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Abstract—A currency denomination system is a collection of 

numbers representable in a currency, whether in coin or 

banknotes. Change-making problem is a well-known 

computational problem in finding the minimum number of coins 

and/or banknotes needed to create a certain sums of money. While 

it is proved to be an NP-hard problem, most people will use a 

greedy approach in solving the change-making problem. This 

paper is interested in determining which currency denomination 

where the greedy approach of the change-making problem is 

optimal, presenting some notable mathematical results and 

algorithms regarding such denomination. 
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I.   INTRODUCTION 

When we are buying or selling things in our routine, using 

real money, one or both parties involved will probably need to 

give the other party an exact amount of money using what 

amount of currency they have. The change-making problem is 

interested in the minimal number of coins and/or banknotes 

needed to create a certain sums of money given the 

denominations the currency has. 

Formally, let the sequence 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛 be the 

denomination available in the currency. In Rupiahs, for 

example, the available denomination will be 

100, 200, 500, 1000, … Then given an amount 𝑊, we are 

interested in finding the sequence 𝑥1 , 𝑥2, … , 𝑥𝑛 of nonnegative 

integers such that it achieves the right amount of sum: 

∑ 𝑥𝑖𝑎𝑖 = 𝑊

𝑛

𝑖=1

 

while minimizing the value of cost, the number of 

coins/banknotes needed: 

∑ 𝑥𝑖

𝑛

𝑖=1

 

In complexity theory, we know that the change-making 

problem is a special sub-problem of the famous Knapsack 

problem which is already proven to be NP-hard problem. Hence 

we know that the change-making problem cannot be solved in 

polynomial time with regard to 𝑛. 

However when such issues are encountered in real life, most 

people will use the greedy approach in finding the value of 

𝑥1, 𝑥2, … , 𝑥𝑛 such that the sum of the money will be equal to 𝑊. 

In such greedy approach, we try to diminish the value of 𝑊 as 

fast as possible by always taking the highest value of available 

that is not greater than the remaining value of 𝑊 until we reach 

the desired amount. For example, when we are trying to make a 

sum of 245,000 Rupiahs, we first take two copies of 100,000 

banknotes, then we take two copies of 20,000, and lastly we take 

a copy of 5,000 rupiah and we are done here because we already 

have the desired sum. 

While this is a fast algorithm in just 𝑂(𝑛) time complexity, 

we do not know for certain if such 𝑥1, 𝑥2, … , 𝑥𝑛 is optimal, that 

is a solution that achieves the minimal cost. 

Now, we call a certain type of currency denomination system 

canonical if the greedy approach for all value of achievable 𝑊 

will yield the minimal number of coins/bank notes amount. We 

are then interested to find out the characteristics of a canonical 

system and the method as to how to determine if a certain system 

is canonical or not. 

 

 

II.  BASIC COMBINATORICS AND NUMBER THEORY 

RESULTS 

While there are several theorems presented in this paper, all 

of those theorems will not use any complicated mathematics 

results and will depend on these basic combinatorics and 

number theory results we all are familiar with. 

  

A. Well-ordering principle 

Well-ordering principle is a basic principle regarding the 

natural numbers, stating that every non-empty set of positive 

contains a least element. That is, such set contains an element 

that is the smallest, or smaller than the rest of the set’s element. 

While sounding very simplistic, the well-ordering principle is 

equivalent to the mathematical induction.  

To illustrate the equivalence, assume that the well-ordering 

principle holds. Suppose we have a proposition 𝑃 where 𝑃(1) is 

true, and 𝑃(𝑛) implies 𝑃(𝑛 + 1) for all positive integers 𝑛. If 𝑃 

does not holds true for all values of positive integers, then the 

set of positive integers 𝑛 such that 𝑃(𝑛) is not true is non empty, 

therefore we have a smallest value 𝑎. Certainly 𝑎 ≠ 1, and we 

know that 𝑎 − 1 is a positive integer not part of the set because 

it will contradicts the minimality of 𝑎. therefore we have 

𝑃(𝑎 − 1) is true while 𝑃(𝑎) is not, contradicting 𝑃(𝑛) →
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𝑃(𝑛 + 1) for all positive integers 𝑛. 

In the other way, if the mathematical induction holds true. Let 

𝑆 be a non empty set of positive integers and 𝑃(𝑛) be the 

proposition that there is no elements of 𝑆 that is less than 𝑛. 

