
Paper of IF2120 Discrete Mathematics – Sem. I Academic Year 2019/2020

General Application of Quadtrees
in Image Processing

Matthew Kevin Amadeus 13518035
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

mkamadeus.mka@gmail.com 13518035@std.stei.itb.ac.id

Abstract—This paper elaborates the practical uses of quadtrees,
a data structure that stores information of an image in a tree-like
manner. With quadtrees, image can be represented quite efficiently
and a lot of algorithms depend on this quadtree model of an image
in order for it to work.

Keywords—quadtrees, image processing, trees, recursive.

I. INTRODUCTION
Whether you are a person that never touches programs

relating to graphic design, you have encountered or will
encounter things relating to image processing. Back in the days,
analog image processing is preferable, as there are no
technologies to do it digitally; yet. In this era, it is very common
to use computers as the brains to do that process digitally. Photo
editing, 2D or even 3D animations are all created in a computer.

Humans and computers are different in the way of perceiving
visual contents, such as images. Humans can directly perceive it
as light that is being processed by our brains as colors, as for
computers, it can only read numbers as an input. By using an
appropriate data structure, such as quadtrees, can help
computers to access information faster and efficiently.

II. THEORETICAL BASIS

A. Graph
A graph G = (V, E) consists of V, a nonempty set of nodes

(sometimes called vertices), and E, a set of edges. For each
edge, it has either one or two nodes connected to it, called its
endpoints. An edge is said to connect its endpoints.

Based on the connections that the graph makes; graphs are
differentiated a simple graphs and multiple graphs; where for
each edge in the graph are connected to two nodes with
exception of no two pair of nodes are connected together. In
multiple graphs, it is allowed two have more than one edge that
connects to the same pair of nodes.

(Fig 1: Simple graphs example. [1])

Based on the direction of the graph; graphs are differentiated

into directed and undirected graphs. A directed graph has
directions; if a path from node 𝑢𝑢 to node 𝑣𝑣 exists, there may or
may not be a path from node 𝑣𝑣 to node 𝑢𝑢. In undirected graphs,
the edge works in both directions.

(Fig 2: Directed graph example. [1])

There are some other terminologies that are commonly used in

graph. Two nodes 𝑢𝑢 and 𝑣𝑣 are called adjacent if 𝑣𝑣 is the endpoint
of 𝑢𝑢 and vice-versa. Such edge that connects the two edges is to
be called incident with the nodes 𝑢𝑢 and 𝑣𝑣. A path is called a
sequence of edges that connects the edge 𝑢𝑢 and edge 𝑣𝑣. A path
that is ends at the starting node is called a circuit.

Paths can be created by traversing a graph. A graph traversal
has two common modes; Breadth First Search (commonly
abbreviated as BFS) and Depth First Search (commonly
abbreviated as DFS). A BFS traversal is usually done by using
a queue data structure, while a DFS traversal is usually done by
using a stack data structure. The traversal order holds by their
own names; BFS will traverse for each existing path, while DFS
will traverse all through until the end.

Data structure wise, a graph is usually created in the form of
these: adjacency list, incidence list, adjacency matrix, incidence
matrix, and edge list. Each of the representation mentioned has
its own use cases and weaknesses; it all depends on how the
users theriselves wanted to use it.

B. Tree
A tree is just a special form of a graph. It is basically an

undirected graph, with no simple circuit inside of it. An
undirected graph is said to be a tree if there exists such unique
simple path for each pair of two nodes. Another variation of the
tree is called a rooted tree, which means a tree with one node
selected as the root, while every other node is directed further
away from its root by the edges. Some terminologies in trees are

Paper of IF2120 Discrete Mathematics – Sem. I Academic Year 2019/2020

related to its node. Internal nodes are nodes of the tree that have
children (descendants), while leaves are nodes of the tree that
have no children.

