
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

Application of Bellman-Ford Algorithm to Find

Arbitrage Condition in Forex Trading

Taufiq Husada Daryanto 13518058

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

taufiqhd@students.itb.ac.id

13518058@std.stei.itb.ac.id

Abstract—In this paper we discuss the use of Bellman-ford

algorithm on finding negative cycle to find an arbitrage condition

in forex trading. Also, in this paper, we will discuss about ideas to

improve the efficiency of graph implementation on finding

arbitrage situation. Lastly, we also discuss about some advantages

and disadvantages on using Bellman-ford algorithm to find

arbitrage condition in forex trading

Keywords—Arbitrage, Bellman-Ford Algorithm, Forex

Trading, Graph.

I. INTRODUCTION

In our life, we usually face several problems. When we deal

with problems, we usually use our intuition mainly, with a little

amount of calculations in our head. Sometimes, with just an

intuition it brings out good solution while it does not take us long

time to think about the calculations. But on the other hand, doing

less calculations also can lead us to wrong solution that maybe

can make the problem even worse. Maybe it is true that

calculations in real life problem solving will make things

complicated, but it will give us a clear and correct decision.

One example topic that we can use in our daily life is graph

theory. By modelling problems that we faced into a graph, and

solve it using some methods in graph theory, it can help us to

make an important decision. For example, finding shortest

distance, finding minimum cost, and so on.

We can apply graph theory in forex trading. I know that

some people say forex trading is haram because it is like

speculation to gain profit similar with gambling. But in this

paper, what I want to highlight is not the forex trading itself, but

how we can apply methods in graph for real life condition.

II. THEORIES

A. Graph Introduction

A graph is a structure that is defined by two components,

which are node and edge [1]. Node can represent some

information. Edge is a connection between two nodes, and it also

can represent something that give a meaning to relation between

two connected nodes.

 Figure 1. Example of graph, picture from

https://www.geeksforgeeks.org/mathematics-graph-theory-

basics-set-1/

There are some classifications of graph. From edge

characteristic, graph can be classified into two types, which are

weighted graph and unweighted graph. Weighted graph is a

graph that for every edge, there is a weight on it.

Figure 2. Example of weighted graph, picture from

algorithms.tutorialhorizon.com

Those weights can represent something for example cost,

distance, etc. On the other hand, unweighted graph has no

weight in every edge, so edges only represent the connectivity

between nodes.

From the directivity of edges, graph can be classified into

two types, which are direct graph and undirect graph. Direct

graph is a graph that for every edge it has direction.

mailto:taufiqhd@students.itb.ac.id
https://www.geeksforgeeks.org/mathematics-graph-theory-basics-set-1/
https://www.geeksforgeeks.org/mathematics-graph-theory-basics-set-1/

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

Figure 3. Example of directed graph, picture from

geeksforgeeks.com

Those direction can represent the path between nodes. The

opposite, undirect graph has no direction in the edges.

Figure 4. Example of undirected graph, picture from

geeksforgeeks.com

B. Graph Implementation

There are some representations of graph implementation.

The two most common representations are adjacency matrix and

adjacency list.

Adjacency matrix is a way to represent the connectivity

between nodes as a element in matrix, with a “1” or “0” in

position (vi , vj) according to their connectivity [2].

Figure 5. Example of adjacency matrix, picture from

http://mathworld.wolfram.com/AdjacencyMatrix.html

In weighted graph, those “1” or “0” can be replaced by the

weight of edge itself if two nodes are connected or with infinity

if there is no edge connect the two specific nodes.

Adjacency list is array of list, that every node become array

elements, and node that connected with will be the element of

the list.

Figure 6. Example of adjacency list, picture from

researchgate.net

In weighted graph, list elements can be represented as pair

of nodes and its edge weight.

From those two implementations there are several benefits

and disbenefits. In term of memory efficiency, adjacent list is

better than adjacency matrix because in adjacency list, program

will only create element on list from node if that element is

connected to that node. On the other hand, adjacency matrix will

create all space between nodes, because that is how matrix is

represented. In term of time efficiency on accessing the

connectivity or weight between nodes, adjacency matrix is

better than adjacency list. To access the connectivity between

nodes in adjacency matrix, program can just call the element on

coordinate (vi,vj), so it only gives O(1) time complexity. On the

contrary, in the adjacency list, program must traverse the list to

find specific node that connected to, so it gives O(m) time

complexity, where “m” is number of edges.

C. Negative Cycle in Graph and Bellman-Ford

Algorithm

Cycle in graph is a way that from a node, there will be edges

that will make a path to come back to that node again. Negative

cycle is a cycle that sum of all edges in that cycle is negative.

Bellman ford algorithm is a way to find shortest path from

source node to all nodes in the given graph, but the graph may

contain negative edges [3]. The idea of this algorithm is to relax

all edges V-1 times, where V is number of nodes. The idea why

relaxing V-1 times is because the shortest path from a node to

the other node proved that it does not involve more than V-1

edges. Here is the pseudocode to find shortest path from source

to other nodes.