Certainly 𝑃(1) holds, therefore if 𝑃(𝑛) → 𝑃(𝑛 + 1) for all 𝑛 

positive integers, by mathematical induction, we have 𝑃(𝑛) true 

for all positive integers 𝑛, which is ridiculous since 𝑆 is non 

empty, hence there is a positive integer 𝑎 in 𝑆, hence 𝑃(𝑎 + 1) 

cannot hold. Then there must be an 𝑥 such that 𝑃(𝑥) → 𝑃(𝑥 +
1) statement is false, that is when 𝑃(𝑥) is true, and 𝑃(𝑥 + 1) is 

false. therefore there is no elements of 𝑆 less than 𝑥, but there is 

that is less than 𝑥 + 1, which we can conclude that 𝑥 is in 𝑆. 

Then we have a least element of 𝑆, that is 𝑥 because all positive 

integers less than 𝑥 is not in 𝑆. 

Well-ordering principle or mathematical induction may or 

may not be called a theorem depending on the axiomatic 

framework of the natural numbers we are using. In Peano 

arithmetic, mathematical induction is an axiom while in 

axiomatic set theory, it is not taken as a fundamental axiom. 

 

B. Linear Combination and Greatest Common Divisor 

We define the greatest common divisor of two positive 

integers, 𝑎 and 𝑏, commonly written as gcd (𝑎, 𝑏), or just (𝑎, 𝑏) 

if the context is clear, as the greatest number 𝑥 such that 𝑥 

divides both 𝑎 and 𝑏. Clearly 𝑥 exists, as the number 1 certainly 

divides both 𝑎 and 𝑏, and 𝑥 cannot be bigger than 𝑎 or 𝑏. If we 

consider both 𝑎 and 𝑏 by its unique prime factorization, then we 

can see that 𝑥 is the number where in its prime factorization, the 

power of any prime is the minimum of the power of the prime 

in the factorization of 𝑎 and 𝑏. From such consideration, we can 

also see the unique property of GCD, that is for all 𝑥 dividing 

both, 𝑎 and 𝑏, then we have that 𝑥 must also divides (𝑎, 𝑏). 

Now consider the smallest positive integers that is the linear 

combination of 𝑎 and 𝑏, that is the minimum positive value of 

𝑎𝑥 + 𝑏𝑦 with 𝑥, 𝑦 integers. We can prove that such minimum 

value is actually (𝑎, 𝑏). To prove this, consider that (𝑎, 𝑏) 

divides 𝑎 and 𝑏, therefore it must also divides 𝑎𝑥 + 𝑏𝑦. Also, 

we can have the minimum value of 𝑎𝑥 + 𝑏𝑦 must also divides 

both 𝑎 and 𝑏, because if not, say it does not divide 𝑎, then see 

that 𝑎 𝑚𝑜𝑑 (𝑎𝑥 + 𝑏𝑦) is a positive integers smaller than 𝑎𝑥 +
𝑏𝑦 and it is also a linear combination of 𝑎 and 𝑏, which 

contradict the previous minimality. Therefore we have 𝑎𝑥 + 𝑏𝑦 

divides (𝑎, 𝑏). From which, we conclude the needed results. 

 

III.   BASIC CURRENCY DENOMINATIONS PREREQUISITES  

Before we delve into canonical system, we may consider the 

property a good currency denominations system has. We can 

consider the value representable in our currency system. 

Certainly given a denominations list 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛, a 

value 𝑊 is representable, or can be made, in our currency 

system if and only if it is a linear combination of 𝑎1, 𝑎2, … , 𝑎𝑛  

with all the coefficient 𝑥1, 𝑥2, … , 𝑥𝑛 nonnegative integers. If we 

have the value 𝑊 and 𝑉 representable, certainly 𝑊 + 𝑉 is also 

representable, because the nonnegative integers set is closed to 

addition. But, because the set is not closed under subtraction, we 

do not know for sure if 𝑊 − 𝑉 is representable in our 

denominations list. Certainly it made sense to have the 

subtraction value also representable in context of change-

making and other economical book-keeping practices, therefore 

we restrict our currency system such that the subtraction of two 

representable values must also be representable. Then we met 

upon our first theorem. 

 

Theorem 1. In a currency denomination system 𝑎1 < 𝑎2 < ⋯ <
𝑎𝑛, 𝑊 ≥ 𝑉 are representable implies 𝑊 − 𝑉 representable, if 

and only if 𝑎1 divides 𝑎𝑖 for all 𝑖. 
 

Proof. 

First, if we have 𝑎1 divides 𝑎𝑖 for all 𝑖, then we certainly have 

𝑎1|  ∑ 𝑎𝑖𝑥𝑖 

for all 𝑥𝑖 integers. So all representable value in the currency 

system must be a nonnegative multiple of 𝑎1, then if 𝑊 ≥ 𝑉 are 

representable, then 𝑊 − 𝑉 must also be a nonnegative multiple 

of 𝑎1 which is obviously representable. 