(Fig 3: Examples of possible trees. [1])

A n-ary tree is the is a form of rooted trees, where each internal

node has maximum of 𝑛𝑛 children. Commonly, as the world of
computers exists of zeros and ones, a binary tree is used. A
binary tree is a n-ary tree that consists of maximum two children.
It has so many uses in optimizing algorithms and storing data
efficiently, for example the BST (Binary Search Tree).

C. Quadtree
As mentioned before, the most common form of trees that is

used in computer science is of course; the binary tree. With
quadtrees, things are a little bit different. Binary trees, as named
for its count of children, has two children. Whereas for
quadtrees, they have at most four children (𝑛𝑛 = 4). Formally
elaborated, Quadtrees are hierarchical spatial tree data structures
that are based on the principle of recursive decomposition of
space [2].

(Fig 4: A simple diagram explaining quadtrees. [3])

Quadtrees work in a recursive manner; some quadtrees like

shown in Figure 1 stores information of regions. It divides a
rather large image into four subsections (northwest, northeast
southeast, and southwest). At that example, it divides until a
region is homogenous, hence no need of further decomposition.
This property of the quadtree makes it rather efficient in storing
spatial data.

Quadtrees are a quintessential data structure to store spatial
related data. Figure 1 shows a variation of a quadtree, namely
the region quadtree. Another variation of the quadtree is to store
information of a lot of points in an efficient manner. The
principles stay the same; recursively divides the region into four
quadrants until there is no need of dividing it, in this case there
exists only one point in that region. With that perspective of
quadtrees storing spatial data, it can hold so much potential into
developing algorithms related to image processing.

D. Image Processing
By definition, image processing is a way to perform

operations to an image, in order to get a certain information from
an image, or to modify it into our own will. The output wanted

may be another modified image or even just a simple output
showing what the image holds [4].

The term image processing is known before the ages of
computers, which was done to photos manually by hand or other
methods. Nowadays, image processing is being done in
computers using calculations and algorithms that have
developed during the years.

The simplest form of image processing is just a simple
transformation of an image, such as resizing an image. A term
that relates to resizing an image is usually zooming; which in
practice is just adding more pixels to an image, whether you
want it to be zoomed in or out. Another great example is by
simply manipulating the pixels that make up the image into
something that we want it to be.

D. Image Compression
Image compression is a way to reduce the size of an image

file with such ways that the image can be perceived almost or
perfectly with its uncompressed counterpart. There are two
types of image compression: lossless and lossy. In general,
lossless compression doesn’t remove or change any data with a
bonus of the size is reduced; thus, no quality is compromised. It
is a different story with a lossy image compression. The image
may be modified as the compression algorithms want it to be, so
the quality may be reduced as well; and there’s no turning
back—unlike the lossless image compression as it is reversible.

III. IMAGE PROCESSING EXAMPLES IN QUADTREES

Given an image that has been converted into its quadtree
form, containing the average color in RGB format and its
standard deviation for each quadrant for the image. In this
example, as quadtree is scaled by the power of two, we will be
using an image of size 2n.2n pixels. It would make things easier
for the algorithms explained below to work. If a different sized
image is going to be used, a different approach must be made.
Keep in mind; most of these applications are meant to
demonstrate how quadtrees store spatial data.

A. Image Scaling (Downscaling)
By how quadtrees work, image scaling by the factor of two is

a trivial task. After the quadtrees has been made, by simply
returning the image at the wanted level of the tree. For instance,
suppose that you’ve constructed the quadtree from a 512x512
image. Keep in mind that each node contains the average color
of that region. With an input of level 1 (the root node), the
quadtree will return a 1x1 image, with the average color of the
whole image. With an input of level 2, the quadtree will return
a 2x2 image, consisting of four quadrants with each quadrant’s
average color. The pattern may be continued on until the actual
image’s original size.

