
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

Application of Combinatorics and Number Theory in

Designing an Efficient Currency Denominations

Bimo Adityarahman Wiraputra 135170041

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113517004@std.stei.itb.ac.id

Abstract—A currency denomination system is a collection of

numbers representable in a currency, whether in coin or

banknotes. Change-making problem is a well-known

computational problem in finding the minimum number of coins

and/or banknotes needed to create a certain sums of money. While

it is proved to be an NP-hard problem, most people will use a

greedy approach in solving the change-making problem. This

paper is interested in determining which currency denomination

where the greedy approach of the change-making problem is

optimal, presenting some notable mathematical results and

algorithms regarding such denomination.

Keywords— canonical coinage system, change-making problem,

dynamic programming, greedy.

I. INTRODUCTION

When we are buying or selling things in our routine, using

real money, one or both parties involved will probably need to

give the other party an exact amount of money using what

amount of currency they have. The change-making problem is

interested in the minimal number of coins and/or banknotes

needed to create a certain sums of money given the

denominations the currency has.

Formally, let the sequence 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛 be the

denomination available in the currency. In Rupiahs, for

example, the available denomination will be

100, 200, 500, 1000, … Then given an amount 𝑊, we are

interested in finding the sequence 𝑥1 , 𝑥2, … , 𝑥𝑛 of nonnegative

integers such that it achieves the right amount of sum:

∑ 𝑥𝑖𝑎𝑖 = 𝑊

𝑛

𝑖=1

while minimizing the value of cost, the number of

coins/banknotes needed:

∑ 𝑥𝑖

𝑛

𝑖=1

In complexity theory, we know that the change-making

problem is a special sub-problem of the famous Knapsack

problem which is already proven to be NP-hard problem. Hence

we know that the change-making problem cannot be solved in

polynomial time with regard to 𝑛.

However when such issues are encountered in real life, most

people will use the greedy approach in finding the value of

𝑥1, 𝑥2, … , 𝑥𝑛 such that the sum of the money will be equal to 𝑊.

In such greedy approach, we try to diminish the value of 𝑊 as

fast as possible by always taking the highest value of available

that is not greater than the remaining value of 𝑊 until we reach

the desired amount. For example, when we are trying to make a

sum of 245,000 Rupiahs, we first take two copies of 100,000

banknotes, then we take two copies of 20,000, and lastly we take

a copy of 5,000 rupiah and we are done here because we already

have the desired sum.

While this is a fast algorithm in just 𝑂(𝑛) time complexity,

we do not know for certain if such 𝑥1, 𝑥2, … , 𝑥𝑛 is optimal, that

is a solution that achieves the minimal cost.

Now, we call a certain type of currency denomination system

canonical if the greedy approach for all value of achievable 𝑊

will yield the minimal number of coins/bank notes amount. We

are then interested to find out the characteristics of a canonical

system and the method as to how to determine if a certain system

is canonical or not.

II. BASIC COMBINATORICS AND NUMBER THEORY

RESULTS

While there are several theorems presented in this paper, all

of those theorems will not use any complicated mathematics

results and will depend on these basic combinatorics and

number theory results we all are familiar with.

A. Well-ordering principle

Well-ordering principle is a basic principle regarding the

natural numbers, stating that every non-empty set of positive

contains a least element. That is, such set contains an element

that is the smallest, or smaller than the rest of the set’s element.

While sounding very simplistic, the well-ordering principle is

equivalent to the mathematical induction.

To illustrate the equivalence, assume that the well-ordering

principle holds. Suppose we have a proposition 𝑃 where 𝑃(1) is

true, and 𝑃(𝑛) implies 𝑃(𝑛 + 1) for all positive integers 𝑛. If 𝑃

does not holds true for all values of positive integers, then the

set of positive integers 𝑛 such that 𝑃(𝑛) is not true is non empty,

therefore we have a smallest value 𝑎. Certainly 𝑎 ≠ 1, and we

know that 𝑎 − 1 is a positive integer not part of the set because

it will contradicts the minimality of 𝑎. therefore we have

𝑃(𝑎 − 1) is true while 𝑃(𝑎) is not, contradicting 𝑃(𝑛) →

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

𝑃(𝑛 + 1) for all positive integers 𝑛.

In the other way, if the mathematical induction holds true. Let

𝑆 be a non empty set of positive integers and 𝑃(𝑛) be the

proposition that there is no elements of 𝑆 that is less than 𝑛.