Next, because every integers can certainly be expressed as the 

difference between two nonnegative integers, we then have the 

consequence that all nonnegative integer 𝑊 a linear 

combination of 𝑎𝑖,  

𝑊 =  ∑ 𝑎𝑖𝑥𝑖 

for 𝑥𝑖 integers must be representable in the system. Then for all 

𝑖, because (𝑎1, 𝑎𝑖) is a nonnegative linear combination of 𝑎1 and 

𝑎𝑖 by previous result, we then have the GCD representable as 

well, but because (𝑎1, 𝑎𝑖) is less or equal 𝑎1, for it to be 

representable we must have (𝑎1, 𝑎𝑖) = 𝑎1 for all 𝑖. Hence we 

have 𝑎1 divides 𝑎𝑖 for all 𝑖. ∎  

 

Because of theorem 1, we then have 𝑎1 divides 𝑎𝑖 for all 𝑖. 
Now see that 𝑊 is representable in the system if and only if 𝑊 

is divisible by 𝑎1. Therefore we can assume without loss of 

generality that 𝑎1 = 1 by dividing everything in the context by 

the initial value of 𝑎1. Hence we have all representable values 

as the set of nonnegative integers itself. From this point onward, 

we will assume that 𝑎1 = 1 for any currency system (we care 

of). 

 

 

IV.   NAÏVE CALCULATION TO CHANGE-MAKING 

PROBLEM 

Given a currency system 1 = 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛 and a 

nonnegative integer 𝑊, we are interested in finding the total 

amount of coins/banknotes needed in a greedy solution, say 

𝐺(𝑊) and the optimal solution, say 𝑀(𝑊). 

Now we certainly have 𝐺(0) = 0, and by the nature of the 

greedy approach, we have for 𝑊 a positive integer,  

𝐺(𝑊) = 𝐺(𝑊 − 𝑎𝑖) + 1 

where 𝑎𝑖 is the greatest denomination not greater than 𝑊. Then 

from the formula, we can formulate a simple algorithm to count 

the value of 𝐺(𝑊) in 𝑂(n) time : 

 

def G (a,W) : 

  ans = 0 

  i = len(a) 

  while W > 0: 
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    ans += W/a[i] 

    W %= a[i] 

    --i 

  return ans 

 

The calculation of the 𝑀(𝑊) is a little more complicated 

considering it is not in polynomial time in regard of 𝑛 from its 

NP-hardness, but from the property that 𝑀(0) = 0 and for 𝑊 

positive integer, 

𝑀(𝑊) ≤ 𝑀(𝑊 − 𝑎𝑖) + 1 

for all 𝑖 with equality happening if and only if there is an optimal 

representation of 𝑊 using 𝑎𝑖. This formula is true, because 

given an optimal representation of 𝑊 − 𝑎𝑖, adding one 𝑎𝑖 

denomination, we then have a representation of 𝑊. If there is an 

optimal representation of 𝑊 using 𝑎𝑖, then removing that 

denomination, we have a representation of 𝑊 − 𝑎𝑖 which must 

be optimal because if it is not, then substituting the 

representation of 𝑊 with that optimal representation plus one 𝑎𝑖 

denomination creates a less costly representation of 𝑊, which is 

a contradiction. Hencefore we can use a dynamic programming 

using the result table for 𝑀(𝑊) to get a time complexity of 

(𝑊𝑛)  and memory complexity 𝑂(𝑊): 

 

def O (a,W) : 

  if res[W] >= 0 return res[W] 

  // res[W] the lookup table we use that is 

initialized with negative values 

  if W == 0 return res[0] = 0 

 

  ans = W 

  // initialized ans with upper bound 

answer 

  for i in range(len(a)+1): 

    if W-a[i] >= 0: 

      ans = min(ans,O(W-a[i])+1) 

  return res[W] = ans 

 

Now, we call this complexity pseudo-polynomial time 

because its running time is polynomial to the size of the input, 

not the length of the input. That is why the use of canonical 

system will affect our runtime greatly because the big size of the 

input does not make the greedy algorithm runs any slower. 

 

V.   CANONICAL SYSTEM 

To give better illustration, we first look at examples of 

canonical systems and non-canonical systems. For canonical 

system, we have a simple example: 

 

Theorem 2. A denomination system 1 = 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛 

where 𝑎𝑖 divides 𝑎𝑖+1 for all 𝑖 is canonical. 

 

Proof. 

