
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2019/2020

Argon2: The Better Password Hashing Function Than

Bcrypt

Daniel Ryan Levyson 13516132

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13516132@std.stei.itb.ac.id

Abstract—Password is a string to secure access into certain

resources from any unauthorized parties. Anybody who is

authorized to access the resources should be able to keep the

password as a secret prevent resources stealing or misuse by those

who do not have permission. The system which acts as the store of

resources and also resposibles for giving access to the resources

should be secure enough to manage the access verification. In order

to authenticate person by using password, computer should have

mechanism to verify the password. Saving plain password

somewhere to be used for verification produces security problem.

Someone who can somehow find the place where the password is

stored and read the password can gain access to any resources in

the system. The authentication system should have secure way to

store and verify password. Bcrypt is hashing function which can be

used to store and verify password securely. The development of

computer hardware leads to increasing chance of cracking the

security of hashing algorithm, including Bcrypt. Certain

hardwares is specifically designed to run certain cracking

algorithm optimally. More secure hashing algorithm is needed to

overcome the possibility of cracking using high-end computer

hardware. Argon2 is another hashing function which has the ability

to overcome the level of computation power of current hardwares.

Keywords—password, hash, encryption, security.

I. INTRODUCTION

Most of information systems use authentication system to

limit access of certain information. The authentication system is

resposible to identify the accessor by asking credentials. Every

users of the system would be asked to register credentials in the

first time they use the system. One of the credential is password.

System would store the password somewhere in certain way. To

identify the accessor later, system would access the stored

password and in certain way verify the given password.

The most easiest way for the system to implement the

authentication system is storing the user’s password to file as a

plain text. Attacker is defined as someone who tries to gain

access into restricted resources. In this case, attacker works by

finding any possible ways in the system to retrieve the file which

stores all the password used for verification. So, this kind of

authentication system is not reliable, when the attacker succeed,

authentication become useless.

The more sophisticated way to store the password is using

encryption technique which will be explained more in the next

chapter. Instead of storing plain password, the password will be

stored after it is encrypted. When the attacker gained access to

the stored passwords, the attacker can not know the real

passwords. It seems good, but to encrypt password, the

authentication system needs secret key which is used to change

password to encrypted form and reverse. After the attacker got

the encrypted passwords, the attacker only needs to search for

the secret key somewhere in the system. When the attacker

found the secret key, all encrypted passwords can be decrypted

and the real passwords would be revealed.

Encryption is not reliable to be used for password storage,

because the real password definitely can be revealed from the

encrypted password by knowing the secret key. In the other

hand, hash function produces possibility to store password

securely, because hash function is invented to be one way. That

implies the input of hash function has no way to be retrieved by

knowing its output.

Creating own implementation of hash function to protect

password is a bad idea. Hash function can be considered as

secure if it is tested and analysed well enough by attempting to

break its security. In the other hand, we cannot rely on hiding

the algorithm to ensure the security, because hiding the

algorithm will produce another concern of security.

SHA-1, HAVAL-128, MD4, MD5, and RIPEMD are known

as cryptographic hash function which are also known suffering

from collision attack. SHA-2 is a general purpose hash function.

it needs a short time to compute. With today’s computation

power of computer hardware, SHA-2 vulnerable to bruteforce

attack. There is SHA-3 as the latest SHA hash function. It is

faster than SHA-2. That implies SHA-3 is worse in overcoming

bruteforce attack.

In 1999 Bcrypt was invented as secure password hashing

algortihm. Bcrypt has been tested and chosen for a long time for

protecting password. But problem has been arisen along with the

higher ability of computation hardware. A Hybrid system of

ARM/FPGA SOCs can be used to attack Bcrpyt. In 2015,

Argon2 won Password Hashing Competition. It is designed to

overcome the weakness of Bcrypt in mitigating current

computational power for cracking password hashing algorithm.

