exactly m children, it is called a full 

m-ary tree. If m=2, the rooted tree is called a binary tree. 
 

 

 

 

 

 

 

 

Fig. 15. Labeled Tree [4] 

 

3.3.    Graph Kernels 

 Graph kernel is a kernel function that can compute an inner 

product on graphs. It can be intuitively understood as functions 

measuring pairs of graph’s similarity. 

  

3.3.1. Marginalized Graph Kernels 

Marginalized kernels define a global similarity measure by 

means of a simpler one expressed on auxiliary variables 

introduced in the problem. In our case, these latent variables 

consist of substructures of the graphs, and more precisely they 

are paths, which are easier to handle than sub-graphs. In labeled 

graphs, label sequences are associated with the paths of the 

graph, and their similarity is assessed by a string kernel. 

Moreover, paths are here considered as random walks, so that 

probability distributions are associated with the set of paths of 

the graphs. The kernel between two graphs is then defined as the 

expectation of the pairwise paths similarity, according to their 

probability distributions. 

 
Fig.15. Marginalized Graph Kernels Application in 

Chemical Compound [5] 

 

3.3.2    Type of Kernels 

.Graph Kernels later is differentiated into classes according to 

the existence of labeled pairs or labels sequences. 

 

3.3.2.1. Labeled Pairs Kernels 

For a graph G, let the vertex-label matrix L be the p × n matrix 

such that its (r, i)-coefficient 𝐿𝑟𝑖  is equal to 1 if and only if the 

label of vertex i is equal to 𝑙𝑟
𝑎.  

𝑘(𝐺1, 𝐺2) = 𝐿1 ∑ λ𝑖𝐸1
𝑖

∞

𝑖=0

𝐿1
′ , 𝐿2 ∑ λ𝑖𝐸2

𝑖

∞

𝑖=0

𝐿2
′  

(3) 

where M’ denotes the transpose of M. The inner product ·, · 

is the Frobenius matrix product. The Frobenius product of two 

m × n matrices A and B is defined by the trace tr (A∗B), where 

𝐴 ∗= 𝐴̅′ is the conjugate transpose of A. These kernels are called 

labeled-pair kernels because, given two graphs 𝐺1  and 𝐺2 , they 

count the number of walks in 𝐺1  and 𝐺2 , of the same length and 

with the same labels on their first and last nodes.  

(1) exponential kernel: 

∑ λ𝑖𝐸
𝑖

∞

𝑖=0

= ∑
(Υ𝐸)𝑖

𝑖!

∞

𝑖=0

 

(4) 

(2) truncated power series kernel:  

∑ λ𝑖𝐸
𝑖

∞

𝑖=0

= ∑(Υ𝐸)𝑖

∞

𝑖=0

 

(5) 

(3) convergent geometric kernel:  

∑ λ𝑖𝐸𝑖

∞

𝑖=0

= ∑(1 − Υ𝐸)−1

∞

𝑖=0

 

(6) 
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3.3.2.2. Sequences of Labels Kernels 

In counting shared label sequences, product graph kernels use 

a procedure that is based on the direct graph product of two 

graphs. 

Let 𝐺1= (𝑉1, 𝜀1) and 𝐺2 = (𝑉2 , 𝜀2) be two vertex- and edge-

labeled graphs. Given those two graph 𝐺1 and 𝐺2 , the graph 

product kernel 𝑘𝑥 is defined as: 

𝑘𝑥(𝐺1 , 𝐺2) =  ∑ [∑ λ𝑛𝐸𝑥
𝑛

∞

𝑛=0

]

|𝑉𝑥|

𝑖 𝑗−1 𝑖𝑗

 

(7) 

 

III.   CHEMICAL KERNELS 

There is some limitations on how far kernels can go solving 

chemical problems like address problems of molecular 

classification. In order to evade such complication, there found 

a technique of molecular fingerprinting in 1998 by Flower and 

2001 by Raymond and Willett.  