Assume that it is not canonical, then by the well-ordered 

principle, there is a value 𝑊 counterexample such that its greedy 

cost is greater than its optimal cost. Then see that the greedy 

representation of 𝑊 must not contain a same denomination as 

an optimal representation of 𝑊. That is because removing that 

same denomination, we have a smaller value, say 𝑊 − 𝑎𝑖 that 

has greedy cost the greedy cost of 𝑊 minus one, and optimal 

cost the optimal cost of 𝑊 minus one, so it is also a 

counterexample, contradicting the minimality of 𝑊. Now 

consider the smallest denomination used in its greedy 

representation, say 𝑎𝑖, and the smallest in its optimal 

representation, say 𝑎𝑗. Then they must be different. Assume first 

that 𝑎𝑖 < 𝑎𝑗. Because 𝑎𝑖 divides 𝑎𝑖+1 for all 𝑖, we can easily 

prove by induction that 𝑎𝑖 divides 𝑎𝑗. Using the same result, 

because 𝑎𝑗 ≥ 𝑎𝑖+1 the smallest denomination of 𝑊 optimal 

representation, we then have 𝑎𝑖+1 divides every denomination 

in that representation, so 𝑎𝑖+1 divides 𝑊. Taking modulo 𝑎𝑖+1, 

we then have 𝑎𝑖+1 divides 𝑥𝑖𝑎𝑖 in 𝑊 greedy representation. But 

that is impossible because if we use the greedy approach, we 

must then take 𝑎𝑖+1first until we do not take any 𝑎𝑖 

denomination. Contradiction. A similar contradiction will also 

appear for the case 𝑎𝑖 > 𝑎𝑗 where we can then substitute 𝑥𝑖𝑎𝑖 

with fewer denominations of 𝑎𝑖+1. So the denomination system 

is indeed canonical. ∎ 

 

Hence a denomination system like 1,2,6 or 1,5,10,50,100 is 

proven to be canonical. An example of a non-canonical system 

is 1,3,4 where the greedy representation of 6 is 1,4,4 with cost 

of 3 and the optimal representation is 3,3 with cost of 2. 

Now, to determine if a certain system is canonical or not, 

considering we already have some algorithms for calculating the 

greedy cost and the optimal cost of a certain value from a given 

currency system, our intuition says that we just have to compare 

the two functions value for certain values of 𝑊. But before 

further results, we certainly cannot do that because the values of 

𝑊 we need to check go unbounded to infinity. Hence we need a 

bound for 𝑊 that we need to check to prove if a certain system 

is canonical or not. A result from Dexter Kozen and Shmuel 

Zaks gives the answer to this problem, which we resume here: 

 

Theorem 3. For a system 1 = 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛. If there exists 

an 𝑥 such that 𝑀(𝑥) < 𝐺(𝑥), then the smallest such 𝑥 lies in the 

range 

𝑎3 + 1 < 𝑥 < 𝑎𝑛−1 + 𝑎𝑛 

 

Proof. 

Certainly for 𝑥 < 𝑎3, the representation of 𝑥 only consists of 

denomination 𝑎1 and 𝑎2, then because 𝑎1 = 1 divides 𝑎2, we 

know that by the previous result, the greedy cost will certainly 

be the same as its optimal cost. For 𝑥 = 𝑎3, both value must be 

1 and for 𝑥 = 𝑎3 + 1, both value must be 1 (if 𝑎4 = 𝑎3 + 1) or 

2 otherwise. 

In the other case, for 𝑥 ≥ 𝑎𝑛−1 + 𝑎𝑛, assuming all the other 

value under 𝑥 satisfies 𝑀(𝑥) = 𝐺(𝑥), take 𝑎𝑖 any denomination 

used in an optimal representation of 𝑥. If 𝑖 = 𝑛, we have 

𝐺(𝑥) = 𝐺(𝑥 − 𝑎𝑛) + 1 
= 𝑀(𝑥 − 𝑎𝑛) + 1 
= 𝑀(𝑥) 

else, we have 

𝐺(𝑥) = 𝐺(𝑥 − 𝑎𝑛) + 1              (𝐺 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦) 
= 𝑀(𝑥 − 𝑎𝑛) + 1             (𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛) 
≤ 𝑀(𝑥 − 𝑎𝑛 − 𝑎𝑖) + 2   (𝑀 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦) 
= 𝐺(𝑥 − 𝑎𝑛 − 𝑎𝑖) + 2     (𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛) 
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= 𝐺(𝑥 − 𝑎𝑖) + 1               (𝐺 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦) 
= 𝑀(𝑥 − 𝑎𝑖) + 1              (𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛) 
= 𝑀(𝑥)                               (𝑀 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦) 
≤ 𝐺(𝑥)                                (𝑀 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦) 

