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Abstract—In Cryptography, an encryption system is said to be 

secure if at first glance the ciphertext is very obscure such that 

other people shouldn’t be able to identify the real message inside 

the ciphertext. An encryption system does two things, encryption 

and decryption. One algorithm or process is used to encrypt the 

plaintext to a ciphertext, and the other is used to decrypt the cipher 

text to a plaintext. In general, an encryption system usually takes 

plaintext and a key to produce a single corresponding ciphertext, 

and sometimes this is not secure enough. In this paper, we will be 

discussing of the possibility of an encryption system that is able to 

produce multiple ciphertext from a single plaintext. 
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I.   INTRODUCTION 

An encryption algorithm is a means of transforming plaintext 

into ciphertext under the control of a secret key. This process is 

called encryption or encipherment. We can write it like this 

 

𝑥 = 𝑓𝑘(𝑠) 

where  

• 𝑠 is the plaintext, 

• 𝑓 is the cipher function, 

• 𝑘 is the key, 

• 𝑥 is the ciphertext. 

The reverse process is called decryption or decipherment, and 

we write it like this 

 

𝑠 = 𝑑𝑘(𝑐) 

Note that the encryption and decryption algorithm are usually 

public, but the main thing that makes each encryption different, 

using the same kind of algorithm is the private key.  

    There are a lot of encryption algorithm, we will present the 

basic and most historic one, such as the Caesar Cipher, 

Substitution Cipher, Vigenère Cipher. Other than that, we will 

also be discussing about the basic of number theory and random 

number generator that will be needed to create our own 

encryption algorithm. Why do Caesar Cipher works? How can 

we map each letter in the alphabet to an integer so that we can 

manipulate it?. It will all be clear once we learned about the 

mathematical part. 

    There are usually a lot of math involved when we talk about 

encryption algorithm, the whole process of encryption and 

decryption is basically a mathematical function which 

transforms It’s value to another value. The encryption function 

do one thing, and the decryption function basically is the inverse 

of the encryption function. In math, It’s pretty easy to see how a 

function is defined. And sometimes we can even find It’s inverse 

rather quickly. But the encryption function takes a plaintext as 

the argument of the function which complicate some part. We 

need to define how a plaintext is going to be transformed. After 

that, the whole process just relates to a normal mathematical 

function which takes numbers and output numbers too. [1] 

    

 

II.  HISTORY 

A. Shift Cipher 

Encryption algorithm has been around for some time in this 

world. One of the earliest one ever known is called the Caesar 

Cipher, by Julius Caesar. The Caesar Cipher or the shift cipher 

involves replace each letter of the alphabet with the letter 

standing three places further down the alphabet. For example, 

 

Plaintext:  HI IM JUNHO 
Ciphertext: KL LP MXQKR 
 
We shift each letter three places to the right to get the 

ciphertext. Here is the complete alphabet shift for the above 

encryption system. 

 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 
DEFGHIJKLMNOPQRSTUVWXYZABC 
 
The shift cipher varies on how many places we’re shifting the 

alphabet, say the amount of the shift is k. and we map each 

alphabet to a number, say from 0 to 26, from A to Z. then we 

can define the encryption and decryption function like this 

 

𝑥𝑖 = (𝑠𝑖 + 𝑘) 𝑚𝑜𝑑 26 

𝑠𝑖 = (𝑥𝑖 − 𝑘) 𝑚𝑜𝑑 26 

 

The amount of shift is later called the key of the encryption. 