Certainly 𝑃(1) holds, therefore if 𝑃(𝑛) → 𝑃(𝑛 + 1) for all 𝑛

positive integers, by mathematical induction, we have 𝑃(𝑛) true

for all positive integers 𝑛, which is ridiculous since 𝑆 is non

empty, hence there is a positive integer 𝑎 in 𝑆, hence 𝑃(𝑎 + 1)

cannot hold. Then there must be an 𝑥 such that 𝑃(𝑥) → 𝑃(𝑥 +
1) statement is false, that is when 𝑃(𝑥) is true, and 𝑃(𝑥 + 1) is

false. therefore there is no elements of 𝑆 less than 𝑥, but there is

that is less than 𝑥 + 1, which we can conclude that 𝑥 is in 𝑆.

Then we have a least element of 𝑆, that is 𝑥 because all positive

integers less than 𝑥 is not in 𝑆.

Well-ordering principle or mathematical induction may or

may not be called a theorem depending on the axiomatic

framework of the natural numbers we are using. In Peano

arithmetic, mathematical induction is an axiom while in

axiomatic set theory, it is not taken as a fundamental axiom.

B. Linear Combination and Greatest Common Divisor

We define the greatest common divisor of two positive

integers, 𝑎 and 𝑏, commonly written as gcd (𝑎, 𝑏), or just (𝑎, 𝑏)

if the context is clear, as the greatest number 𝑥 such that 𝑥

divides both 𝑎 and 𝑏. Clearly 𝑥 exists, as the number 1 certainly

divides both 𝑎 and 𝑏, and 𝑥 cannot be bigger than 𝑎 or 𝑏. If we

consider both 𝑎 and 𝑏 by its unique prime factorization, then we

can see that 𝑥 is the number where in its prime factorization, the

power of any prime is the minimum of the power of the prime

in the factorization of 𝑎 and 𝑏. From such consideration, we can

also see the unique property of GCD, that is for all 𝑥 dividing

both, 𝑎 and 𝑏, then we have that 𝑥 must also divides (𝑎, 𝑏).

Now consider the smallest positive integers that is the linear

combination of 𝑎 and 𝑏, that is the minimum positive value of

𝑎𝑥 + 𝑏𝑦 with 𝑥, 𝑦 integers. We can prove that such minimum

value is actually (𝑎, 𝑏). To prove this, consider that (𝑎, 𝑏)

divides 𝑎 and 𝑏, therefore it must also divides 𝑎𝑥 + 𝑏𝑦. Also,

we can have the minimum value of 𝑎𝑥 + 𝑏𝑦 must also divides

both 𝑎 and 𝑏, because if not, say it does not divide 𝑎, then see

that 𝑎 𝑚𝑜𝑑 (𝑎𝑥 + 𝑏𝑦) is a positive integers smaller than 𝑎𝑥 +
𝑏𝑦 and it is also a linear combination of 𝑎 and 𝑏, which

contradict the previous minimality. Therefore we have 𝑎𝑥 + 𝑏𝑦

divides (𝑎, 𝑏). From which, we conclude the needed results.

III. BASIC CURRENCY DENOMINATIONS PREREQUISITES

Before we delve into canonical system, we may consider the

property a good currency denominations system has. We can

consider the value representable in our currency system.

Certainly given a denominations list 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛, a

value 𝑊 is representable, or can be made, in our currency

system if and only if it is a linear combination of 𝑎1, 𝑎2, … , 𝑎𝑛

with all the coefficient 𝑥1, 𝑥2, … , 𝑥𝑛 nonnegative integers. If we

have the value 𝑊 and 𝑉 representable, certainly 𝑊 + 𝑉 is also

representable, because the nonnegative integers set is closed to

addition. But, because the set is not closed under subtraction, we

do not know for sure if 𝑊 − 𝑉 is representable in our

denominations list. Certainly it made sense to have the

subtraction value also representable in context of change-

making and other economical book-keeping practices, therefore

we restrict our currency system such that the subtraction of two

representable values must also be representable. Then we met

upon our first theorem.

Theorem 1. In a currency denomination system 𝑎1 < 𝑎2 < ⋯ <
𝑎𝑛, 𝑊 ≥ 𝑉 are representable implies 𝑊 − 𝑉 representable, if

and only if 𝑎1 divides 𝑎𝑖 for all 𝑖.

Proof.

First, if we have 𝑎1 divides 𝑎𝑖 for all 𝑖, then we certainly have

𝑎1| ∑ 𝑎𝑖𝑥𝑖

for all 𝑥𝑖 integers. So all representable value in the currency

system must be a nonnegative multiple of 𝑎1, then if 𝑊 ≥ 𝑉 are

representable, then 𝑊 − 𝑉 must also be a nonnegative multiple

of 𝑎1 which is obviously representable.