Paper of IF2120 Discrete Mathematics – Sem. I Academic Year 2019/2020

(Fig 5: 2x2, 4x4, and 64x64 scaling. Source: Author)

As mentioned before, each node of the quadtree contains both

the average color and the standard deviation of the colors. By
simply returning the average color from each region, we can get
a simple downscaling of the image. The author made a simple
script using Python and the OpenCV library to load the image,
then manipulating it. Below here is the code.

Procedure for leveled scaling

def createLeveledScaling(image, level):

 resultHeight = 1<<level

 resultWidth = 1<<level

 imageResult = np.zeros((resultHeight,resultWidth,3),

np.uint8)

 if(level==0):

 return image.mean

 else:

 return setQuadrants(

 imageResult,

 createLeveledScaling(image.imageNW, level-1),

 createLeveledScaling(image.imageNE, level-1),

 createLeveledScaling(image.imageSE, level-1),

 createLeveledScaling(image.imageSW, level-1),

)

Procedure for exporting to folder

def exportScaling(filename, show=False):

. . . (redacted code)

 for i in range(0,10):

 size = 1<<i

 result = createLeveledScaling(Q, i)

 if(show):

 showImage(result)

. . . (redacted code)

The procedure createLeveledScaling is a procedure

used to create a scaled image at a certain level of the quadtree.
The other procedure, exportScaling is used to output the
scaled image into a folder. The author made this procedure in
order to show all the possible scaling that quadtree can make.

(Fig 1: Results shown in a folder. Source: Author)

Is the scaling via quadtrees actually useful? Well, it depends

on how the image will be used. The user may just adjust the
scaling ratio and judge the result by eye, to see which one is the

best. The implementation that the author made may not be very
suitable for general image scaling, as it blindly takes the average
color. The author also made a graph about the image size
compared to the dimension of the image.

(Plot 1: Graph of image size growth compared to its

dimension. Source: Author)

By making the plot, it can be deduced that the growth of the

image size can be modelled as a quadratic equation (to the
height or width). In other words, the image grows size grows
linearly when compared to the number of pixels. Note that all of
the images are exported from the program from OpenCV.

B. Image Blending
OpenCV itself has its own procedure to blend two images, by

using the addWeighted procedure. The author also made an
implementation using quadtrees, with the same principles as that
procedure. Image blending is simply just averaging two colors
together at a certain level of two quadtrees. For example, by
averaging two colors without weights (meaning: both colors
have equal weight; 50%:50%) can be considered image
blending. The author chooses to use the airplane and Lenna
image, with this outcome below.

(Fig 6: A 50:50 and a 70:30 image blending of Lenna and

Airplane. Source: Author)

When changing the weight of the image, the outcome will
differ. This image blending actually shows a property of an
image, namely opacity. A 50:50 blending is actually just
blending two images with opacity of 50% into one. As shown
above, with a different alpha value (opacity) of image will create
a different picture. This property is widely used in many
graphical editing applications, such as Adobe Photoshop.

How does one calculate a weighted average color? It is by
simply multiplying it by the alpha value. Below is given author’s
code on the weighted average color.

y = 1,4882x2 + 67,741x - 787,01
R² = 0,9999

0

100000

200000

300000

400000

500000

2 8 32 128 512

Liechestein Image Size

Paper of IF2120 Discrete Mathematics – Sem. I Academic Year 2019/2020

def imageUnion(image1, image2, level, alpha):

 resultHeight = image1.height

 resultWidth = image2.width

 imageResult = np.zeros((resultHeight, resultWidth, 3)

, np.uint8)

 if(level==0):

 b1, g1, r1 = image1.mean

 b2, g2, r2 = image2.mean

 br, gr, rr = b1*alpha + b2*(1-

alpha), g1*alpha + g2*(1-alpha), r1*alpha + r2*(1-alpha)

Note that OpenCV outputs color in [B, G, R] format!

 return (br, gr, rr)

 else:

 ... (redacted code, dividing by 4 quadrants)

 return imageResult

The highlighted part is actually what matters most; it is how

the weighted average color being calculated. The mathematical
formula looks like defined below.