Since the numerical representation of the alphabet only span 26 

numbers, the different number of possible key for the shift cipher 

is only 26. A pretty small number which can be brute-forced 

quickly so It’s not very secure now, but at the time Julius Caesar 

invented it, it was more than enough. 
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B. Substitution Cipher 

The main weakness with the shift cipher is that the number of 

keys is too small, we only have 26 possible keys. To increase 

the security we need more possible combination for a key to the 

encryption and decryption system. The substitution cipher 

introduces the idea of permuting the original alphabet, and 

mapping the alphabet to this new “permuted” alphabet, one 

example is as follows 

 

Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ 
Ciphertext:GOYDSIPELUAVCRJWXZNHBQFTMK 
 
With the ciphertext alphabet established, we can quickly try 

this cipher. For example, the word HELLO would encrypt to the 

ciphertext ESVVJ.  

The number of possible keys is equal to the number of 

permutation on 26 letters of the alphabet 

 

26! ≈ 4.03 × 1026 

 

This is a very large number compared to the shift cipher key 

possibilities. One computer can run upto 108 operations in 1 

second, so a brute-force approach would take around 4.03 ×
1018 seconds. 

C. Vigenère Cipher 

The problem with the shift cipher and the substitution cipher 

was that each plaintext letter will always be encrypted to the 

same ciphertext letter. One way to solve our problem is to take 

a number of substitution alphabets and then ecrypt each letter 

with a different alphabet. Such a system is called a 

polyalphabetic substitution cipher. For example we could take 

 
Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ 
Cipher 1:  GOYDSIPELUAVCRJWXZNHBQFTMK 
Cipher 2:  DCBAHGFEMLKJIZYXWVUTSRQPON 
 
Then the plaintext letter in an odd position will be substituted 

with the cipher 1 alphabet while the plaintext letter in an even 

position will be substituted with the cipher 2 alphabet. 

 

 

III.   BASIC THEORY 

In the world of mathematics, especially in number theory, we 

usually cares a lot about the remainder of an integer when it is 

divided by some specified positive integer. For instance, when 

we ask what time it will be (on a 24-hour clock) 50 hours from 

now, we care only about the remainder when 50 plus the current 

hour is divided bt 24. Be cause we are often interested only in 

remainders, we have a special notations for them. We introduced 

the modulo operation to reprecent the remainder of an integer. 

Here is the formal definition 

 

Definition 1.1 If a and b are integers and m is a positive 

integer, then a is congruent to b modulo m if and only if m 

divides a – b. this means a and b have the same remainder when 

divided by m. we denote this as 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) 

 

Definition 1.2 If 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) and b is ranged from 0 to 

m – 1, we say that b form the least residue system modulo m. 

 

Definition 1.3 If 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚), there exist k such that  

𝑎 = 𝑏 + 𝑚𝑘 

 

We can define arithmetic operations on these modular 

arithmetic too, in fact we can define addition and multiplication 

like this 

 

Definition 1.5 (modular addition)  

𝑎 (𝑚𝑜𝑑 𝑚) + 𝑏 (𝑚𝑜𝑑 𝑚) ≡ (𝑎 + 𝑏) 𝑚𝑜𝑑 𝑚 

Definition 1.6 (modular multiplication) 

𝑎 (𝑚𝑜𝑑 𝑚) × 𝑏 (𝑚𝑜𝑑 𝑚) ≡ (𝑎 . 𝑏) (𝑚𝑜𝑑 𝑚) 

 

The addition and multiplication operation satisfy many of the 

same properties of ordinary addition and multiplication of 

integers. In particular, they satisfy these properties: 

 

Closure if a and b belongs to the least residue system modulo 

m, then a + b, and a . b also belongs to the least residue system 

modulo m 

 

Associativity If a, b, and c are integers, then these identities 

holds. 
(𝑎 + 𝑏) + 𝑐 ≡ 𝑎 + (𝑏 + 𝑐) (𝑚𝑜𝑑 𝑚) 

(𝑎. 𝑏)𝑐 ≡ 𝑎(𝑏. 𝑐) (𝑚𝑜𝑑 𝑚) 

 

Commutativity If a, b are integers, then this identity holds 

𝑎 + 𝑏 ≡ 𝑏 + 𝑎 (𝑚𝑜𝑑 𝑚) 

 

Distributivity If a, b, and c are integers, then these identities 

holds. 