Next, because every integers can certainly be expressed as the

difference between two nonnegative integers, we then have the

consequence that all nonnegative integer 𝑊 a linear

combination of 𝑎𝑖,

𝑊 = ∑ 𝑎𝑖𝑥𝑖

for 𝑥𝑖 integers must be representable in the system. Then for all

𝑖, because (𝑎1, 𝑎𝑖) is a nonnegative linear combination of 𝑎1 and

𝑎𝑖 by previous result, we then have the GCD representable as

well, but because (𝑎1, 𝑎𝑖) is less or equal 𝑎1, for it to be

representable we must have (𝑎1, 𝑎𝑖) = 𝑎1 for all 𝑖. Hence we

have 𝑎1 divides 𝑎𝑖 for all 𝑖. ∎

Because of theorem 1, we then have 𝑎1 divides 𝑎𝑖 for all 𝑖.
Now see that 𝑊 is representable in the system if and only if 𝑊

is divisible by 𝑎1. Therefore we can assume without loss of

generality that 𝑎1 = 1 by dividing everything in the context by

the initial value of 𝑎1. Hence we have all representable values

as the set of nonnegative integers itself. From this point onward,

we will assume that 𝑎1 = 1 for any currency system (we care

of).

IV. NAÏVE CALCULATION TO CHANGE-MAKING

PROBLEM

Given a currency system 1 = 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛 and a

nonnegative integer 𝑊, we are interested in finding the total

amount of coins/banknotes needed in a greedy solution, say

𝐺(𝑊) and the optimal solution, say 𝑀(𝑊).

Now we certainly have 𝐺(0) = 0, and by the nature of the

greedy approach, we have for 𝑊 a positive integer,

𝐺(𝑊) = 𝐺(𝑊 − 𝑎𝑖) + 1

where 𝑎𝑖 is the greatest denomination not greater than 𝑊. Then

from the formula, we can formulate a simple algorithm to count

the value of 𝐺(𝑊) in 𝑂(n) time :

def G (a,W) :

 ans = 0

 i = len(a)

 while W > 0:

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

 ans += W/a[i]

 W %= a[i]

 --i

 return ans

The calculation of the 𝑀(𝑊) is a little more complicated

considering it is not in polynomial time in regard of 𝑛 from its

NP-hardness, but from the property that 𝑀(0) = 0 and for 𝑊

positive integer,

𝑀(𝑊) ≤ 𝑀(𝑊 − 𝑎𝑖) + 1

for all 𝑖 with equality happening if and only if there is an optimal

representation of 𝑊 using 𝑎𝑖. This formula is true, because

given an optimal representation of 𝑊 − 𝑎𝑖, adding one 𝑎𝑖

denomination, we then have a representation of 𝑊. If there is an

optimal representation of 𝑊 using 𝑎𝑖, then removing that

denomination, we have a representation of 𝑊 − 𝑎𝑖 which must

be optimal because if it is not, then substituting the

representation of 𝑊 with that optimal representation plus one 𝑎𝑖

denomination creates a less costly representation of 𝑊, which is

a contradiction. Hencefore we can use a dynamic programming

using the result table for 𝑀(𝑊) to get a time complexity of

(𝑊𝑛) and memory complexity 𝑂(𝑊):

def O (a,W) :

 if res[W] >= 0 return res[W]

 // res[W] the lookup table we use that is

initialized with negative values

 if W == 0 return res[0] = 0

 ans = W

 // initialized ans with upper bound

answer

 for i in range(len(a)+1):

 if W-a[i] >= 0:

 ans = min(ans,O(W-a[i])+1)

 return res[W] = ans

Now, we call this complexity pseudo-polynomial time

because its running time is polynomial to the size of the input,

not the length of the input. That is why the use of canonical

system will affect our runtime greatly because the big size of the

input does not make the greedy algorithm runs any slower.

V. CANONICAL SYSTEM

To give better illustration, we first look at examples of

canonical systems and non-canonical systems. For canonical

system, we have a simple example:

Theorem 2. A denomination system 1 = 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛

where 𝑎𝑖 divides 𝑎𝑖+1 for all 𝑖 is canonical.

Proof.