II. ENCRYPTION AND HASH FUNCTION

Encryption and hash function are important concept used in

cryptography. The main difference between the two is whether

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2019/2020

or not the input can be retrieved later after it is transformed.

A. Encryption

Encryption is the process of hiding a message by changing its

form in such way so that unauthorized parties cannot read the

hidden message. The hidden message is called plaintext, and the

result of encryption is ciphertext. Authorized parties should

have the secret key to hide and read the message. The process of

returning the plaintext from ciphertext is known as decryption.

We can write encryption as a function which map plaintext P

to chipertext C.

 E(P) = C

Decryption is the inverse of encryption. We can write

decryption as a function which map chipertext C to plaintext P.

 D(C) = P

We can also substitute C to E(P).

 D(E(P)) = P

In history, encryption had been used since the age of roman

empire. Julius Caesar, a roman emperor, use encryption to hide

message that is sent to his governors. The technique of

encryption is called Caesar Cipher. Caesar Chiper works by

substituting every alphabetical characters in the plaintext with

the next three character in alphabetical order.

Caesar Cipher can be represented more general with “three”

substituted by variable K. So mathematically, we can write

Caesar Cipher in the expression below.

 E(P) = (P + K) mod 26 = C

 D(C) = (C – K) mod 26 = P

In the example above, K is the cipher key. Because the cipher

key used in encryption and decryption is the same, Caesar

Chiper is called symmetric-key encryption. If the key used for

encryption and decryption is different, the encryption is called

asymmetric-key encryption or also known as public-key

encryption.

In asymmetric-key encryption, there are public key and

private key. As the name suggest, public key is for public use, it

is not secret for everyone. Public key is used to encrypt the

message. Private key is used to decrypt the ciphertext.

Therefore, in asymmetric-key encryption, everyone can encrypt

the message because the key used to encrypt is public. But only

authorized parties can read the hidden message.

RSA algorithm is known as one of asymmetric encryption

implementation. RSA algorithm has three parts: generating

public and private key pair, message encryption, and message

decryption. DES is known as one of symmetric encryption

algorithm. DES is no longer considered as secure, but it becomes

the fundamental understanding of block cipher.

Block cipher is a function which takes two input: k-bit string

and n-bit string, and then returns n-bit string. k-bit string is a

symmetric key for block cipher. Block cipher is known as

powerful technique behind the strong encryption algorithm. In

block cipher, there is basic component used to obscure the

relationship between the key and the ciphertext which is called

S-Box. Besides DES, another encryption algorithms that use the

concept of block cipher are AES and Blowfish. Both are

considered secure encryption algorithm until today.

B. Hash Function

Hash function is a function which takes random size input k

and map k to value v which has fixed size. The very simple hash

function use modulo operation, it has following form:

 h(k) = k mod m = v

In the example above, the size of v depends on m. Because v

has fixed size, there are cases when different input k gives the

same value v as the output. For example, for m = 10, h(1) and

h(11) has the same output v = 1. That condition is called

collision. When using hash function for any purpose besides

security, policy can be defined to handle the collision. For

security purpose, collision in hash function is a security hole.

Good algorithm for cryptographic hash function should have

following properties:

1. Pre-Image Resistance

Input value k should be hard to find from known hash

value v.

2. Second Pre-Image Resistance

For input value k which has hash value v, it should be

hard to find another input value which also output the

same hash value v.

3. Collision Resistance

It should be hard to find pair of input value which has the

same output value.

In order to proof whether a hash function secure or not, we

need to proof that the hash function has three of above

Plaintext Ciphertex

t
Plaintext

encryption decryption

Q W E R T Y

T Z H U W B

plaintext

chipertext

Encryption Decryption
plaintext ciphertext plaintext

public key private key

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2019/2020

resistances criteria as good as possible.