So we have 𝐺(𝑥) = 𝑀(𝑥) for 𝑥 ≥ 𝑎𝑛−1 + 𝑎𝑛. Hence from 

the two argument, we have the smallest counterexample must 

happen in between 𝑎3 + 1 < 𝑥 < 𝑎𝑛−1 + 𝑎𝑛. ∎ 

 

Furthermore, it is also explained that these result is tight as in 

there are infinite examples of systems where the smallest 

counterexample occurs at 𝑎3 + 2 and at 𝑎𝑛−1 + 𝑎𝑛 − 1. Some 

examples are of the form 1, 𝑘, 2𝑘 − 2 for 𝑥 = 𝑎3 + 2, and of the 

form 1, 𝑘, 𝑘 + 1 for 𝑥 = 𝑎𝑛−1 + 𝑎𝑛 − 1 with 𝑘 ≥ 3. 

After we have obtained the upper limit, then we just need to 

run the calculation algorithms to calculate the value of 𝑀(𝑊) 

and 𝐺(𝑊) for 1 ≤ 𝑊 < 𝑎𝑛−1 + 𝑎𝑛 and compare the result to 

prove if the currency system is canonical or not. We can also 

use some optimization considering that for the smallest 

counterexample, we have 

𝐺(𝑊) > 𝑀(𝑊) 

𝐺(𝑊) > min(𝑀(𝑊 − 𝑎𝑖)) + 1 

𝐺(𝑊) > min(𝐺(𝑊 − 𝑎𝑖)) + 1 

𝐺(𝑊) > 𝐺(𝑊 − 𝑎𝑗) + 1 

for some 𝑎𝑗 not greater than 𝑊. So we obtain an algorithm with 

time complexity 𝑂(𝑛𝑎𝑛) and space complexity 𝑂(𝑎𝑛): 

 

def Canon (a) : 

  res[0] = 0 

  n = len(a) 

  for x in range a[n]+a[n-1]: 

    i = n 

    while a[i] > x: 

      --i 

    res[x] = res[x-a[i]]+1 

    while i > 1: 

      --i 

      if res[x]>res[x-a[i]]+1: 

        return false 

  return true 

 

 

Beside the approach above, we may also be interested in 

‘inducting’ a canonical system. Suppose we already have a 

canonical system 1 = 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛, and we are interested 

if a system 1 = 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛 < 𝑎𝑛+1 is canonical or not. 

While the above approach cannot be directly used to prove if a 

random system is canonical or not, because a canonical system 

might have a subsystem which is not canonical. For example the 

system 1,2,4,5,8 is canonical which is easily checked by the 

previous result, but the system 1,2,4,5 is not. Regarding the 

canonical system issue given above, it turns out to have a 

beautiful result that is found independently by different groups 

of people overtime:  

 

Theorem 4 (One-point theorem). Suppose we have a canonical 

system 1 = 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛. For an integer 𝑎𝑛+1 > 𝑎𝑛, the 

currency system 1 = 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛+1 is canonical if and 

only if 𝐺(𝑚𝑎𝑛) ≤ 𝑚 with 𝑚 = ⌈𝑎𝑛+1/𝑎𝑛⌉ with regard to the 

new system. 

 

Proof. 

For clarity, let 𝐺′(𝑥) = 𝑀′(𝑥) be the greedy and optimal cost 

with regard to the old system. 

If the system is canonical, then certainly the greedy cost will 

be equal the optimal cost for every value. Now, assume that 

𝐺(𝑚𝑎𝑛) = 𝑀(𝑚𝑎𝑛). Certainly for value 𝑥 < 𝑎𝑛+1, the 

representation will not use the denomination 𝑎𝑛+1, so because 

the rest of the system is canonical, we have 𝐺(𝑥) = 𝑀(𝑥). Then 

we only need to divide it into two cases: 

The first case is for 𝑎𝑛+1 ≤ 𝑥 < 𝑚𝑎𝑛. Because 𝑎𝑛 < 𝑎𝑛+1, 

we have 𝑚𝑎𝑛 = (𝑚 − 1)𝑎𝑛 + 𝑎𝑛 ≤ 𝑎𝑚 + 𝑎𝑛 < 2𝑎𝑚. Then the 

representation of 𝑥 will only use zero or one denomination 𝑎𝑛+1. 

