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Abstract—Graph coloring is an important subfield of graph 

theory that is used for pattern matching, scheduling, and network 

analysis. Because of it’s wide range of practical applications, 

extensive research has been done to develop efficient coloring 

algorithms, each with their own specific advantages. In this paper, 3 

different approaches for vertex coloring will be covered. First is using 

a classic brute force method, second is a greedy based approach 

specifically the Welsh-Powell algorithm and third is a recursive 

method specifically the deletion-contraction algorithm. I will analyze 

each of them based on their time complexity, efficiency in 

minimalizing colors, and specific limitations of use.   
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I.   INTRODUCTION 

In the field of computer science, an algorithm is a set of rules 

to solve a given problem using computational thinking methods. 

These methods include problem decomposition, pattern 

recognition and abstraction [1]. The oldest known algorithm 

dates back to around 300 BC, which was the Euclidean 

algorithm for finding the greatest common divider of two 

integers. Since then, more problems have emerged that require 

creative new approaches to solve them.  

A given problem can have more than one algorithm to solve 

it. In order to objectively compare them, scientists constructed 

the concept of computational complexity. It is derived from two 

factors, time and memory usage. Practical applications usually 

involve large data sets and are subjected to certain resource 

limitations. Because of that, measuring complexity becomes 

crucial in making sure we can maximize the given resource and 

minimize the execution time of our programs. 

Graph vertex coloring is an example of a problem that 

involves large amounts of data requires efficiency. Practical 

uses of vertex coloring include creating cost-efficient 

scheduling plans, finding DNA sequencing patterns and solving 

a simple sudoku grid.  Till this day, extensive research is being 

conducted to tackle this problem through a variety of different 

algorithms, some are better at handling large graphs while others 

perform faster but are limited to only small samples. With that 

said, comparative analysis of these algorithms will help us in 

determining the best use in specific conditions.  

   

 
Picture 1 : Example of a colored graph 

Source : https://en.wikipedia.org/ 

 

II.  THEORETICAL FRAMEWORK 

 

A. Graph Definition 

A graph is a tool used to represent discrete objects and the 

relations between them [2]. A common visual representation of 

graphs is shown In Picture 1, where the circular nodes represent 

the objects and the lines represent their relations. 

The formal definition of a graph G is a pair of V and E, where 

V is a non-empty set of vertices and E is a set of edges. An edge 

connects two vertices with one another or a vertex with itself 

and can be described as a tuple. The number of edges that a 

vertex has is called a degree We can write these definitions as 

follows : 

1) G = (V,E) 

2) V = {V1,V2, …, Vn} 

3) E= {E1,E2, … , En}  

4) Ex = (Va,Vb) 

 

The following picture represents a graph with three vertices 

V={a,b,c}, three edges E={(a,b),(b,c),(a,c)}, and each vertex 

has 2 degrees 

 

 
Picture 2 : Simple graph with 3 vertices 

Source : tutorialspoint.com 

 

Another alternative method to visualize graphs is by using a 

contiguous array such as in the following picture 
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Picture 3.1 : Graph represented with lines and nodes 

 
Picture 3.2 : Graph from 5.1 representation as an array 

 

 

In picture 5.2, we can see that the vertices corresponds with 

the elements inside the table. Each vertex points to an array of 

letters which corresponds to other vertices that are connected 

to it. This is used to model the edges of the graph. This type of 

modelling is less intuitive to figure out but makes it easier to 

translate into programming language as we can model them as 

arrays or linked lists. 

 

B. Graph Coloring 

Graph coloring is a subfield of graph theory that is concerned 

with the labelling of graph components using colors in order to 

highlight certain characteristics. In this paper we will only focus 

on vertex coloring. The main concept for vertex coloring is that 

for each vertex of a graph, it is given a specific color that is 

different from adjacent vertices. The minimum amount of colors 

that can be used by a given graph G is denoted by the chromatic 

number χ(G). If a certain graph is colored using K colors than 

we call it a K-colored graph [2]. Picture 1 represents a 3-colored 

graph with a chromatic number of 3. Reference [3] gives us 7 

proven theories regarding vertex coloring : 

 

1) If H is an upagraf of G then χ(H) ≤ χ(G) 

2) If G has n vertices then χ(G) ≤ n 

3) χ(G) if and only if the number of edges in G =1 

4) A cyclical graph G with an even number of edges has  

χ(G) = 2 

5) A cyclical graph G with an odd number of edges has  

χ(G) = 3 

 

 

C. Algorithmic Complexity 

Different algorithms have different performances for any 

given input n. The performance of an algorithm is based upon 

how fast it can execute a given task and is influenced by external 

factors such as the computer architecture and the compiler used. 