𝑐 . (𝑎 + 𝑏) ≡ 𝑎 . 𝑐 + 𝑏 .  𝑐 (𝑚𝑜𝑑 𝑚) 

 

Identity elements The elements 0 and 1 are identity elements 

for addition and multiplication modulo m, respectively. They 

satisfy these equation 

0 + 𝑎 ≡ 𝑎 + 0 ≡ 𝑎 (𝑚𝑜𝑑 𝑚) 

1 . 𝑎 ≡ 𝑎 . 1 ≡ 𝑎 (𝑚𝑜𝑑 𝑚) 

There are more useful things about modular arithmetic, but 

these basic foundation are the most important one since you 

can’t build advanced theorem without these basic definition. 

One other important thing we need to address is integer 

representations. Integers can be expressed using any integer 

greater than one as a base, as we will show in this small example.  

Although we commonly use decimal (base 10). 

Representations, other bases such as binary (base 2), octal (base 

8), and hexadecimal (base 16) representations are often used, 

especially in computer science. In everyday life we use decimal 

notation to express integers. For example 324 is used to denote 

3. 102 + 2.10 + 4. However, it is often convenient to use bases 

other than 10. In particular, computers usually use binary 

notation (with 2 as the base) when carrying out arithmetic, and 

octal (base 8) or hexadecimal (base 16) notation when 

expressing characters, such as letters or digits. In fact, we can 

use any integer greater than 1 as the base when expressing 

integers. This is stated below. 

Theorem 1.1 Let b be an integer greater than 1. Then if n is a 

positive integer, it can be expressed uniquely in the form 

𝑛 = 𝑎𝑘𝑏𝑘 + 𝑎𝑘−1𝑏𝑘−1 + ⋯ + 𝑎1𝑏 + 𝑎0 

Where k is a nonnegative integer. And 𝑎𝑖 is nonnegative 

integers less than b. [2] 
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IV.   ALGORITHM CONSTRUCTION 

We are going to construct an encryption and decryption 

algorithm such that the ciphertext can be different each time we 

encrypt the plaintext, but the decryption will still yield the same 

plaintext. How can we do this? There are many idea regarding 

this, and this is called random encryption. The idea presented 

here will be one of the more simple one, It doesn’t involve 

probability or anything like that. We just simply need to 

understand random number generation and basic number theory 

which we have presented in part III. 

Random number generator can generate a so-called random 

number with a certain algorithm and seed. It’s not totally 

random but we can definitely rely on the randomness of the 

generator in popular programming language such as C++, 

Python, Java, etc. usually a random number generator in those 

language will generate random number from 0 until a certain 

maximum value, usually the maximum value an integer can 

hold. But there are function to generate random number in a 

range too. A simple random number generator can be 

transformed into a range based random number generator using 

simple modular arithmetic. As the language that I will be using 

in demonstrating the algorithm is C++. I will also explain how 

to transform C++ random number generator to a range-based 

one. Here is a function written in C++ which generate a random 

number in a range. 

int getRand(int a, int b){ 

return (a + (rand() % (b - a + 1))); 

}  

How do the codes above works? So rand() will generate a 

random number between 0 and INT_MAX in C++, if we mod 

that with b – a + 1, we will get a set which is the least residue 

system modulo b – a + 1, which range from 0 to b – a, and if we 

add a to that, we get a range from a to b, as we intended.  

Now that we know how to generate random number in a 

range, we are ready to move on to the next step. We need to 

generate a random number which is not so random, a random 

number with a pattern that we might know. How can we achieve 

this? There are many idea that can works. One of them is like 

this, we can generate a random number which will give the same 

remainder when we divide it with a certain value. Let’s say we 

want to generate random number which when we divide it by 5, 

it will give a remainder of 3.  