Figure 7. Pseudocode to find shortest path using Bellman-

ford algorithm, picture from Pemrograman Kompetitif Dasar, -

Aji & Gozali.

To find the negative cycles we can run one more relax, if

there is the path become shorter then there is a negative cycle.

Here is the pseudocode

http://mathworld.wolfram.com/AdjacencyMatrix.html
http://mathworld.wolfram.com/AdjacencyMatrix.html

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

Figure 8. Pseudocode to find negative cycles using Bellman-

ford algorithm, picture from Pemrograman Kompetitif Dasar, -

Aji & Gozali.

The time complexity of this algorithm is O(VE) which V is

number of nodes and E is number of edges.

D. Forex and Arbitrage

Forex is an abbreviation from foreign currency exchange.

Foreign exchange is the process of changing one currency into

another currency for a variety of reasons, usually for commerce,

trading, or tourism [4]. Forex trading is the process of getting

profit from currency exchange. The principle of forex trading is

simple that is getting profit from the difference between the

buying and the selling price by making a buy transaction at a

low price and a selling transaction at a high price [5].

Forex arbitrage is a trading strategy that seeks to exploit price

discrepancy [6]. The method is simple that is finding if there is a

way from one currency, traded one into another, then get back

at that currency but with higher amounts as our profit. Here is

an example of arbitrage situation in forex trading

Figure 9. Example of arbitrage in forex, picture from

alpari.com

To exploit arbitrage, we have to do rapid execution, so we

have to use automated program to find arbitrage condition and

exploit it.

There are several methods to detect arbitrage, which are

cycle detection with Bellman-Ford shortest path algorithm, the

famous Black-Scholes option pricing formula, and statistical

arbitrage algorithm [7]. The simplest method is to use Bellman-

ford algorithm.

III. APPLICATION OF BELLMAN-FORD ALGORITHM ON

DETECTING ARBITRAGE SITUATION

A. The methodology

First, we have to model the currency rates data as a graph.

Currency as a node, and exchange rates as their edges. To detect

arbitrage, for example if we go in cycle and get weighted edge

path like a -> b -> c -> d, arbitrage is a condition when a * b * c

* d > 1, which means that we have to find a cycle that product

of their edges is greater than 1.

In order to use Bellman-ford algorithm, we have to design

it not as a product but as a sum and we look for negative sum.

Because we know that log(a * b) = log(a) + log(b), first we have

to turn all edges as a negative log. For example, edges path a ->

b -> c -> d turns into -log(a) -> -log(b) -> -log(c) -> -log(d). The

total cost of this path is -(log(a) + log(b) + log(c) + log(d)) = -

log(a * b * c * d). As if -log(x) < 0 means that x is greater than

0, so that arbitrage condition is when the total cost path of

negative log edges is less than zero.

So, here is the step for detecting arbitrage

1. Data preparation

2. Graph modelling and convert all the rates into

negative log

3. Find a negative cycle using Bellman-ford

algorithm

B. Data preparation and preprocessing

This is the example of the currency data

Figure 10. Currency rates sample data, picture from

globalsoftware.com

Elements of row and column are exchange rates between

currency in specific row into currency in specific column

C. Graph modelling

I will implement the graph using adjacency list model in

C++. Here is the code

http://mathworld.wolfram.com/AdjacencyMatrix.html

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

Figure 11.A Implementation of Bellman ford algorithm on

finding arbitrage condition, initial set up

I modelled the adjacency list using vector of vector of pair

in C++. I modelled the nodes as number from zero to four and

save the currency name in array of string with related index.

The next step is to convert all the edges into negative log,

here is the procedure

Figure 11.B Implementation of Bellman ford algorithm on

finding arbitrage condition, convert to negative log

After that call that procedure in main program after

inserting nodes and edges, then check the resulting edges by

printing them into terminal

Figure 11.C Implementation of Bellman ford algorithm on

finding arbitrage condition, main program converting to

negative log

The result is like this

Figure 11.D Implementation of Bellman ford algorithm on

finding arbitrage condition, result after converting to negative

log

D. Applying Bellman-ford algorithm

First initialize all cost as infinity, we use 1e9+7 as infinity

number. Take node 0 (USD) as a source node. Then we apply

Bellman-ford algorithm by relaxing edges V-1 times (4 times,

as number of nodes is 5), and calculate the minimum cost.

Figure 11.E Implementation of Bellman ford algorithm on

finding arbitrage condition, calculate shortest distance

Find if there is cycle by relaxing edges one more time, and

also find the nodes that in the negative cycle. To find nodes that

in the negative cycle, we have to save a node that in negative

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

cycle and get the data of all parents of nodes that in negative

cycle.

Figure 11.F Implementation of Bellman ford algorithm on

finding arbitrage condition, finding the negative cycle

After calling that procedure in main program we got the

result of arbitrage situation below.

Figure 11.G Implementation of Bellman ford algorithm on

finding arbitrage condition, result of arbitrage condition

That is one example of arbitrage situation, that is occurred

when converting currency from GBP to EUR and back to GBP

again.