In order to objectively measure the algorithms themselves, the 

concept of time complexity T(n) is invented. T(n) is a function 

that denotes the time it takes for a given algorithm to finish it’s 

task based upon how many steps it takes for a given input n. 

Time complexity is divided into 3 types : 

1) Tmax(n) : Time complexity for the worst-case sample 

2) Tmin(n) : Time complexity for the best-case sample 

3) Tavg (n) : Time complexity for an average case sample 

 

Given a time complexity T(n) = 2n2+6n+1, it can generally be 

considered the same as T(n) = n2. Both of these cases are said to 

have the same order because they have similar rate of growth. 

which we denote using big-O notation as having an order of 

O(n2). Two functions are of the same order when they have the 

same growth rate (in this case n2), or we usually say they are 

asymptoticly bound. The big-O notations shows the upper 

asymptotic bound and is the commonly used notation [2]. Below 

is a visualization of different algorithmic growth rates and their 

respective notations in big-O. 

 

 
Table 1 : Comparison of different growth rates for n-number of inputs 

 

Algorithms to produce k-colored graphs fall in the Non-

deterministic polynomial complete time or NP complete 

problem category for k ≥ 3 [4]. This means that there are no 

possible solutions that has a time complexity expressible as a 

polynomial function such as nx. An example of a non-

polynomial time complexity is O(2n) and they are significantly 

slower to execute than polynomial time P. The question of 

whether all NP problems have polynomial time solutions or if 

they are fundamentally different from one another is one of 

computers sciences biggest mystery and is considered a 

millennium prize problem worth 10 billion dollars to solve. 

Belum is an illustration that depicts the relationship between P, 

NP and NP complete problems. 

 

 
Picture 4 : Venn diagram of Polynomial complexity 

Source : https://en.wikipedia.org/wiki/P_versus_NP_problem 
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 D. Coloring complexity    

Specifically for the graph coloring problem, the number of 

colors used by an algorithm is usually given important attention. 

In several cases, efficient use of colors can translate to better 

performances and results which is why it becomes an extra 

metric to determine an algorithms complexity [5].   Below is an 

example of two identical graphs with different coloring 

complexity. 

 

   
Picture 5 : Two identical graphs with different coloring complexity 

Source : https://martin-thoma.com/vertex-coloring/ 

 

III. PROBLEM LIMITATION 

Due to the many existing variates of the vertex coloring 

problem, I will limit the topic discussed in this paper to only 

algorithms that are not restrictive towards certain k-colorable 

graphs. There are 3 algorithms to be covered. First is an 

Exhaustive search algorithm which uses a brute force method, 

second is the welsh powell algorithm which uses a greedy 

method, and third is a Deletion-contraction algorithm which 

uses a recursive method. These algorithms were chosen to 

represent different programming techniques and their implicated 

results. For each of these algorithms I will give a brief 

description and illustration of how they work using pseudo-code 

and will derive their complexity using analysis. The complexity 

will also be limited to only the worst-case scenario. 
 

 

IV. BRUTE FORCE ALGORITHM  

A. Description and Implementation 

A brute force solution towards any problem is considered the 

most intuitive to find and implement as it only concerns 

checking all possible iterations until the correct result is found. 

It is also considered the most resource intensive and inefficient 

compared to other alternatives [6]. For the case of vertex 

coloring, the algorithm works by searching all possible 

mappings from a set of vertices and a set of colors until a correct 

pair emerges. Given an integer k ≥ 1 which represents colors, a 

graph G = (V,E) and a color mapping f, The algorithm is as 

follows : 

1) Create a vertex-color mapping f : v  {1,2, … , k} (this 

basicly creates a vertex coloring) 

2) if every edge (v1,v2) satisfies f(v1) ≠ f(v2) then return f 

3) Repeat step 1 with a different mapping until a solution is 

found 

 

To illustrate the implementation of this algorithm, we shall 

utilize a simple graph with two vertices connected by a single 

edge 

 

 

 

 

 
Picture 6 : 4 identical graphs with different coloring 

 

We see that for that particular graph there are 4 possibility of 

color mappings. In step 1 the algorithm will create either one of 

those possible mappings and then check the solution in step 2. 