Let 𝑎𝑛 be our random number, we know that 

𝑎𝑛 ≡ 3 (𝑚𝑜𝑑 5) 

𝑎𝑛 = 3 + 5𝑘 

If we let k be a random number, then 𝑎𝑛 will also be a random 

number, but we know that 𝑎𝑛 will have a special property such 

that when we divide it with 5, the remainder will always be 3. 

Now how can we abuse this fact to make an encryption 

random? Actually this is the basic idea of the whole thing. We 

can construct a random number from a moduli m and a residue 

value x, and we can generate random number using the above 

method, and that random number is actually the ciphertext of the 

value x (which is the plaintext), and with the simple modulo m 

operator, we can reverse the random number (so-called 

ciphertext) back to the value x (plaintext) no matter how random 

it is since we construct it in a way such that the remainder will 

always be x. Now a random encryption is not really a function 

because it violates the definition of a function, but let’s just say 

that it is. Then these are the basic definition of the random 

encryption and decryption algorithm. 

 

𝑒(𝑥) = 𝑥 + 𝑚𝑘 

𝑑(𝑣) = 𝑣 (𝑚𝑜𝑑 𝑚) 

 

Where e is the encryption function and d is the decryption 

function. 

Now let’s modify it a bit, we will construct an encryption that 

accept a string consisting of only alphabetic value (from a to z). 

and we will use this techniques to encrypt it. Let’s map every 

value from a to z as 0 to 25. And the moduli will be 26. If we 

want to encrypt the word abc, we take each letter and encrypt it 

like this. So a is 0, let’s say the random number we generate was 

3, then with the above formula we can get 0 + 3 . 26 = 78 as the 

first number. Next, b is 1, say our random number k is 2. Then 

we get 1 + 2 . 26 = 53. Lastly, c is 2, say our random number is 

4. We get 2 + 4 . 26 = 106. So from abc, we can get 

78 53 106 we can also get 26 27 54. So the result is random. 

But if we want to decrypt it, we simply take each number and 

divide it by 26 and get It’s remaider, which is 0, 1, and 2. And 

we convert it back to letter yielding the result abc. What’s the 

problem with this algorithm? To differentiate each letter we 

need to have spaces in the ciphertext and that’s not a good 

practice. We need something to indicate the length of each 

number. Let’s just put their length at the front. 78 length is 2, so 

it becomes 278, 53 length is 2, so it becomes 253, 106 length is 

3, so it becomes 3106, together without space the ciphertext 

would become like this 

 

2782533106 
 

That’s a pretty good result. To decrypt it we simply get the 

first number, extract it until that length, and do modulo operation 

to it. And do it all over again. 

To make it even more obscure we will introduce a key. A key 

should be a string too, and for each length we will add each 

numerical value of the key to the length modulo 26, say we’re 

encrypting abc again with the key ghh. The numerical value of 

g is 6, h is 7. So we just add those to the length so the overall 

ciphertext becomes like this. 

 
87895310106 

 

Now we ran into a problem, that 10 can’t be distinguished, so 

It’s a better idea to keep it at length 1, but how can we do this? 

We simply encode it to a letter. So it will become like this 

 

i78j53k106 
Now we reverse each number to make it more confusing. 

Something like this 

 
i87j35k601 

 

okay, that was pretty obscure as it is, but let’s transform it one 

more time, let each digit in even position transformed into their 

letter value. so the ciphertext will finally look like this. 
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i8hj3fk6a1 
 

and we are done. How to decrypt it then? We simply do the 

reverse of what we’re doing in the encryption part like this 

 

1. Get the first letter, change it into its numerical value, 

subtract the numerical key value from it, and you get 

the length of the number. 

2. After you get the length, traverse through the string 

until you found the string which correspond to the 

length. 

3. Change the even position character to its numerical 

value and reverse the string into a number 

4. Take modulo 26 at the number and convert the 

residue into a letter 

5. Do this algorithm again for the rest of the ciphertext 

 

And that is the decryption process. Here we will present the 

encryption algorithm implemented in C++. 