If we look closer on encryption mechanism, we can actually

use the idea of encryption to create hash function. Suppose we

have a fixed plaintext and given another text as an input, we can

use the given text as a secret key to transform the fixed plaintext

into ciphertext. The secret key which is the given input is thrown

away. By doing that, we create a hash function which the input

k of hash function behaves as a secret key in encryption and the

output v of hash function behaves as the chipertext.

C. Password Hashing Function

We already talked about two way function that is not good to

be used in creating password storage. Using two way function

for protecting password requires the system to store the secret

key to be used in verifying password. Problem occurs when

attacker can gain access to passwords and the secret key. All the

encrypted passwords can be decrypted using the secret key.

Instead of using two way function, we can use one way

function to protect password. The authentication system does

not need to know the plain password, the system only needs to

enter password into the function and compare the result with the

one stored in password storage. It means we can actually use

hash function to protect password.

There are several known attacks to break password hashing

function besides brute force such as preimage attack, collision

attack, dictionary attack, rainbow table attack and also side-

channel attack. Any hash function that is weak to preimage

attack and collision attack should be avoided for further usage

in security. Dictionary attack is faster version of brute force,

because it narrows the space of guessing by registering known

words in dictionary to be used in brute force.

Because human always needs to remember the password, the

password should be not too different from any meaningful and

familiar words for human. Human’s password is said to have

high entropy. Even though human combines the password with

number and non-alphabetical character, the entropy is still

relatively high. Suppose someone’s password is

“?/Qu1cKbR0wNf0X/?”. The password is hard enough but we

can still see that it is created by modifying the words “quick

brown fox”. This is why dictionary attack exists.

Dictionary attack is faster than brute force but it still needs

time. Rainbow attack is actually dictionary attack which

decreases the processing time significantly but in the same time

increases the required disk space. Rainbow attack precomputes

the dictionary and it makes the process of knowing the plain

password from its hash becomes much faster, because the

process only compare the precomputed hash and the password

hash, when any hash is matched, than the attacker knows the

plain password before the password is precomputed. Even

though this technique requires the attacker to gain access to all

the hashed password, but the technique to secure the access to

retrieve the hashed password is another security concern which

is not discussed here.

To overcome the weakness of human’s password, an attempt

is made to lower human’s password entropy. The idea is

generating another string to be combined with human’s

password so that the combination will produce more rainbow

table attack resistant hash. The generated string should be

random for each password and long enough. The longer the

string, the lower the entropy of password. This generated string

is called Salt. Salt can be put before or after the password. Salt

is also useful to make same password to have different hash. The

authentication system should also store the Salt to be used when

verifying password and it is considered as safe, not

compromising security.

III. BCRYPT PASSWORD HASHING

As stated in the introduction, SHA-2 is actually good general

hash function, but it is not secure enough to be used for hashing

password. Hardware computational power is increasing over

time. There might be possibility for attacker to brute force

password by using combined high-end hardware computational

power. Moreover, quantum computer exists nowadays which

significantly faster than classical computer when doing brute

force. In order to make brute force almost impossible, we should

use slow hash function to hash password.

Bcrypt algorithm is hash function which has expensive key

setup phase. Bcrypt can follow the increasing computational

power of hardware, because it can be configured to be slower by

increasing the number of iteration. Bcrypt utilizes Blowfish to

setup the key. Blowfish is notable as complex symmetric-key

block cipher. Following parts will discuss Blowfish and Bcrypt

in more detail.

A. Blowfish as Password Hash Function

Blowfish is symmetric-key block cipher, designed by Bruce

Schneier, which is known by its large key-independent S-Boxes

and highly complex key schedule. Blowfish has 16 rounds

Feistel network. A round-specific data derived from the cipher

key is called a round key. A key schedule is an algorithm that

calculates all the round keys from the key. Blowfish has 64-bit

block size and 32 bits up to 448 bits key length.