Then we have, 

𝐺(𝑥) = 𝐺′(𝑥 − 𝑎𝑛+1) + 1 

𝑀(𝑥) = min(𝑀′(𝑥), 𝑀′(𝑥 − 𝑎𝑛+1) + 1) 
= min (𝐺′(𝑥), 𝐺(𝑥)) 

So we only need to prove 𝐺′(𝑥) ≥ 𝐺(𝑥). Now because we have 

𝑥 ≥ 𝑎𝑛+1 > (𝑚 − 1)𝑎𝑛, we have 

𝐺′(𝑥) = 𝐺′(𝑥 − (𝑚 − 1)𝑎𝑛) + 𝑚 − 1 

and 𝐺(𝑥) = 𝐺′(𝑥 − 𝑎𝑛+1) + 1 = 𝐺′(𝑥 − 𝑎𝑛+1 + 𝑎𝑛), then we 

have 

𝐺′(𝑥) − 𝐺(𝑥) 
= 𝐺′(𝑥 − (𝑚 − 1)𝑎𝑛) − 𝐺′(𝑥 − 𝑎𝑛+1 + 𝑎𝑛) + 𝑚 − 1 
≥ 𝑚 − 1 − 𝐺′(𝑚𝑎𝑛 − 𝑎𝑛+1) 
= 𝑚 − 𝐺(𝑚𝑎𝑛) ≥ 0 

where the third line comes from the fact that 𝐺′ = 𝑀′ follows 

the triangle inequality (two representation can be summed to 

create another representation, even though it might not be 

optimal) and the fourth line comes from the assumption. 

Now for the second case where 𝑥 ≥ 𝑚𝑎𝑛 , it is sufficient to 

show that there exists an optimal representation of 𝑥 where 

𝑥𝑛+1, that is the coefficient of 𝑎𝑛+1, is non-zero. If we found 

such representation for all 𝑥 ≥ 𝑚𝑎𝑛 , we can then just induct 

down by removing one denomination of 𝑎𝑛+1 until we reach the 

base case where 𝑥 < 𝑚𝑎𝑛  and concluding the theorem because 

we already proved such case. 

From an optimal representation 𝑥1, 𝑥2, … , 𝑥𝑛+1, we can 

repeatedly use the following transformation : 

1. If 𝑥𝑛 ≥ 𝑚, we can replace those 𝑚 denominations of 𝑎𝑛 

with its greedy representation. This way the number of 

total coins does not increase because 𝐺(𝑚𝑎𝑛) =
𝑀(𝑚𝑎𝑛) and the value paid by denominators less than 

𝑎𝑛+1decreases as we add the number of 𝑎𝑛+1 

denominator. 

2. If we have the case that 

∑ 𝑥𝑖𝑎𝑖 ≥ 𝑎𝑛

𝑛−1

𝑖=1

 

we then change those denominations in the sum to its 

greedy representation. Once again the total coins does 

not increase and the value paid by denominators less than 

𝑎𝑛+1 does not increase, the number of 𝑎𝑛 or 𝑎𝑛+1 

increases. 

From these two transformation kinds, it is apparent that we 

cannot do infinite transformations. Then at one point we must 
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reach an optimal representation where we cannot do any 

transformations, hence we have 𝑥𝑛 < 𝑚 and ∑ 𝑥𝑖𝑎𝑖 < 𝑎𝑛
𝑛−1
𝑖=1 . 

From these two facts we can derive 

∑ 𝑥𝑖𝑎𝑖 < 𝑎𝑛 + (𝑚 − 1)𝑎𝑛 = 𝑚𝑎𝑛

𝑛

𝑖=1

 

Then because the total value 𝑥 is no less than 𝑚𝑎𝑛, we have 

the coefficient of 𝑎𝑛+1 not zero. Hence proven. ∎ 

 

Theorem 4 is a really powerful and useful result because 

using theorem 4, for example we can get a trivial proof of 

theorem 2, considering that if 𝑎𝑛+1 is divisible by 𝑎𝑛, then we 

have 𝑚𝑎𝑛 = 𝑎𝑛+1, where obviously 𝐺(𝑚𝑎𝑛) = 1 ≤ 𝑚. 

We can also use theorem 4 to prove that the normal currency 

system adopted by Indonesia and many different countries all 

over the world like in the European Union and United States of 

America using the 1,2,5 scheme canonical, that is the system 

using denominations 1,2,5,10,20,50,100, …, (after dividing by 

the lowest denominator) by simple induction using theorem 4. 

When 𝑎𝑛+1 is divisible by 𝑎𝑛, the proof as said is trivial, and 

when it is not, that is when 𝑎𝑛 = 2 ∗ 10𝑘 , 𝑎𝑛+1 = 5 ∗ 10𝑘, it is 

easy to check that 𝐺(𝑚𝑎𝑛) = 𝐺(6 ∗ 10𝑘) = 2 with 

representation 10𝑘 , 5 ∗ 10𝑘. Then we can see that this justifies 

the greedy approach most people use when making changes in 

daily transactions. 