If we check the result by manual calculation, we got result

like this

GBP -> EUR: 1.126

EUR -> GBP: 1.126 x 0.889 = 1.001014

We got result 1.001014 which is greater than 1 so it is an

arbitrage situation.

IV. IDEAS ON IMPROVING THE GRAPH IMPLEMENTATION

TO BE MORE EFFICIENT AND SCALABLE

Based on my implementation in C++ in previous section I

realize some inefficiency and here are my ideas to improve the

graph implementation.

1. Scrap the currency exchange data from internet

From my implementation, I put the currency data one

by one by pushing it into vector. As a result, this cannot be

used in a large scale because it will take a lot of time and

can caused a wrong arbitrage condition because the

currency values already change. So, what I think of as an

alternative is that scrap the currency exchange data from

internet in a real time so that it will not miss any change

overtime and it will save a lot of times also.

2. Make a script to perform the trading after searching for

arbitrage condition

To get advantage of arbitrage condition, we have to

trade the currency in real time after we find such condition.

To do so, I have an idea to use script to perform such action

to do simultaneous task which are searching for the

arbitrage condition using bellman-ford algorithm then

execute the forex trading based on arbitrage condition.

V. ADVANTAGES AND DISADVANTAGES FROM USING

BELLMAN FORD ALGORITHM TO FIND ARBITRAGE

From section 4, we have shown that bellman ford algorithm

on finding negative cycle can be used to find arbitrage situation.

But now let us analyze more about the advantages and

disadvantages of finding arbitrage condition using Bellman-ford

Algorithm.

These are the advantages of using Bellman-ford algorithm

to find arbitrage condition.

1. Easy to understand and implement

Bellman-ford algorithm is a simple algorithm that just

doing node relaxation V-1 times and do one additional

relaxation to find if there is cycle or not. If it is compared to

other method of finding arbitrage such as Black-Scholes

option pricing formula and statistical arbitrage algorithm, it

is the easiest algorithm to understand and to implement

2. Modelled in graph

From the illustration in previous section, we know that

this algorithm is based on graph, which is we modelled the

graph of currency exchange first, then do the algorithm. If

it is compared to other method of finding arbitrage such as

Black-Scholes option pricing formula and statistical

arbitrage algorithm, those two algorithms are based on

heavy statistic and math calculations, so it is not really give

clear image as compared to graph modelling.

These are the disadvantages of using Bellman-ford

algorithm to find arbitrage condition.

1. Not really gives accurate numbers

When we use Bellman-ford algorithm, we have to

convert all the currency exchanges into negative log, then

do some summation to calculate the total in some cycles.

When we convert it into logarithmic form, usually it will do

some rounding off so what we get is not the actual number.

As a result, the summation usually do not give the real

number, so it can lead to wrong arbitrage condition

compared to real condition.

2. Use a lot of memory, compared to other methods

Because bellman-ford algorithm is based on graph, so

that, first we must save all the edges and nodes data into a

graph. We also have to save the data of parent nodes and

total cost when we traverse in cycle. To save all of those

data, it needs more space compared to other method that

used statistical model.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

3. Not really used in real life

Usually traders do not use Bellman-ford algorithm to

find arbitrage situations instead of statistical based arbitrage

algorithm because statistical method gives more accurate

condition.

VI. ACKNOWLEDGMENT

I would like to thank all the lecturers of the knowledge that is

shared regarding discrete mathematics, especially Mr. Rinaldi

Munir as my discrete mathematics class lecturer. This subject

given me the chance to explore more regarding several topics in

the subject and its application as well as given me the chance to

practice my English writing skill. I would also like to thank my

friends and families who support me in the process of learning

and also making this paper.

REFERENCES

[1] https://www.geeksforgeeks.org/mathematics-graph-theory-basics-set-1/,
25 November 2019.

[2] http://mathworld.wolfram.com/AdjacencyMatrix.html, 25 November

2019.
[3] Gozali, William and Aji, Alham. Pemrograman Kompetitif Dasar. Jakarta:

IA TOKI, pp. 126-127

[4] https://www.investopedia.com/articles/forex/11/why-trade-forex.asp, 25
November 2019.

[5] https://www.seputarforex.com/belajar/forex/pengertian-dasar-forex/, 25

November 2019.
[6] https://www.investopedia.com/terms/forex/f/forex-arbritrage.asp, 25

November 2019.

[7] https://www.globalsoftwaresupport.com/forex-arbitrage-bellman-ford/,
25 November 2019

STATEMENT

I hereby declare that the paper I wrote is my own writing, not

an adaptation, or a translation of someone else's paper, and not

plagiarism.

Bandung, 4 December 2019

Taufiq Husada Daryanto 13518058

https://www.geeksforgeeks.org/mathematics-graph-theory-basics-set-1/
http://mathworld.wolfram.com/AdjacencyMatrix.html
https://www.investopedia.com/articles/forex/11/why-trade-forex.asp
https://www.seputarforex.com/belajar/forex/pengertian-dasar-forex/
https://www.investopedia.com/terms/forex/f/forex-arbritrage.asp
https://www.globalsoftwaresupport.com/forex-arbitrage-bellman-ford/