This kind of kernel approach can be computed efficiently and 

leverage the peculiar properties of tiny-molecules graphs in 

organic chemistry. Particularly, these graphs are pretty small in 

either number of vertices or the number of edges and they are 

very constrained by the laws of chemistry. 

 

3.1.   Molecular Fingerprinting 

In the past, fingerprints are bit-vectors of a given size l, 

typically taken in the range 100-1000. With a molecule M 

having n atoms and m bonds, constructing a corresponding 

fingerprint requires starting depth-first-search explorations in 

each atom in the molecule. Thus such substructures being 

considered are labeled paths, which may include labeled cycles.  

In this bit vectors, the maximal path length d is set to +∞ 

which means that if we want to extract all the paths starting from 

all the atoms of a molecule, the complexity of the procedure in 

only 0(nm) if we do not allow path emanating from a vertex to 

share edges once they have separated.  

However, in its actual application, the value of d is often set 

low. Because fingerprinting is commonly used by chemists, the 

values for l, b, and d are often already set along, if needed, with 

extra information like irrelevant paths that should be discarded. 

To add in the last, an expanding number of chemical databases 

already include some kind of fingerprint field in their tables, 

although standards have not yet been set. 

 
Fig. 14. Simple graph to define various options in dfs 

extraction [1] 

 

 

3.2. Depth First Search  

In a tree with the root A, depth first search exploration of 

depth d yields a list of all the paths of length d emanating from 

that node. Since molecular graph has no cycle, there may be 

different implementations of the depth- first search leading to 

different set of paths. Variations emerge depending on whether 

cycles are allowed in a given oath and whether two different 

paths from the some node are allowed to share any edges after 

the first point of divergence from each other. Here goes the 

example of DFS 

(1) DFS with no cycles: 

 • A  

• A-B  

• A-B-D  

• A-B-D-C 

 • A-B-D-E  

• A- 

(2) DFS with cycles:  

• A 

• A-B  

• A-B-D  

• A-B-D-C  

• A-B-D-C-A  

• A-B-D-E  

(3) DFS with all paths and no cycles: 

 • A  

• A-B  

• A-B-D  

• A-B-D-C  

• A-B-D-E 

• A-C  

• A-C-D 

• A-C-D-B  

• A-C-D-E  

(4) DFS with all paths and with cycles:  

• A  

• A-B  

• A-B-D  

• A-B-D-C  

• A-B-D-C-A   

• A-B-D-E  

• A-C  

• A-C-D  

• A-C-D-B  

• A-C-D-B-A  

• A-C-D-E 

For molecules with n atoms and m edges, the complexity in 

extraction of all path is O(nm) for the first and the second cases. 

In third and fourth cases with the length up to d, the complexity 

is at most O(n𝛼𝑑), with 𝛼 as branching factor. Since typical 

degree of graphs in organic chemistry is often only slightly 

above two, the branching factor is probably just slightly above 

one. 

 

3.3. Generalized Fingerprints 

Long binary feature vectors with a unique bit position 
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reserved for each path can be utilized to evade the loss of 

information associated with clashes. Seen like this, a molecule 

can be viewed as a text document with all the labeled paths of 

length up to d that can be retrieved by depth-first searches. 

However, some trials using the TF-IDF approach, did not 

produce any significant improvements and therefore it is not 

used here. An alternative to the TF-IDF scheme, originated also 

in the field of information retrieval, is to consider a reduced set 

of paths selected according to the mutual information criteria to 

keep the paths that carry the most important information for a 

given classification. 

 

3.4. Fingerprint Similarity 

Another kernels can be used to define the similarity of 

fingerprint, such as: 

𝑘𝑑(𝒖, 𝒗) =< 𝒖, 𝒗 >𝒅= ∑ ⊘𝒑𝒂𝒕𝒉 (𝒖) ⊘𝒑𝒂𝒕𝒉 (𝒗)
𝒑𝒂𝒕𝒉 ∈𝓟(𝒅)

 

(7) 

This form of kernel can later be developed as another forms 

such as: 

Tanimoto kernel: 

Let u, v denote two molecules and d be an integer. Consider 

the feature map φ𝑑and the corresponding kernel k𝑑.  