Assume that it is not canonical, then by the well-ordered

principle, there is a value 𝑊 counterexample such that its greedy

cost is greater than its optimal cost. Then see that the greedy

representation of 𝑊 must not contain a same denomination as

an optimal representation of 𝑊. That is because removing that

same denomination, we have a smaller value, say 𝑊 − 𝑎𝑖 that

has greedy cost the greedy cost of 𝑊 minus one, and optimal

cost the optimal cost of 𝑊 minus one, so it is also a

counterexample, contradicting the minimality of 𝑊. Now

consider the smallest denomination used in its greedy

representation, say 𝑎𝑖, and the smallest in its optimal

representation, say 𝑎𝑗. Then they must be different. Assume first

that 𝑎𝑖 < 𝑎𝑗. Because 𝑎𝑖 divides 𝑎𝑖+1 for all 𝑖, we can easily

prove by induction that 𝑎𝑖 divides 𝑎𝑗. Using the same result,

because 𝑎𝑗 ≥ 𝑎𝑖+1 the smallest denomination of 𝑊 optimal

representation, we then have 𝑎𝑖+1 divides every denomination

in that representation, so 𝑎𝑖+1 divides 𝑊. Taking modulo 𝑎𝑖+1,

we then have 𝑎𝑖+1 divides 𝑥𝑖𝑎𝑖 in 𝑊 greedy representation. But

that is impossible because if we use the greedy approach, we

must then take 𝑎𝑖+1first until we do not take any 𝑎𝑖

denomination. Contradiction. A similar contradiction will also

appear for the case 𝑎𝑖 > 𝑎𝑗 where we can then substitute 𝑥𝑖𝑎𝑖

with fewer denominations of 𝑎𝑖+1. So the denomination system

is indeed canonical. ∎

Hence a denomination system like 1,2,6 or 1,5,10,50,100 is

proven to be canonical. An example of a non-canonical system

is 1,3,4 where the greedy representation of 6 is 1,4,4 with cost

of 3 and the optimal representation is 3,3 with cost of 2.

Now, to determine if a certain system is canonical or not,

considering we already have some algorithms for calculating the

greedy cost and the optimal cost of a certain value from a given

currency system, our intuition says that we just have to compare

the two functions value for certain values of 𝑊. But before

further results, we certainly cannot do that because the values of

𝑊 we need to check go unbounded to infinity. Hence we need a

bound for 𝑊 that we need to check to prove if a certain system

is canonical or not. A result from Dexter Kozen and Shmuel

Zaks gives the answer to this problem, which we resume here:

Theorem 3. For a system 1 = 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛. If there exists

an 𝑥 such that 𝑀(𝑥) < 𝐺(𝑥), then the smallest such 𝑥 lies in the

range

𝑎3 + 1 < 𝑥 < 𝑎𝑛−1 + 𝑎𝑛

Proof.

Certainly for 𝑥 < 𝑎3, the representation of 𝑥 only consists of

denomination 𝑎1 and 𝑎2, then because 𝑎1 = 1 divides 𝑎2, we

know that by the previous result, the greedy cost will certainly

be the same as its optimal cost. For 𝑥 = 𝑎3, both value must be

1 and for 𝑥 = 𝑎3 + 1, both value must be 1 (if 𝑎4 = 𝑎3 + 1) or

2 otherwise.

In the other case, for 𝑥 ≥ 𝑎𝑛−1 + 𝑎𝑛, assuming all the other

value under 𝑥 satisfies 𝑀(𝑥) = 𝐺(𝑥), take 𝑎𝑖 any denomination

used in an optimal representation of 𝑥. If 𝑖 = 𝑛, we have

𝐺(𝑥) = 𝐺(𝑥 − 𝑎𝑛) + 1
= 𝑀(𝑥 − 𝑎𝑛) + 1
= 𝑀(𝑥)

else, we have

𝐺(𝑥) = 𝐺(𝑥 − 𝑎𝑛) + 1 (𝐺 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦)
= 𝑀(𝑥 − 𝑎𝑛) + 1 (𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛)
≤ 𝑀(𝑥 − 𝑎𝑛 − 𝑎𝑖) + 2 (𝑀 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦)
= 𝐺(𝑥 − 𝑎𝑛 − 𝑎𝑖) + 2 (𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛)

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

= 𝐺(𝑥 − 𝑎𝑖) + 1 (𝐺 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦)
= 𝑀(𝑥 − 𝑎𝑖) + 1 (𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛)
= 𝑀(𝑥) (𝑀 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦)
≤ 𝐺(𝑥) (𝑀 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦)

So we have 𝐺(𝑥) = 𝑀(𝑥) for 𝑥 ≥ 𝑎𝑛−1 + 𝑎𝑛. Hence from

the two argument, we have the smallest counterexample must

happen in between 𝑎3 + 1 < 𝑥 < 𝑎𝑛−1 + 𝑎𝑛. ∎

Furthermore, it is also explained that these result is tight as in

there are infinite examples of systems where the smallest

counterexample occurs at 𝑎3 + 2 and at 𝑎𝑛−1 + 𝑎𝑛 − 1. Some

examples are of the form 1, 𝑘, 2𝑘 − 2 for 𝑥 = 𝑎3 + 2, and of the

form 1, 𝑘, 𝑘 + 1 for 𝑥 = 𝑎𝑛−1 + 𝑎𝑛 − 1 with 𝑘 ≥ 3.