For every round, Blowfish algorithm does the following

actions:

1. XOR the left half of the data with the r-th P-array entry.

2. Use the XORed data as input for Blowfish’s F-function.

3. XOR the F-function’s output with right half of the data.

4. Swap L and R.

Blowfish’s F-function will split 32-bit input into four eight bit

quarters. S-boxes will transform the quarters which is 8-bit

length to 32-bit output. Then, the output is added module 232 and

XORed to produce the final 32-bit output.

Following are the steps of key schedule algorithm in

Blowfish:

1. Initialization of P-array and S-boxes with values derived

from hexadecimal digits of pi (first 12 digits of pi in

hexadecimal 3.243F6A8885A3…..).

2. Byte by byte, secret key is XORed with all the P-entries

in order.

3. A 64-bit all-zero block is then encrypted with the

algorithm as it stands.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2019/2020

4. The resulting ciphertext then replaces P1 and P2.

5. The same ciphertext is encrypted again with new

subkeys, and the new ciphertext replaces P3 and P4.

6. This process will continue to replace the entire P-array

and all the S-boxes.

Blowfish algorithm will run 521 times to generate all the

subkeys. Blowfish only needs about 4 KB space of RAM. Its

small usage of RAM makes Blowfish possible to be used in

embedded systems.

Figure 1 Blowfish algorithm.

Source: http://wiki.cas.mcmaster.ca/index.php/Blowfish

B. Bcrypt

Bcrypt is a hash function spesifically designed for password

hashing by Niels Provos. It was developed to harden password

storage of Unix authentication system. Bcrypt is adaptive to

computational power of hardware. Bcrypt receives several

parameters which one of the parameter is an iteration-count. The

iteration-count can be configured to certain value which is

slowing down cracking process for security but also fast enough

for verifiying given password.

Bcrypt take advantages of the expensive key setup in

Eksblowfish. Eksblowfish refers to expensive key schedule

blowfish, it is a cost parameterizable and salted variation of the

Blowfish block cipher. Eksblowfish takes three parameters:

cost, salt, and key. The cost parameter is what makes this

algorithm adaptive to computational power. Increasing the value

of cost creates more expensive key schedule to be computed.

The key parameter is user-chosen password. Eksblowfish

returns set of subkeys and S-boxes.

Following are steps of Eksblowfish algorithm:

1. Copying the digits of number π first into subkeys, and

also copying them into S-boxes.

2. Expanding the key by modifying the P-array and S-boxes

based on the value of the 128-bit salt and the variable

length key. It XORs all the subkeys in the P-array with

encryption key. The i-th 32 bits of key are XORed with

i-th of P.

3. Encrypting the key using Blowfish encryption algorithm

for 2cost times.

After getting set of subkeys and S-boxes from Eksblowfish,

Bcrypt encrypts the text “OrpheanBeholderScryDoubt”

repeteadly for 64 times in a mode called Electronic Codebook.

Electronic Codebook mode is one of block cipher mode of

operation. The result of encryption is then concatenated with the

cost and salt to provide information for later verification

process.

Bcrypt has following scheme:

$2b$[iteration]$[salt][hash value]

Following Bcrypt’s password string has cost parameter equal

to 12 which indicates 212 key expansion rounds, salt

“ZMqo8uLOikgx2eNcRZoMy9”, and resulting hash

“xad68L7lJZdL1ZAgcfl7p92hWyIjldG”:

The length of salt used in Bcrypt is 128 bits with Radix-64

encoding, so it is 22 characters. The length of hash value of

Bcrypt is 184 bits, it is 31 characters length with Radix-64

encoding. So in total, authentication system will store string

with length 58 plus digit of iteration number. For the input, user-

chosen password length should not be longer than 72 bytes or

the password will be truncated.

Bcrypt has been implemented in many programming

languages such as C, C++, C#, Go, Java, Javascript, Perl, PHP,

Python, Ruby, and other languages. It was originally used for

OpenBSD authentication system, but nowadays it has been

widely used to securely store password in many web

applications.