𝑎𝑎𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = ∝. 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎1 + (1−∝). 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2

IV. QUADTREE BASED LOSSY IMAGE COMPRESSION

A. Introduction to the Compression
The author implemented a lossy image compression using

quadtree. This is merely a concept based on an idea of only
returning some colors with a low enough standard deviation.
This lossy compression technique uses a Breadth First Search
(BFS) algorithm in order to process each of the region of the
quadtree. This lossy image compression was inspired by a
quadtree based art on an image [5]. The lossy compression is
made similar to that quadtree art.

The algorithm is highly based on the averaged standard
deviation of the RGB values. The author tests for the image of
size 512x512, with the same output size. The settings for the
default standard deviation limit is set to be 10.0, which the
author highly recommends if the purpose is to test for the
effectiveness of the lossy compression. If it’s more than 10.0,
the image quality is starting to look very degraded, as in the
default configuration the quality has suffered a lot.

Because OpenCV gives the standard deviation in [B, G, R]
format (in the form of list), so the author averages the three
standard deviation and crunch it into one number. That number
is further used to determine whether the BFS should continue or
stop at that point.

This algorithm’s main purpose is generally to just create a
concept of a lossy compression based on a quadtree; hence the
quality of image may suffer because of that. This compression
is actually pretty good at compressing image into smaller size,
but it destroys the image quite bad.

B. Steps of the Algorithm
To show how the algorithm works, in this paper the author

explains it by showing the images that the algorithm took place.
The author used the Lenna image (with size of 512x512 pixels)
to show the steps. Before the explanation, here is the truncated
code of the BFS based algorithm that the author made.
Procedure for segementing a quadtree image

def quadtreeSegmentation(filename, limit=7, stdLimit=10.0

, write=False):

 ... (redacted code)

 # Define queue for BFS

 q = []

 coordinateQueue1 = []

 coordinateQueue2 = []

 levelQueue = []

 q.append(Q)

 coordinateQueue1.append((0, 0))

 coordinateQueue2.append((imageInput.shape[0], imageIn

put.shape[1]))

 levelQueue.append(1)

...(redacted code)

 while(len(q)!=0):

 # Pop front of all queues

 currentNode = q.pop(0)

 y1, x1 = coordinateQueue1.pop(0)

 y2, x2 = coordinateQueue2.pop(0)

 currentLevel = levelQueue.pop(0)

 # Find midpoint

 halfX = (x1+x2)//2

 halfY = (y1+y2)//2

 # If the STD is still larger than the stdLimit...

 if(currentNode.std>=stdLimit and currentLevel<=li

mit):

 ...(redacted code, here is where the

segmentation happens; see the GitHub link for more

information!)

 print("Segmentation complete!")

 showImage(imageResult)

 cv2.waitKey(0)

 cv2.imwrite(resultPath + "lenna" + str(stdLimit) + "_

" + str(limit) + ".png", imageResult)

First, a quadtree representation of the image will be created.

Paper of IF2120 Discrete Mathematics – Sem. I Academic Year 2019/2020

This process will take the longest time, as there will be a lot of
regions to be process. This may be a weakness of the author’s
implementation, as the author constructed the tree top down; not
bottom up. By constructing it top down, there are overlapping
regions that are processed multiple times, namely at the process
of finding the average color and deviation. Statistically
speaking, both of those two components from two different
regions can be merged into one by simply averaging it again.

After the quadtree representation has been made, the BFS
traversal of the quadtree will begin. The algorithm will push the
whole region to the queue. After that, for every region in the
front of the queue will be checked; whether it satisfies the
required deviation limit and the required level of segmentation.
Below is shown the process for segmenting the image, with the
minimal deviation of 8 and depth of 5.