 

string encrypt(string x, string key){ 

string res = ""; 

int ptr = 0; 

int lenkey = key.length(); 

for(auto ch : x){ 

int num = conv(ch); 

int t = num + 26 * getRand(1, 100); 

int cop = t; 

int len = 1; 

while(cop > 9){ 

len++; 

cop /= 10; 

} 

len += conv(key[ptr]); 

len = (len % 26); 

res += conv2(len); 

int cnt = 1; 

while(t != 0){ 

int rem = t % 10; 

if(cnt % 2 == 1){ 

res += (rem + '0'); 

} else { 

res += conv2(rem); 

} 

cnt++; 

t /= 10; 

} 

ptr = ptr + 1; 

ptr = (ptr % lenkey); 

} 

return res; 

} 

 

And here is the decryption algorithm also implemented in 

C++. 

 

string decrypt(string x, string key){ 

int len = x.length(); 

int ptr = 0; 

string te = ""; 

int ptr2 = 0; 

int lenkey = key.length(); 

while(ptr < len){ 

int a = conv(x[ptr]); 

a -= conv(key[ptr2]); 

a = a % 26; 

if(a < 0){ 

a += 26; 

} 

a = a % 26; 
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int m = 1; 

int res = 0; 

ptr++; 

for(int i = 1; i <= a; i++){ 

if(x[ptr] >= 'a' && x[ptr] 

<= 'z'){ 

res += conv(x[ptr]) 

* m; 

} else { 

res += (x[ptr] - 

'0') * m; 

} 

m *= 10; 

ptr++; 

} 

res = res % 26; 

te += conv2(res); 

ptr2++; 

ptr2 = ptr2 % lenkey; 

} 

return te; 

} 

V.   RESULT ANALYSIS 

Let’s analyze the encryption and decryption algorithm with 

the code above. In the above code we generate a random number 

between 1 and 100, and using the formula we managed to 

generate a random number which is always congruent to some 

value modulo 26. The maximum value of this is 

 

𝑀𝐴𝑋 = 25 + 26 ∗ 100 

𝑀𝐴𝑋 = 2625 

 

Hence, when we encrypt each character of a string, we 

construct the string with a maximum length of 4 (log(2625)). So 

the if the length of the plaintext we want to encrypt is n. then the 

overall time complexity of the encryption process is 

 

𝑂(4 ∗ 𝑛) = 𝑂(𝑛) 

 

Which is linear in time. For the decryption process, the 

process takes the first character and convert it into integer, this 

is the length of the number. And then It continue to read the 

string until that length is satisfied. And then It repeat the steps 

all over again until it reached the end of the string. The whole 

process is also linear in time so the time complexity is also 𝑂(𝑛). 

Now for all the possible combination for the ciphertext, with 

the same key, each letter would have 100 different encrypted 

value, so if the plaintext has a length of n, then the number of 

different ciphertext that this algorithm will produce with the 

same key is 

 

100 × 100 … × 100 = 100𝑛 = 102𝑛 

 

For a single plaintext with length 3, the encryption algorithm 

produce a million different ciphertext, if we also consider the 

different key possible, with regard to the plaintext length, we 

have 26𝑛 different combination for the key. So the total 

combination possible is 

 

26𝑛 × 100𝑛 = 2600𝑛 

 

Which is a really big number for big n since it expand 

exponentially. 