IV. ARGON2 AS PASSWORD HASH FUNCTION

Other alternatives besides Bcrypt, which has been explained

before, are HMAC, PBKDF2, and Scrypt. Bcrypt is better for

password hashing than HMAC and PBKDF2 due to its

flexibility in specifying computation cost. Bcrypt is invented to

focus on computational cost. Nowadays, specialized computer

chips such as FPGA, ASICs, and GPU can be obtained buy an

attacker easier than huge amounts of memory. This fact open the

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2019/2020

weakness of Bcrypt which focus on compuation cost. Scrypt is

newer than Bcrypt. Scrypt aims for high memory, but the

existence of a trivial time-memory tradeoff allows compact

implementations with the same energy cost. Scrypt is not

flexible in separating time and memory costs. Better hash

function should be able to flexible enough to to trade large

memory for fast computation and low memory for slow

computation.

Argon2 is made by Alex Biryukov, Daniel Dinu, and Dmitry

Khovratovich. Argon2 is invented to achieve memory-hard trait

of a hash function. It is made to fill memory at fast rate and use

multiple computing units effectively, but in the same time still

providing defense against tradeoff attacks. Argon2 is able to fill

1 GB of RAM in a fraction of second. Argon2 is optimally

designed for hardware with x86 architecture. It takes advantage

of cache and memory organization of recent AMD and Intel

processors., and smaller amounts even faster. It can scale to the

arbitrary number of parallel computing units.

There are three available versions of Argon2: Argon2d,

Argon2i, and Argon2id. Argon2d focuses on fast computation

and uses data-depending memory acces. Argon2d is suitable for

applications with no threats from side-channel timing attacks

such as cryptocurrencies. Argon2i uses data-independent

memory access. Argon2i is preferred for password hashing and

password-based key derivation. Argon2i is slower as it makes

more passes over the memory to protect from tradeoff attacks.

Argon2id behaves like Argon2i for the first half of the first

iteration over the memory and works as Argon2d for the rest,

thus providing both bruteforce cost savings and side-channel

attack, such as meltdown and spectre, protection due to time-

memory tradeoffs.

There are two type inputs for Argon2: primary and secondary

inputs. Primary inputs are message P, the password, and nonce

S, the salt. Message P may have any length from 0 to 232 – 1

bytes. Nonce S may have any length from 8 to 232 – 1 bytes.

Primary inputs are required to use Argon2.

Secondary inputs are optional and consist of several

parameters as described below:

• Degree of parallelism p is any number from 1 to 224-1.

• Tag length τ is any integer number of bytes from 4 to 232-

-1.

• Memory size m is any integer number of kilobytes from

8p to 232-1.

• Number of iterations t is any integer number from 1 to

232 – 1.

• Version number v is one byte 0x13;

• Secret value K is any number from 0 to 232-1 bytes.

• Associated data X may have any length from 0 to 232-1

bytes.

• Type y of Argon2: 0 for Argon2d, 1 for Argon2i, 2 for

Argon2id.

Argon2 uses internal hash function H and internal

compression function G with two 1024-byte inputs and a 1024-

byte output. Function G is based on its internal permutation.

Hash function H is the Blake2b hash function. Function G is

iterated m times.

Figure 2 Argon2 mode of operation with no parallelism.

Source: https://github.com/P-H-C/phc-winner-

argon2/blob/master/argon2-specs.pdf

Figure 3 Argon2 compression function G.

Source: https://github.com/P-H-C/phc-winner-

argon2/blob/master/argon2-specs.pdf

Suppose we want to hash a password “test”, the result of

Argon2 function is:

We can see there are several parts on the resulting hash

divided by dollar sign.