 

The last approach this paper will show to you is a true 

polynomial algorithm to determine whether a certain currency 

system is canonical or not. It is presented in a paper by Pearson 

with time complexities of 𝑂(𝑛3). This paper uses some differing 

paradigms than the other results we have on this paper.  

Here given a currency system 𝑎1 > 𝑎2 > ⋯ > 𝑎𝑛 = 1 (take 

great notes that here the currency is listed decreasing, this has 

several advantage which will become apparent soon). Then a 

representation of a value 𝑊 is represented using a vector 𝑋 =
(𝑥1, 𝑥2, … , 𝑥𝑛), where we have 𝑋 ∙ 𝐴 = 𝑊 where 𝐴 =
(𝑎1, 𝑎2, … , 𝑎𝑛), the currency vector. Then see that a greedy 

representation of 𝑊 is a vector 𝑋 such that 𝑋 ∙ 𝐴 = 𝑊 and being 

the lexicographically greatest between such vector (we may 

recall that comparing a vector 𝑋 is greater than 𝑌 

lexicographically if and only if there exist 𝑘 such that 𝑥𝑖 = 𝑦𝑖  

for all 𝑖 < 𝑘 and 𝑥𝑘 > 𝑦𝑘). That is because when we always take 

the greatest denomination, we prioritize on the leftmost 

component of the vector representation.  

Here we also define a representation vector 𝑌(𝑊) an optimal 

representation where 𝑌 ∙ 𝐴 = 𝑊 and the sum of its component 

is maximal, and it is also the lexicographically greatest between 

such vectors. Then we know that a 𝐺(𝑊) = 𝑀(𝑊) if and only 

if 𝑋(𝑊) = 𝑌(𝑊). 

Because adding the vector (0,0, … ,1) to 𝑋 make it 

lexicographically greater, ultimately we have that 𝑋 operation 

preserves order. Now we define the notion 𝑋 ⊆ 𝑌 if every 

component of 𝑋 is not greater than its corresponding component 

of 𝑌. Then here we introduce a nice-looking lemma (which we 

actually already used before). 

 

Lemma 1. Call 𝑈 greedy if 𝑈 = 𝑋(𝑈 ⋅ 𝐶) and optimal if 𝑈 =
𝑌(𝑈 ⋅ 𝐶). Then (a). if 𝑈 ⊆ 𝑉 and 𝑉 is greedy, then 𝑈 is also 

greedy. (b). if 𝑈 ⊆ 𝑉 and 𝑉 is optimal, then 𝑈 is also optimal. 

 

Proof 

Note that vector addition preserves lexicographical order, that 

is 𝐴 ≤ 𝐵 ↔ 𝐴 + 𝐶 ≤ 𝐵 + 𝐶. Now let 𝑈′ be any representation 

of 𝑈 ⋅ 𝐶, then we have 

𝑈′ ⋅ 𝐶 = 𝑈 ⋅ 𝐶 
(𝑉 − 𝑈 + 𝑈′) ⋅ 𝐶 = 𝑉 ⋅ 𝐶, 𝑏𝑦 𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦 

𝑉 − 𝑈′ + 𝑈′ ≤ 𝑉,          𝑠𝑖𝑛𝑐𝑒 𝑉 𝑖𝑠 𝑔𝑟𝑒𝑒𝑑𝑦 
𝑈′ ≤ 𝑈, 𝑠𝑖𝑛𝑐𝑒 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛 𝑝𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑠 𝑜𝑟𝑑𝑒𝑟 

then since 𝑈 is lexicographically greatest, it is greedy. (a) is 

proven. 

Define 𝐴 ⊑ 𝐵 if |𝐴| > |𝐵| or (|𝐴| = |𝐵| and 𝐴 ≤ 𝐵). Then 

the optimal representation is the greatest under the ⊑ 

comparison. The comparison is also preserved under addition, 

so we can reuse the above proof by substituting the comparison. 

(b) is proven. ∎ 

 

Now finally, consider for a currency system, the smallest 

counterexample of it being canonical, say 𝑤, where 𝐺(𝑤) >
𝑀(𝑤) with 𝑎 being the smallest of such value. The important 

result using lemma 1 is that its representation vector 𝑋(𝑤) and 

𝑌(𝑤) do not have the same components where its value is 

nonzero. That is the set of nonzero components of 𝑋(𝑤) and 

𝑌(𝑤) are disjoint. We can conclude this because if we they 

have, say 𝑖, where 𝑥𝑖 and 𝑦𝑖 are nonzero, then decrementing both 

vector its 𝑖 component, we have two vector representation of the 

same value from which its greedy and optimum representations 

are different (derived from lemma 1). Then we have a smaller 

value than 𝑎 that is also another counterexample. Hence we have 

a contradiction. 