The program above has been tested and we generate 20 

different ciphertext using the algorithm for the plaintext 

helloworld using the key junhochoi. Here are the results 

 
n1j1cy6g2cr9d0ck7c4s8f4cf8f9l6h2cs5d4cm1b3bm5h5 
n5e6bx2d7r7h3cl1h5bs8h6bf4c7l0i0br9b7m9a9bm5g9 
m9b3y8j7br9h7bk1j7s2h1cf8c8l2f6br1e6m9h7bm9d9 
m7i7w2iq9a6l5e5bs4d8bg0j7bl8f4cs9j4bl3c3n1c1b 
m7i7y8c9bq3i5k1d5s4c2cg0b0bl8i5cr7g6l7c4n9e8b 
m1h3x6a7r3a4cl7b1cs6j4bg6e9bl2f6bs3g8bm3d5cn5d1c 
m3g1x0i6r1c2ck9d7r6h9f8h1l6d2br7j7l5h3n1b5b 
m7f6y0a5cr9g1cl7a2br4a4g0j7bk4c9s7a7bm5f1bn9c3b 
n5j2cx8d2r3b0cl5g0cs8c3cg2d2ck8b1s9g3bm1e4bn3a6c 
m5g8y0j5br3b0cl5a8bs4f0bf0g3k6b7s9h2cm1i4cn3e0b 
n3a5cy0f8bq1c9l5g0cs2i7be4hl2g5cq5jl9h4n1c4c 
n5i3by6i4bp3gl7b1cs6h2cg4b1bl0d7bs7f3cm1i1bm3c5 
n3h0bx4i7q3e8k9h4s2g5cg4j8bl6e1cs3j9bl1h2m1d7 
n5h7by6i4br9f5cl5b4bs6h2cg8d7bk6j1s1a2cl1d5m3f6 
m1g7y6h8bq9g8k1j7r8b1f2e5l0g8bs1b8bl5e2m9b4 
n3h0by4a3br3d5ck5d6r8a5g8b2bl6d2bs9g3bl3i5n9f4b 
n7i0cy8b3cr1a7bk5g7s6a1bg8e3bl8f4cq3el1c9n3j6b 
m7f6x4j3r9j2cl3j4bs8f1bg4b4ck2e7s3d7bm1h5bm5g9 
m5g8y6f3bq9j9k5g7s0j9bf0d2l4g9br9i5m5e5bn9j4c 
m7i7x2j9q7e9l5f4cr8a5f6h7l8f1br9c3l5g7m3i7 

 

and then decrypting all 20 of them will yield the same result, 

helloworld. 

In retrospect, this encryption system can provide some level 

of security than just a normal cipher. But this encryption system 

can still be analyzed and people can crack it with statistics, we 

can actually see that with the same key, the frequent letter will 

be the same, and we can analyze it even further by dividing it 

into chunks. 

This encryption system also has a few more weaknesses. Such 

that it can only accept lowercase alphabet (a – z). it can be 

expanded to include uppercase alphabet (A – Z) and numbers (0 

– 9). But we need to map the alphabet to a bigger residue system, 

not just 26. But we also run into the problem where non 

alphanumeric character might be included, like {, (, #, etc. this 
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needs more analysis as we need to decide what to do with them. 

Changing them into their ASCII code might work, but we need 

to consider the decryption process too if the ciphertext ends up 

being indistinguishable.  

 

VI.   CONCLUSION 

In this paper we discuss of the possibility of constructing an 

encryption system where the encryption process will yield more 

than one ciphertext, and where the decryption process will 

always yield the same plaintext (using the correct key, of 

course). Turns out It’s possible just using basic number theory, 

basic definition of modular arithmetic, etc. the use of 

randomness in an encryption algorithm like this is probabilistic 

encryption. But the way we implemented things were different 

than an actually probabilistic encryption. 

The encryption and decryption algorithm described in this 

paper is just a basic one that is dependent on the fact that we 

could create random number which is not so random, such that 

each random number remainder when divided by a certain 

number will always be the same. Other method can be used to 

construct a function which yield different result each time, but 

the inverse is always the same. We could use fermat’s little 

theorem, modular inverse, etc. but this algorithm with the use of 

algebraic to modular form using a bit of random number 

generator is probably simpler than using all of the aboves 

theorem. 
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