After we have obtained the upper limit, then we just need to

run the calculation algorithms to calculate the value of 𝑀(𝑊)

and 𝐺(𝑊) for 1 ≤ 𝑊 < 𝑎𝑛−1 + 𝑎𝑛 and compare the result to

prove if the currency system is canonical or not. We can also

use some optimization considering that for the smallest

counterexample, we have

𝐺(𝑊) > 𝑀(𝑊)

𝐺(𝑊) > min(𝑀(𝑊 − 𝑎𝑖)) + 1

𝐺(𝑊) > min(𝐺(𝑊 − 𝑎𝑖)) + 1

𝐺(𝑊) > 𝐺(𝑊 − 𝑎𝑗) + 1

for some 𝑎𝑗 not greater than 𝑊. So we obtain an algorithm with

time complexity 𝑂(𝑛𝑎𝑛) and space complexity 𝑂(𝑎𝑛):

def Canon (a) :

 res[0] = 0

 n = len(a)

 for x in range a[n]+a[n-1]:

 i = n

 while a[i] > x:

 --i

 res[x] = res[x-a[i]]+1

 while i > 1:

 --i

 if res[x]>res[x-a[i]]+1:

 return false

 return true

Beside the approach above, we may also be interested in

‘inducting’ a canonical system. Suppose we already have a

canonical system 1 = 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛, and we are interested

if a system 1 = 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛 < 𝑎𝑛+1 is canonical or not.

While the above approach cannot be directly used to prove if a

random system is canonical or not, because a canonical system

might have a subsystem which is not canonical. For example the

system 1,2,4,5,8 is canonical which is easily checked by the

previous result, but the system 1,2,4,5 is not. Regarding the

canonical system issue given above, it turns out to have a

beautiful result that is found independently by different groups

of people overtime:

Theorem 4 (One-point theorem). Suppose we have a canonical

system 1 = 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛. For an integer 𝑎𝑛+1 > 𝑎𝑛, the

currency system 1 = 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛+1 is canonical if and

only if 𝐺(𝑚𝑎𝑛) ≤ 𝑚 with 𝑚 = ⌈𝑎𝑛+1/𝑎𝑛⌉ with regard to the

new system.

Proof.

For clarity, let 𝐺′(𝑥) = 𝑀′(𝑥) be the greedy and optimal cost

with regard to the old system.

If the system is canonical, then certainly the greedy cost will

be equal the optimal cost for every value. Now, assume that

𝐺(𝑚𝑎𝑛) = 𝑀(𝑚𝑎𝑛). Certainly for value 𝑥 < 𝑎𝑛+1, the

representation will not use the denomination 𝑎𝑛+1, so because

the rest of the system is canonical, we have 𝐺(𝑥) = 𝑀(𝑥). Then

we only need to divide it into two cases:

The first case is for 𝑎𝑛+1 ≤ 𝑥 < 𝑚𝑎𝑛. Because 𝑎𝑛 < 𝑎𝑛+1,

we have 𝑚𝑎𝑛 = (𝑚 − 1)𝑎𝑛 + 𝑎𝑛 ≤ 𝑎𝑚 + 𝑎𝑛 < 2𝑎𝑚. Then the

representation of 𝑥 will only use zero or one denomination 𝑎𝑛+1.

Then we have,

𝐺(𝑥) = 𝐺′(𝑥 − 𝑎𝑛+1) + 1

𝑀(𝑥) = min(𝑀′(𝑥), 𝑀′(𝑥 − 𝑎𝑛+1) + 1)
= min (𝐺′(𝑥), 𝐺(𝑥))

So we only need to prove 𝐺′(𝑥) ≥ 𝐺(𝑥). Now because we have

𝑥 ≥ 𝑎𝑛+1 > (𝑚 − 1)𝑎𝑛, we have

𝐺′(𝑥) = 𝐺′(𝑥 − (𝑚 − 1)𝑎𝑛) + 𝑚 − 1

and 𝐺(𝑥) = 𝐺′(𝑥 − 𝑎𝑛+1) + 1 = 𝐺′(𝑥 − 𝑎𝑛+1 + 𝑎𝑛), then we

have

𝐺′(𝑥) − 𝐺(𝑥)
= 𝐺′(𝑥 − (𝑚 − 1)𝑎𝑛) − 𝐺′(𝑥 − 𝑎𝑛+1 + 𝑎𝑛) + 𝑚 − 1
≥ 𝑚 − 1 − 𝐺′(𝑚𝑎𝑛 − 𝑎𝑛+1)
= 𝑚 − 𝐺(𝑚𝑎𝑛) ≥ 0

where the third line comes from the fact that 𝐺′ = 𝑀′ follows

the triangle inequality (two representation can be summed to

create another representation, even though it might not be

optimal) and the fourth line comes from the assumption.