$argon2i$v=19$m=1024,t=2,p=2$TmxLemFoVnZFaEJu

T1NyYg$4j2ZFDn1fVS70ZExmlJ33rXOinafcBXrp6A6

grHEPkI

https://github.com/P-H-C/phc-winner-argon2/blob/master/argon2-specs.pdf
https://github.com/P-H-C/phc-winner-argon2/blob/master/argon2-specs.pdf
https://github.com/P-H-C/phc-winner-argon2/blob/master/argon2-specs.pdf
https://github.com/P-H-C/phc-winner-argon2/blob/master/argon2-specs.pdf

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2019/2020

The first part is the algorithm name which is argon2i for this

example. The second part is the version number v. The third part

is some secondary inputs for the algorithm, there are memory

size m, time cost t, and degree of parallelism p. The fourth part

is nonce S which is a random string and encoded in Base64. The

size of nonce S is 16 bytes. The last part contains the hash value,

encoded in Base64. The hash size is 32 bytes.

V. CONCLUSION

Although there are many ways to do authentication, password

is still chosen to be the main way for authentication. Because of

its extreme significance in securing access to resources, a system

should have reliable authentication gate. Password hashing is a

secure method to store password in order to hide the form of

plain password from the attacker. Good hash function should be

resistance to preimage attack, second preimage attack, and also

collision attack. The threat of brute force, dictionary, and

rainbow table attack demands an ideal hash function to be slow

enough and should be able to scale to follow increasing

computational power.

Even though Bcrypt has the ability to adapt with increasing

computational power, it only focuses on computation time.

Scrypt as the newer hash function lacks the ability of separating

time and memory costs. Argon2 provides an improvement from

the previous hash functions to mitigate general attacks in

cryptography by considering today’s computation power and

specific hardwares.

VII. ACKNOWLEDGMENT

The author would like to thank all lecturers in Discrete

Mathematics class who provide the basic knowledge needed to

write this article and also give inspiration to write about this

topic.

REFERENCES

[1] Alex Biryukov, Daniel Dinu, Dmitry Khovratovich. (2017). Argon2: the

memory-hard function for password hashing and other applications. PHC

Release.
[2] Zimuel, Enrico. (2017). Protecting passwords with Argon2 in PHP 7.2.

https://framework.zend.com/blog/2017-08-17-php72-argon2-hash-

password.html. Accessed on December 4, 2019.
[3] Preziuso, Michele. (2019). Password Hashing: Scrypt, Bcrypt and

ARGON2. https://medium.com/@mpreziuso/password-hashing-pbkdf2-

scrypt-bcrypt-and-argon2-e25aaf41598e. Accessed on December 4, 2019.
[4] Munir, R. (2016). Matematika Diskrit. Bandung: INFORMATIKA.

[5] Niels Provos, David Mazières. (1999). A Future Adaptable Password

Scheme. Proceedings of the FREENIX Track: 1999 USENIX Annual
Technical Conference.

[6] Schneier, Bruce. (1994). Description of a New Variable-Length Key, 64-

Bit Block Cipher (Blowfish).

https://www.schneier.com/academic/archives/1994/09/description_of_a_
new.html. Accessed on December 3, 2019.

[7] Xiaoyun Wang, Dengguo Feng, Xuejia Lai, Hongbo Yu: Collisions for

Hash Functions MD4, MD5, HAVAL-128 and RIPEMD, Cryptology

ePrint Archive Report 2004/199, 16 Aug 2004, revised 17 Aug 2004.

Accessed on December 3, 2019.

[8] Kennedy, David. (2015). Of History & Hashes: A Brief History of
Password Storage, Transmission, & Cracking.

https://www.trustedsec.com/2015/05/passwordstorage. Accessed on

December 3, 2019.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 6 Desember 2019

Daniel Ryan Levyson 13516132

argon2i

v=19

m=1024,t=2,p=2

TmxLemFoVnZFaEJuT1NyYg

4j2ZFDn1fVS70ZExmlJ33rXOinafcBXrp6A6grHEPkI

https://www.schneier.com/academic/archives/1994/09/description_of_a_new.html
https://www.schneier.com/academic/archives/1994/09/description_of_a_new.html
https://www.trustedsec.com/2015/05/passwordstorage