(Fig 7: Image of Lenna (512x512), first step of BFS

decomposition. Source: Author)

(Fig 8: Image of Lenna (512x512), one of the steps of image

segmentation to achieve compression. Source: Author)

If observed closely, the segmentation of certain region will
not continue if the deviation already satisfies the required
condition, like shown in the figure below.

(Fig 9: Image of Lenna (512x512) while segmenting, with a
marked region that did not segment further. Source: Author)

The BFS traversal of the tree also has a certain pattern to it;

the author chooses to do BFS traversal from the NE region, NW
region, SW region, and the SE region, respectively. This order
of traversal doesn’t really affect the end result of image
compression, thus can be ignored.

C. Compressed Image Size and Their Relationship
How well does the compression work? Well again, it depends

on what the aim of the compression is. For creating an “artistic”
image (which can be achieved as shown in the reference [5]),
the size will tend not to be bigger than going for quality. The
author has supplied a plot, explaining the correlation of the
image compression size and the deviation given by the user.
Again, the image of Lenna will be used here.

(Plot 2: Graph of the size of the image of Lenna when

compressed with different STD. Source: Author)

The author can not really explain about how can the deviation
and image size correlate with each other. Thus, the author
suggested that a lot more test must be taken. As the algorithm’s

y = -52,52ln(x) + 248,54
R² = 0,9964

50

70

90

110

130

150

170

190

210

0 2,5 5 7,5 10 12,5 15 17,5

Image of Lenna,
segmented based on STD

Paper of IF2120 Discrete Mathematics – Sem. I Academic Year 2019/2020

way of determining a region needed to be segmented further is
by its deviation, and the deviation will of course, vary between
images. With that reasoning, the author thinks that it is not really
possible to find a direct formula to know about how the image
will correlate with each other. Thus, the author chose to do the
tests statistically based.

With the help of test statistics, the author may or may not find
the difference between two images. The author chooses to use
two images, which are the Liechtenstein image and the Airplane
image. Using a method called paired t-test, we can find how two
data samples be paired with each other. What the aim is to know
how well the two samples align. After crunching some data, the
author created this table.

(Table 1: Table for the t-test method. Source: Author)

With a confidence interval of 90%, the author found out the

alpha; it is about 0.05 (5%). The author defined two hypotheses:
(1) the average difference is equal to 0 (the H0), or (2) the
average difference is not equal to 0 (the H1). By using the t-
table, because T0 is not in the rejection area, H0 is proven to be
failed to reject. Hence, because there is enough evidence of the
average difference is equal to 0, it is safe to say that the to sample
are alike (with 90% confidence interval).

D. Gallery of Examples
As mentioned before, an appropriate value of should be

chosen to get a balance between the quality of image and size.
Below is shown a gallery of some image with different deviation
and depth limit settings.

(Fig 10: Initial image of Lenna (512x512). [5])

(Fig 11: Image of Lenna (512x512), segmented by STD of 5.0

with depth of 7. Source: Author)

(Fig 12: Image of Lenna (512x512), segmented by STD of 15.0

with depth of 7. Source: Author)

STD
Limit

Liechtenstein
(KB)

Airplane
(KB) Difference

2,5 148 158 -10
5 127 129 -2

7,5 116 117 -1
10 108 109 -1

12,5 101 102 -1
15 93,3 94,5 -1,2

 STD Diff 3,597
Mean Diff -2,7
T0 -1,83865
N 6
Degree of Freedom 5

Paper of IF2120 Discrete Mathematics – Sem. I Academic Year 2019/2020

(Fig 13: Initial image of author (512x512 and 2048x2048).