The program will return a correct solution if the generated graph 

is the one with two different colors. 

 

B. Complexity Analysis 

In order to easily visualize the implementation of this 

algorithm we will use the following graphs with n vertices and 

m edges 

 

 

 

 

 

 

 

 

 

 

 

 
 

Picture 7 : Illustrations of three different k-colored graphs 

 

. We shall now define the size z of a given graph as being the 

sum of its vertices and edges or z = m + n.  We will also define 

T(z) as the number of times the algorithm performs an operation 

of mapping colors to vertices and an operation of checking an 

edge of a graph. Lastly, we will assume each graph is K-

colorable  

 

Graph 

No. 
n m z Number of 

possible mappings 
Tmax(z) 

1 2 1 3 K2 K2 . (1+2) 

2 3 3 6 K3 K3 . (3 + 3) 

3 4 5 9 K9 K9 . (4 + 5) 
Table 2 : Correlation between T(z) and size of graph 

  

For each iteration of step 2, the algorithm will have to check 

every edge and compare the vertices that are connected by that 

edge. That would give us (m+n) steps to do. Remember that we 

need to repeat this step for every possible vertex-color mapping. 

If we assume the graph uses k colors, using combinatorics we 

can derive that there are kn possible combinations. From there 

we can derive that the brute force algorithm has an order of 

O(kn(m+n)) in the worst case scenario because it will only 

arrive at a solution after checking all possible mappings. This is 

considered to be non-polynomial time 

https://martin-thoma.com/vertex-coloring/
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V. GREEDY ALGORITHM 

A. Description and Implementation 

The greedy method towards solving problems centers on the 

idea that we should identify the most optimal local choice with 

the intent of finding the most optimal global one [7]. By 

applying this paradigm to the vertex coloring problem, we now 

focus on finding the most optimal vertex to check for every 

iteration. A basic greedy algorithm for vertex coloring goes as 

follows : 

1) Arbitrarily assign numbers to each of the vertices and list 

them in descending order 

2) Color the first vertex on the list (the one with the highest 

number) 

3) Color other vertices that are not connected with the 

vertex on step 2 with the same color 

4) Remove all colored vertices from the list 

5) Repeat step 3 until all vertices are colored 

 

Ever since its creation, many people have tried to adjust the 

greedy algorithm in order to produce more efficient results. The 

most well-known variation is the Welsh-Powell variant [8]. In 

this algorithm, the numberings are not arbitrarily assigned but 

are based on the degree of the vertices. The pseudo-code goes as 

follows:  

1) Find the degree for each vertex 

2) List the vertices in descending order based on their 

degree  

3) Color the vertex with the highest degree 

4) Color other vertices that are not adjacent to the one in 

step 3 with the same color 

5) Remove the colored vertices from the list 

6) Repeat step 3 until all vertices are successfully colored 

 

Below is an illustration of the Welsh-Powell algorithm on a 

graph with 5 vertices 

 

 
Picture 8.1: A graph with 5 vertices, numbered according to the 

Welsh-Powell algorithm 

 

 
Picture 8.2: The result of implementing steps 3 and 4 

 

 

Picture 8.3: The result of implementing steps 3 and 4 during the second 

iteration 

 

 
Picture 8.4: The final result of the graph 

 

B. Complexity Analysis 

From a glance this method clearly overperforms the brute 

force methods because it eliminates the need to iterate over all 

possible solutions. This eliminates the time-costly kn variable in 

the brute force method thus reducing it into the order O(m+n). 

the m variable appears because the algorithm would have to 

assign numbers for every m-number of vertices. In order to 

prove this, we will again define n to be the number of vertices, 

m to be the number of edges, and z to be the sum of both edges 

and vertices of a given graph. We will also define T(z) as the 

number of times the algorithm assigns a color to a vertex and 

checks an edge. This would give us the following table 

 

n m z Tmax(z) 

2 1 3 (1+2) 

3 3 6 (3 + 3) 

4 5 9 (4 + 5) 

5 9 14 (5+9) 
Table 3 

 

   But there is also a weakness in the greedy method. This 

weakness is clearly seen in the application of this algorithm to 

the crown graph where different numbering could result in 

completely different outcomes [8]. 