Now for the second case where 𝑥 ≥ 𝑚𝑎𝑛 , it is sufficient to

show that there exists an optimal representation of 𝑥 where

𝑥𝑛+1, that is the coefficient of 𝑎𝑛+1, is non-zero. If we found

such representation for all 𝑥 ≥ 𝑚𝑎𝑛 , we can then just induct

down by removing one denomination of 𝑎𝑛+1 until we reach the

base case where 𝑥 < 𝑚𝑎𝑛 and concluding the theorem because

we already proved such case.

From an optimal representation 𝑥1, 𝑥2, … , 𝑥𝑛+1, we can

repeatedly use the following transformation :

1. If 𝑥𝑛 ≥ 𝑚, we can replace those 𝑚 denominations of 𝑎𝑛

with its greedy representation. This way the number of

total coins does not increase because 𝐺(𝑚𝑎𝑛) =
𝑀(𝑚𝑎𝑛) and the value paid by denominators less than

𝑎𝑛+1decreases as we add the number of 𝑎𝑛+1

denominator.

2. If we have the case that

∑ 𝑥𝑖𝑎𝑖 ≥ 𝑎𝑛

𝑛−1

𝑖=1

we then change those denominations in the sum to its

greedy representation. Once again the total coins does

not increase and the value paid by denominators less than

𝑎𝑛+1 does not increase, the number of 𝑎𝑛 or 𝑎𝑛+1

increases.

From these two transformation kinds, it is apparent that we

cannot do infinite transformations. Then at one point we must

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

reach an optimal representation where we cannot do any

transformations, hence we have 𝑥𝑛 < 𝑚 and ∑ 𝑥𝑖𝑎𝑖 < 𝑎𝑛
𝑛−1
𝑖=1 .

From these two facts we can derive

∑ 𝑥𝑖𝑎𝑖 < 𝑎𝑛 + (𝑚 − 1)𝑎𝑛 = 𝑚𝑎𝑛

𝑛

𝑖=1

Then because the total value 𝑥 is no less than 𝑚𝑎𝑛, we have

the coefficient of 𝑎𝑛+1 not zero. Hence proven. ∎

Theorem 4 is a really powerful and useful result because

using theorem 4, for example we can get a trivial proof of

theorem 2, considering that if 𝑎𝑛+1 is divisible by 𝑎𝑛, then we

have 𝑚𝑎𝑛 = 𝑎𝑛+1, where obviously 𝐺(𝑚𝑎𝑛) = 1 ≤ 𝑚.

We can also use theorem 4 to prove that the normal currency

system adopted by Indonesia and many different countries all

over the world like in the European Union and United States of

America using the 1,2,5 scheme canonical, that is the system

using denominations 1,2,5,10,20,50,100, …, (after dividing by

the lowest denominator) by simple induction using theorem 4.

When 𝑎𝑛+1 is divisible by 𝑎𝑛, the proof as said is trivial, and

when it is not, that is when 𝑎𝑛 = 2 ∗ 10𝑘 , 𝑎𝑛+1 = 5 ∗ 10𝑘, it is

easy to check that 𝐺(𝑚𝑎𝑛) = 𝐺(6 ∗ 10𝑘) = 2 with

representation 10𝑘 , 5 ∗ 10𝑘. Then we can see that this justifies

the greedy approach most people use when making changes in

daily transactions.

The last approach this paper will show to you is a true

polynomial algorithm to determine whether a certain currency

system is canonical or not. It is presented in a paper by Pearson

with time complexities of 𝑂(𝑛3). This paper uses some differing

paradigms than the other results we have on this paper.

Here given a currency system 𝑎1 > 𝑎2 > ⋯ > 𝑎𝑛 = 1 (take

great notes that here the currency is listed decreasing, this has

several advantage which will become apparent soon). Then a

representation of a value 𝑊 is represented using a vector 𝑋 =
(𝑥1, 𝑥2, … , 𝑥𝑛), where we have 𝑋 ∙ 𝐴 = 𝑊 where 𝐴 =
(𝑎1, 𝑎2, … , 𝑎𝑛), the currency vector. Then see that a greedy

representation of 𝑊 is a vector 𝑋 such that 𝑋 ∙ 𝐴 = 𝑊 and being

the lexicographically greatest between such vector (we may

recall that comparing a vector 𝑋 is greater than 𝑌

lexicographically if and only if there exist 𝑘 such that 𝑥𝑖 = 𝑦𝑖

for all 𝑖 < 𝑘 and 𝑥𝑘 > 𝑦𝑘). That is because when we always take

the greatest denomination, we prioritize on the leftmost

component of the vector representation.