Source: Author)

(Fig 14: Image of author(512x512), segmented by STD of 5.0

with depth of 8. Source: Author)

(Fig 15: Image of author(2048x2048), segmented by STD of

10.0 with depth of 10. Source: Author)

(Fig 16: Initial image of the Mandelbrot Set (512x512). [6])

(Fig 17: Image of the Mandelbrot Set (512x512), segmented by

STD of 5.0 with depth of 6. Source: Author)

(Fig 18: Image of the Mandelbrot Set (512x512), segmented by

STD of 7.5 with depth of 8. Source: Author)

V. CONCLUSION

Quadtrees hold a really important role in spatial data storing.
With these applications shown, such as scaling, blending, and

Paper of IF2120 Discrete Mathematics – Sem. I Academic Year 2019/2020

image compression, it can be shown that quadtrees are really
important, especially when the goal is to segment an image.
However, the construction method that the author show must be
improved further as a bigger image will take a long time to
construct the quadtree.

VI. APPENDIX

The program that the author creates can be access in author’s
GitHub (https://github.com/mkamadeus/Discrete-Mathematics-
Quadtree-Decomposition), and there may be more images to be
explored and some of the experimentation that the author made.

VII. ACKNOWLEDGMENT

First and foremost, I wanted to thank God for giving me the
passion in writing this paper. I also wanted to thank my parents;
without them I will not be able to write this thesis. I am thankful
for my lecturers, Dr. Ir. Rinaldi Munir, M. T., Dra. Harlili S., M.
Sc., Fariska Zakhralativa Ruskanda, S.T., M.T., for teaching us
such wonderful knowledge about the world of discrete
mathematics. My sincere appreciation for my friend, Zefania
Praventia for helping me in the making of this paper, especially
for helping me prove the correlation of the file size and deviation
in a statistic manner.

REFERENCES

[1] K. H. Rosen, Discrete Mathematics and Its Applications, 8 ed., New York: McGraw-

Hill Education, 2019.
[2] S. Aluru, "Quadtrees and Octtrees," in Handbook of Data Structure and

Applications, Florida, CRC Press, 2018, pp. 309-313.
[3] "Semantic Scholar," [Online]. Available:

https://www.semanticscholar.org/paper/Constant-time-neighbor-finding-in-
quadtrees%3A-An-Aizawa-
Motomura/89fe1c4143ab5b2162b5d4caa6c0e863fea42d4b/figure/4. [Accessed 4
December 2019].

[4] University of Tartu, "University of Tartu," [Online]. Available:
https://sisu.ut.ee/imageprocessing/book/1. [Accessed 2 December 2019].

[5] "Wikipedia," [Online]. Available:
https://upload.wikimedia.org/wikipedia/en/7/7d/Lenna_%28test_image%29.png.
[Accessed 21 November 2019].

[6] "Twitter," [Online]. Available:
https://pbs.twimg.com/profile_images/1033143908769910786/NyrM5Y4b.jpg.
[Accessed 4 December 2019].

[7] fogleman, "GitHub," [Online]. Available: https://github.com/fogleman/Quads.

STATEMENT
With this statement, I hereby declare that this thesis is a

product of my hard work, not an adaptation, a translation from
other person’s work, nor formed by result of plagiarizing.

Bandung, 6 December 2019

Matthew Kevin Amadeus

13518035

https://github.com/mkamadeus/Discrete-Mathematics-Quadtree-Decomposition
https://github.com/mkamadeus/Discrete-Mathematics-Quadtree-Decomposition

	I. Introduction
	II. Theoretical Basis
	A. Graph
	BA. Tree
	CA. Quadtree
	DB. Image Processing
	D. Image Compression

	III. Helpful HintsImage Processing Examples in Quadtrees
	A. Image Scaling (Downscaling)Figures and Tables
	B. Image Blending

	IV. Quadtree Based Lossy Image Compression
	A. Introduction to the CompressionC. Quadtree Based Lossy Image Compression
	B. Steps of the Algorithm
	C. Compressed Image Size and Their Relationship
	D. Gallery of Examples

	V. Conclusion
	VI. Appendix
	VII. Acknowledgment
	References
	PeRNYATAANStatement