Now let 𝑖, 𝑗 be the first and the last nonzero components of 

𝑌(𝑤). Then because 𝑋(𝑤) > 𝑌(𝑤), we then know that 𝑋(𝑤) 

has zero value on its 𝑖 component, and there is a nonzero 

component in some earlier position. Now the following theorem 

characterizes 𝑌(𝑤) greatly. 

 

Theorem 5. 𝑌(𝑤) has the same component values with 

𝑋(𝑎𝑖−1 − 1) in component 1 to 𝑗 − 1, is one greater in 

component 𝑗. The remaining entries are all zero.  

 

Proof. 

First, see that because 𝑋(𝑤) has a nonzero component before 

the 𝑖 component, we know that 𝑤 ≥ 𝑎𝑖−1. Then, see that if we 

decrement the 𝑦𝑗, then we obtain a representation of 𝑤 − 𝑎𝑗 that 

is optimal, hence it is also greedy by minimality of 𝑤. Then 

because that representation is greedy, we then have 𝑤 − 𝑎𝑗 <

𝑎𝑖−1. Thus we get the following bounds: 

𝑤 − 𝑎𝑗 < 𝑎𝑖−1 ≤ 𝑤 

Now suppose we have 𝑋(𝑎𝑖−1 − 1) = (𝑥1, 𝑥2, … , 𝑥𝑛), then 

since 𝑎𝑖−1 − 1 ≥ 𝑎𝑖, then 𝑥𝑖 > 0, thus if we decrement both 𝑥𝑖 

and 𝑦𝑖  to get a greedy representation of 𝑋(𝑎𝑖−1 − 1 − 𝑎𝑖) and 

𝑋(𝑤 − 𝑎𝑖). Then by the previous bounds, we have 𝑋(𝑎𝑖−1 −
1 − 𝑎𝑖) < 𝑋(𝑤 − 𝑎𝑖). From henceforth we derive by the 

preservation of lexicographical order from vector addition,  

𝑋(𝑎𝑖−1 − 1) < 𝑌(𝑤). 

Besides that, if we decrement 𝑦𝑗 by one, we have a valid 
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greedy representation of 𝑋(𝑤 − 𝑎𝑗), from which we know from 

the first bound, 𝑤 − 𝑎𝑗 ≤ 𝑎𝑖−1 − 1 → 𝑋(𝑤 − 𝑎𝑗) ≤ 𝑋(𝑎𝑖−1 −

1) → 𝑋(𝑤 − 𝑎𝑗) ≤ 𝑋(𝑎𝑖−1 − 1) < 𝑌(𝑤). See that 𝑋(𝑤 − 𝑎𝑗) 

differs in only the 𝑗 component, so if 𝑋(𝑎𝑖−1 − 1) is between 

the two vectors, then it must not differs from them in first 𝑗 − 1 

components. 

As we know from the start from the choosing of 𝑗, we know 

that 𝑦𝑗+1, … are all zero. Now because 𝑋(𝑎𝑖−1 − 1) < 𝑌(𝑤), we 

have 𝑥𝑘 < 𝑦𝑘 for some 𝑘. Because the first 𝑖 − 1 components of 

𝑥, 𝑦 agree, and after component 𝑗, the component of 𝑦 is zero, 

we must have 𝑥𝑗 < 𝑦𝑗. But because 𝑋(𝑤 − 𝑎𝑗) ≤ 𝑋(𝑎𝑖−1 − 1), 

with similar argument, we have 𝑦𝑗 − 1 ≤ 𝑥𝑗 . Then we conclude 

that 𝑦𝑘 = 𝑥𝑘 + 1. ∎ 

 

Now as we have thoroughly characterizes the smallest 

counterexample of a currency system, in term of 𝑖, 𝑗. Then if we 

want to prove whether a system is canonical or not, we just need 

to consider the 𝑂(𝑛2) amounts of possible smallest 

counterexample if there are any valid counterexamples or not. 

Because we already have the optimal representation, we just 

need to calculate the greedy representation which we know can  

algorithm that works in 𝑂(𝑛3) time complexity for validating 

a canonic currency system. 

 

 

VI.   CONCLUSION 

From the paper, we know some algorithms to determine 

whether a currency denominations system is canonic or not. We 

also have verified that the current system used by Indonesia and 

many other countries in the world is canonical, therefore using 

a greedy approach will give you the optimal solution to the 

change-making problem. 
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