Here we also define a representation vector 𝑌(𝑊) an optimal

representation where 𝑌 ∙ 𝐴 = 𝑊 and the sum of its component

is maximal, and it is also the lexicographically greatest between

such vectors. Then we know that a 𝐺(𝑊) = 𝑀(𝑊) if and only

if 𝑋(𝑊) = 𝑌(𝑊).

Because adding the vector (0,0, … ,1) to 𝑋 make it

lexicographically greater, ultimately we have that 𝑋 operation

preserves order. Now we define the notion 𝑋 ⊆ 𝑌 if every

component of 𝑋 is not greater than its corresponding component

of 𝑌. Then here we introduce a nice-looking lemma (which we

actually already used before).

Lemma 1. Call 𝑈 greedy if 𝑈 = 𝑋(𝑈 ⋅ 𝐶) and optimal if 𝑈 =
𝑌(𝑈 ⋅ 𝐶). Then (a). if 𝑈 ⊆ 𝑉 and 𝑉 is greedy, then 𝑈 is also

greedy. (b). if 𝑈 ⊆ 𝑉 and 𝑉 is optimal, then 𝑈 is also optimal.

Proof

Note that vector addition preserves lexicographical order, that

is 𝐴 ≤ 𝐵 ↔ 𝐴 + 𝐶 ≤ 𝐵 + 𝐶. Now let 𝑈′ be any representation

of 𝑈 ⋅ 𝐶, then we have

𝑈′ ⋅ 𝐶 = 𝑈 ⋅ 𝐶
(𝑉 − 𝑈 + 𝑈′) ⋅ 𝐶 = 𝑉 ⋅ 𝐶, 𝑏𝑦 𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦

𝑉 − 𝑈′ + 𝑈′ ≤ 𝑉, 𝑠𝑖𝑛𝑐𝑒 𝑉 𝑖𝑠 𝑔𝑟𝑒𝑒𝑑𝑦
𝑈′ ≤ 𝑈, 𝑠𝑖𝑛𝑐𝑒 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛 𝑝𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑠 𝑜𝑟𝑑𝑒𝑟

then since 𝑈 is lexicographically greatest, it is greedy. (a) is

proven.

Define 𝐴 ⊑ 𝐵 if |𝐴| > |𝐵| or (|𝐴| = |𝐵| and 𝐴 ≤ 𝐵). Then

the optimal representation is the greatest under the ⊑

comparison. The comparison is also preserved under addition,

so we can reuse the above proof by substituting the comparison.

(b) is proven. ∎

Now finally, consider for a currency system, the smallest

counterexample of it being canonical, say 𝑤, where 𝐺(𝑤) >
𝑀(𝑤) with 𝑎 being the smallest of such value. The important

result using lemma 1 is that its representation vector 𝑋(𝑤) and

𝑌(𝑤) do not have the same components where its value is

nonzero. That is the set of nonzero components of 𝑋(𝑤) and

𝑌(𝑤) are disjoint. We can conclude this because if we they

have, say 𝑖, where 𝑥𝑖 and 𝑦𝑖 are nonzero, then decrementing both

vector its 𝑖 component, we have two vector representation of the

same value from which its greedy and optimum representations

are different (derived from lemma 1). Then we have a smaller

value than 𝑎 that is also another counterexample. Hence we have

a contradiction.

Now let 𝑖, 𝑗 be the first and the last nonzero components of

𝑌(𝑤). Then because 𝑋(𝑤) > 𝑌(𝑤), we then know that 𝑋(𝑤)

has zero value on its 𝑖 component, and there is a nonzero

component in some earlier position. Now the following theorem

characterizes 𝑌(𝑤) greatly.

Theorem 5. 𝑌(𝑤) has the same component values with

𝑋(𝑎𝑖−1 − 1) in component 1 to 𝑗 − 1, is one greater in

component 𝑗. The remaining entries are all zero.

Proof.

