Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung

Nama	:													
NIM	:													
T.tangan														

Kuis ke-3 IF2120 Teori Bilangan, Kombinatorial Dosen: Rinaldi Munir, Harlili, Fariska Zakhralativa Kamis, 31 Oktober 2019 Waktu: 50 menit

- 1. Tentukan banyaknya solusi bilangan bulat dari $x_1 + x_2 + x_3 = 10$ jika diberi syarat $0 \le x_1 \le 2$, $x_2 > 1$, dan $x_3 \ge 0$! (Nilai = 25)
- 2. Kota Bandung dan sekitarnya menggunakan kode plat kendaraan "D". Plat kendaraan di Indonesia memiliki format <kode daerah> <angka> <huruf>. Angka pada plat kendaraan minimal berisi 1 angka dan maksimal 4 angka (tidak ada kendaraan yang angka pada platnya hanya "0"), sedangkan untuk hurufnya minimal 1 huruf dan maksimal 3 huruf. Tentukan banyaknya plat kendaraan yang mungkin dapat dibuat untuk daerah Kota Bandung dan sekitarnya! (Nilai = 25)
- 3. Misalkan x adalah sisa pembagian 2019⁶³ oleh 31. Tentukan x dengan bantuan teorema Fermat.

(Nilai = 25)

4. Salah satu penggunaan *Chinese Remainder Problem* adalah *Secret sharing* yang merupakan salah satu metode kriptografi. Misal terdapat sebuah rahasia S, maka rahasia tersebut dibagi menjadi beberapa bagian (*shares*). Rahasia S dapat dibangun kembali hanya jika seseorang memiliki set *shares* yang valid. Salah satu implementasi *secret sharing* adalah skema **Asmuth-Bloom.** Rahasia S akan dibagi ke dalam beberapa I_0 , I_1 , I_2 , ... I_n *shares*. Bagian terakhir dari skema ini adalah mendapatkan nilai S dengan persamaan $S = x_0 \mod p_0$, p_0 adalah sebuah bilangan yang ditentukan saat pembagian *shares*. Kemudian, diberikan sebuah baris bilangan m_0 , m_1 , ... m_k yang masing-masing saling relatif prima, maka x_0 merupakan solusi unik modulo $(m_0 \cdot m_1 \cdot m_2 \cdot ... \cdot m_n)$ dari persamaan: (**Nilai = 25**)

 $x \equiv I_1 \mod m_1$, $x \equiv I_2 \mod m_2$, $x \equiv I_3 \mod m_3$ $x \equiv I_n \mod m_n$ Untuk $p_o = 5$, $\{(I_k, m_k)\} = \{(1,7),(9,11),(5,13)\}$, tentukan nilai rahasia dari secret sharing!

Jawaban setiap soal ditulis di bawah ini. Gunakan halaman dibalik atau kertas tambahan jika diperlukan.