 

 
Picture 9: Two different results in the application of greedy algorithm to the 

crown graph 

 

In the best case scenario, the basic greedy algorithm produces 

a 2-colored crown graph, but in the worst case where the 

numbering happens to be in that particular order it will result in 

a 4-colored graph that is inefficient in terms of color complexity.  

Notice how even with the introduction of the Welsh-Powell 

method, this algorithm can still produce the 4-colored result 

because all vertices have the same degree hence it will still result 

in random numbering. 
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VI. DELETION-CONTRACTION ALGORITHM 

A. Description and Implementation 

The contraction algorithm emerged as another alternative that 

is still related with the concept and approach of greedy method 

but relies on recursive techniques and on deleting edges one by 

one [6]. The pseudo-code is a s follows : 

1) Choose a vertex V that has the highest degree 

2) Find the set of all vertices that is not adjacent to V 

3) From the same set, find a vertex Y that is similar to V 

in terms of its connections 

4) Join V and Y into one vertex V,Y 

5) Remove Y from the set of vertices 

6) Repeat steps 2 until 5 until the set becomes empty 

(where the recursion happens) 

7) Remove the vertex V from the graph 

8) Repeat steps 1 through 6 until a solution is found 

 

For this algorithm, we will use the same graph example as the 

previous one. We shall also use the same numbering result in 

order to easily reference specific vertices.  

First, we identify that vertex number 1 has the maximum 

number of degrees. Second, we find that vertex number 4 has 

the most similarities with vertex 1, hence we combine the two 

to form vertex 1,4. Because no other vertex can be combined, 

we remove vertex 4 from the graph (picture 8.1)  

 
Picture 10.1 : Illustration of first and second step 

 

Third, we remove the conjoined vertex 1,4 from the graph 

(picture 8.2)  

 

 
Picture 10.2 

 

Fourth, we repeat the previous steps until we are left with only 

one vertex or an empty graph after the next step (picture 8.3). 

For this case, we are left with just the vertex number 5. 

 

 
Picture 10.3 

After eliminating vertex 3,2 we will now have three groupings 

of vertices that are not connected to one another, those are {1,4}, 

{3,2}, and {5}. We will now assign separate colors to each of 

those groups, the final result is illustrated in picture 8.4 

 

 
Picture 10.4 : The final result 

 

B. Complexity Analysis 

Measuring the complexity of this algorithm is rather 

interesting because the golden ratio 1.619 appears as a result of 

the recursive implementation [6]. First, we let T(x) be the 

number of executions of step 1 to 4 for graphs with n vertices 

and m edges. We will define x as being the size of the graph 

which is equal to n + m. When we arrive at step 5, the resulting 

graph will have n-1 number of vertices and m-1 number of 

edges, this results in the following to be true 

1) n – 1 + m – 1 = x – 2  

2) n + m – 1 = x – 1  

Because of this T can satisfy the function T(x) = T(x - 1) + 

T(x – 2) which has a well known solution of ϕx where ϕ ≈ 1.619 

and is known as the golden ratio. Therefore, we can write the 

time complexity of this algorithm to be T(x) = ϕm+n or in big-O 

notation as O(1.619m+n).  

 

 
 

Picture 11 : One of many ways to derive the golden ratio 

source : https://www.mathisfun.com  

  

VII. CONCLUSION 

In terms of time complexity, the best performance is seen 

using the greedy method. Both the basic and Welsh-Powell 

variant are able of producing O(n+m) complexity in it’s best 

case. The second best goes to the deletion-contraction algorithm 

which has an order of O(1.619m+n), it is significantly slower than 

the greedy method but is able to produce efficient color usage 

under any condition. The last and unsurprisingly goes to the 

brute force method which produces the longest running time of 

O(kn(n+m)).  

 

Algorithm Time Complexity Colors used 

Brute Force O(kn(n+m)) χ(G) 

Greedy O(n+m) k 

Recursive O(1.619m+n) χ(G) 

Table 3 : Comparative of the 3 Algorithms covered 
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