𝑘𝑑
𝑡 (𝒖, 𝒗) =

𝑘𝑑 (𝒖, 𝒗)

𝑘𝑑 (𝒖, 𝒖)+𝑘𝑑 (𝑣, 𝒗)−𝑘𝑑 (𝒖, 𝒗)
 

(8) 

MinMax kernel: 

 Let u, v denote two molecules and d be an integer. Consider 

the feature map φ𝑑 (·), and the corresponding φ𝑝𝑎𝑡ℎ(·). 

𝑘𝑑
𝑚(𝒖, 𝒗) =

∑ min (𝒑𝒂𝒕𝒉 ∈𝓟(𝒅) 𝜑𝑝𝑎𝑡ℎ (𝒖), 𝜑𝑝𝑎𝑡ℎ(𝒗))

∑ max (𝒑𝒂𝒕𝒉 ∈𝓟(𝒅) 𝜑𝑝𝑎𝑡ℎ(𝒖), 𝜑𝑝𝑎𝑡ℎ (𝒗))
 

(9) 

Hybrid kernel: 

Hybrid kernel is a convex combination of two kernels, 

respectively measuring the number of common paths and 

common missing-paths between two molecules. 

 

𝑘𝑑
𝑡 (𝒖, 𝒗) =

2 𝑘𝑑 (𝒖, 𝒗)

𝑘𝑑 (𝒖, 𝒖)+𝑘𝑑 (𝑣, 𝒗)
 

(10) 

 

 
Fig. 15. Connection between Tanimoto and MinMax kernels 

[1] 

 

 

 

 

 

 

 

3.5.   Algorithm 

In the combination of those kernels and the Voted Perceptron 

learning algorithm, Freund and Schapire proposed an algorithm 

in 1999 as an efficient learning method with the main idea of 

perceptron.   

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

IV.   APPLICATION 

After all those kernels discussed above are being put together 

with the algorithm, the answers for predicting mutagenicity, 

toxicity, and anti-cancer activity can be found in three different 

datasets.  

 

4.1. Mutagenicity  

The Mutagenicity dataset originally consists 230 chemical 

compounds assayed in Salmonella typhimurium. Among all 

those compounds, only 188 are considered to be learnable. The 

result from other groups that are reported for comparison 

purposes were obtained also on the same subset of 188 

molecules. 

 

4.2. Toxicity 

The Predictive Toxicology Challenge (PTC) dataset [Helma 

et al., 2001] reports the carcinogenicity of several hundred 

chemical compounds for Male Mice (MM), Female Mice (FM), 

Male Rats (MR) and Female Rats (FR)  

 

 
Table I: Mutagenicity and Toxicity Dataset [5] 

 

4.3. Cancer 

The dataset on cancer screening result was put on public by 

the National Cancer Institute.  It provides screening result for 

the ability roughly 70,000 compounds to kill the growth of a 
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panel of 60 human tumor cell lines. For each cell line, roughly 

3,500 compounds, described by their 2D structures, are supplied 

with information on their anti-tumor activity.  

Not only is the NCI dataset considerably larger than the 

Mutagenicity and Toxicity datasets, but overall it is also more 

balanced. Thus the trivial background statistical predictor 

always predicting the class encountered more frequently has 

poorer performance on the NCI dataset. 

 

 
Table II. NCI Dataset [5] 

 

V.   CONCLUSION  

Throughout a lot of branch of studies, it is shown that graph 

has a big role in the development of technology for better future. 

In this paper, we have already discussed about how the 

application of graph and kernel methods in machine learning can 

lead to newfound discoveries of organizing datasets so they can 

be easily integrated to put into use. 
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