First, see that because 𝑋(𝑤) has a nonzero component before

the 𝑖 component, we know that 𝑤 ≥ 𝑎𝑖−1. Then, see that if we

decrement the 𝑦𝑗, then we obtain a representation of 𝑤 − 𝑎𝑗 that

is optimal, hence it is also greedy by minimality of 𝑤. Then

because that representation is greedy, we then have 𝑤 − 𝑎𝑗 <

𝑎𝑖−1. Thus we get the following bounds:

𝑤 − 𝑎𝑗 < 𝑎𝑖−1 ≤ 𝑤

Now suppose we have 𝑋(𝑎𝑖−1 − 1) = (𝑥1, 𝑥2, … , 𝑥𝑛), then

since 𝑎𝑖−1 − 1 ≥ 𝑎𝑖, then 𝑥𝑖 > 0, thus if we decrement both 𝑥𝑖

and 𝑦𝑖 to get a greedy representation of 𝑋(𝑎𝑖−1 − 1 − 𝑎𝑖) and

𝑋(𝑤 − 𝑎𝑖). Then by the previous bounds, we have 𝑋(𝑎𝑖−1 −
1 − 𝑎𝑖) < 𝑋(𝑤 − 𝑎𝑖). From henceforth we derive by the

preservation of lexicographical order from vector addition,

𝑋(𝑎𝑖−1 − 1) < 𝑌(𝑤).

Besides that, if we decrement 𝑦𝑗 by one, we have a valid

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

greedy representation of 𝑋(𝑤 − 𝑎𝑗), from which we know from

the first bound, 𝑤 − 𝑎𝑗 ≤ 𝑎𝑖−1 − 1 → 𝑋(𝑤 − 𝑎𝑗) ≤ 𝑋(𝑎𝑖−1 −

1) → 𝑋(𝑤 − 𝑎𝑗) ≤ 𝑋(𝑎𝑖−1 − 1) < 𝑌(𝑤). See that 𝑋(𝑤 − 𝑎𝑗)

differs in only the 𝑗 component, so if 𝑋(𝑎𝑖−1 − 1) is between

the two vectors, then it must not differs from them in first 𝑗 − 1

components.

As we know from the start from the choosing of 𝑗, we know

that 𝑦𝑗+1, … are all zero. Now because 𝑋(𝑎𝑖−1 − 1) < 𝑌(𝑤), we

have 𝑥𝑘 < 𝑦𝑘 for some 𝑘. Because the first 𝑖 − 1 components of

𝑥, 𝑦 agree, and after component 𝑗, the component of 𝑦 is zero,

we must have 𝑥𝑗 < 𝑦𝑗. But because 𝑋(𝑤 − 𝑎𝑗) ≤ 𝑋(𝑎𝑖−1 − 1),

with similar argument, we have 𝑦𝑗 − 1 ≤ 𝑥𝑗 . Then we conclude

that 𝑦𝑘 = 𝑥𝑘 + 1. ∎

Now as we have thoroughly characterizes the smallest

counterexample of a currency system, in term of 𝑖, 𝑗. Then if we

want to prove whether a system is canonical or not, we just need

to consider the 𝑂(𝑛2) amounts of possible smallest

counterexample if there are any valid counterexamples or not.

Because we already have the optimal representation, we just

need to calculate the greedy representation which we know can

algorithm that works in 𝑂(𝑛3) time complexity for validating

a canonic currency system.

VI. CONCLUSION

From the paper, we know some algorithms to determine

whether a currency denominations system is canonic or not. We

also have verified that the current system used by Indonesia and

many other countries in the world is canonical, therefore using

a greedy approach will give you the optimal solution to the

change-making problem.

VII. ACKNOWLEDGMENT

In this paper, the author thanks the Almighty God for His

Grace and Guidance for me to be able to complete this paper.

The author also thanks Mr. Rinaldi Munir as a lecturer of

Discrete Mathematics IF2120. Besides that, the author also

thanks his parents, his colleagues, and many other party related

that has helped in the creation of this paper directly or indirectly.

REFERENCES

[1] A. Niewiarowska, M. Adamaszek, Combinatorics of the Change-Making

Problem. European Journal of Combinatorics, Vol. 31, Issue 1, Jan. 2010,

pp 47-63

[2] M.J.Magazine, G.L.Nemhauser, L.E.Trotter Jr., When the Greedy

Solution Solves a Class of Knapsack Problems, Operations Research, Vol.

23, No.2, (Mar.-Apr.,1975), pp.207-217
[3] D.Kozen, S.Zaks, Optimal Bounds for the Change-Making Problem,

Theoret. Comput. Sci. 123 (1994), 377-388

[4] D.Pearson, A Polynomial-time Algorithm for the Change-Making
Problem, Technical Report TR 94-1433, Department of Computer

Science, Cornell University, June 1994

[5] L.J.Cowen, R.Cowen, A.Steinberg, Totally Greedy Coin Sets and Greedy
Obstructions, Electronic Journal of Combinatorics 15 (2008), #R90

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 12 Desember 2018

Bimo Adityarahman Wiraputra 13517004

