
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

Complexity Analysis of Basic Graph Coloring Algorithms

Gardahadi, 13517144

Informatics Engineering Program

School of Electrical Engineering and Informatics

Bandung Institute of Technology, Ganesha St. No.10, Bandung 40132, Indonesia

emailgarda@gmail.com, 13517144@std.itb.ac.id

Abstract—Graph coloring is an important subfield of graph

theory that is used for pattern matching, scheduling, and network

analysis. Because of it’s wide range of practical applications,

extensive research has been done to develop efficient coloring

algorithms, each with their own specific advantages. In this paper, 3

different approaches for vertex coloring will be covered. First is using

a classic brute force method, second is a greedy based approach

specifically the Welsh-Powell algorithm and third is a recursive

method specifically the deletion-contraction algorithm. I will analyze

each of them based on their time complexity, efficiency in

minimalizing colors, and specific limitations of use.

Keywords— complexity analysis, deletion-contraction, graph

coloring, greedy.

I. INTRODUCTION

In the field of computer science, an algorithm is a set of rules

to solve a given problem using computational thinking methods.

These methods include problem decomposition, pattern

recognition and abstraction [1]. The oldest known algorithm

dates back to around 300 BC, which was the Euclidean

algorithm for finding the greatest common divider of two

integers. Since then, more problems have emerged that require

creative new approaches to solve them.

A given problem can have more than one algorithm to solve

it. In order to objectively compare them, scientists constructed

the concept of computational complexity. It is derived from two

factors, time and memory usage. Practical applications usually

involve large data sets and are subjected to certain resource

limitations. Because of that, measuring complexity becomes

crucial in making sure we can maximize the given resource and

minimize the execution time of our programs.

Graph vertex coloring is an example of a problem that

involves large amounts of data requires efficiency. Practical

uses of vertex coloring include creating cost-efficient

scheduling plans, finding DNA sequencing patterns and solving

a simple sudoku grid. Till this day, extensive research is being

conducted to tackle this problem through a variety of different

algorithms, some are better at handling large graphs while others

perform faster but are limited to only small samples. With that

said, comparative analysis of these algorithms will help us in

determining the best use in specific conditions.

Picture 1 : Example of a colored graph

Source : https://en.wikipedia.org/

II. THEORETICAL FRAMEWORK

A. Graph Definition

A graph is a tool used to represent discrete objects and the

relations between them [2]. A common visual representation of

graphs is shown In Picture 1, where the circular nodes represent

the objects and the lines represent their relations.

The formal definition of a graph G is a pair of V and E, where

V is a non-empty set of vertices and E is a set of edges. An edge

connects two vertices with one another or a vertex with itself

and can be described as a tuple. The number of edges that a

vertex has is called a degree We can write these definitions as

follows :

1) G = (V,E)

2) V = {V1,V2, …, Vn}

3) E= {E1,E2, … , En}

4) Ex = (Va,Vb)

The following picture represents a graph with three vertices

V={a,b,c}, three edges E={(a,b),(b,c),(a,c)}, and each vertex

has 2 degrees

Picture 2 : Simple graph with 3 vertices

Source : tutorialspoint.com

Another alternative method to visualize graphs is by using a

contiguous array such as in the following picture

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

Picture 3.1 : Graph represented with lines and nodes

Picture 3.2 : Graph from 5.1 representation as an array

In picture 5.2, we can see that the vertices corresponds with

the elements inside the table. Each vertex points to an array of

letters which corresponds to other vertices that are connected

to it. This is used to model the edges of the graph. This type of

modelling is less intuitive to figure out but makes it easier to

translate into programming language as we can model them as

arrays or linked lists.

B. Graph Coloring

Graph coloring is a subfield of graph theory that is concerned

with the labelling of graph components using colors in order to

highlight certain characteristics. In this paper we will only focus

on vertex coloring. The main concept for vertex coloring is that

for each vertex of a graph, it is given a specific color that is

different from adjacent vertices. The minimum amount of colors

that can be used by a given graph G is denoted by the chromatic

number χ(G). If a certain graph is colored using K colors than

we call it a K-colored graph [2]. Picture 1 represents a 3-colored

graph with a chromatic number of 3. Reference [3] gives us 7

proven theories regarding vertex coloring :

1) If H is an upagraf of G then χ(H) ≤ χ(G)

2) If G has n vertices then χ(G) ≤ n

3) χ(G) if and only if the number of edges in G =1

4) A cyclical graph G with an even number of edges has

χ(G) = 2

5) A cyclical graph G with an odd number of edges has

χ(G) = 3

C. Algorithmic Complexity

Different algorithms have different performances for any

given input n. The performance of an algorithm is based upon

how fast it can execute a given task and is influenced by external

factors such as the computer architecture and the compiler used.

In order to objectively measure the algorithms themselves, the

concept of time complexity T(n) is invented. T(n) is a function

that denotes the time it takes for a given algorithm to finish it’s

task based upon how many steps it takes for a given input n.

Time complexity is divided into 3 types :

1) Tmax(n) : Time complexity for the worst-case sample

2) Tmin(n) : Time complexity for the best-case sample

3) Tavg (n) : Time complexity for an average case sample

Given a time complexity T(n) = 2n2+6n+1, it can generally be

considered the same as T(n) = n2. Both of these cases are said to

have the same order because they have similar rate of growth.

which we denote using big-O notation as having an order of

O(n2). Two functions are of the same order when they have the

same growth rate (in this case n2), or we usually say they are

asymptoticly bound. The big-O notations shows the upper

asymptotic bound and is the commonly used notation [2]. Below

is a visualization of different algorithmic growth rates and their

respective notations in big-O.

Table 1 : Comparison of different growth rates for n-number of inputs

Algorithms to produce k-colored graphs fall in the Non-

deterministic polynomial complete time or NP complete

problem category for k ≥ 3 [4]. This means that there are no

possible solutions that has a time complexity expressible as a

polynomial function such as nx. An example of a non-

polynomial time complexity is O(2n) and they are significantly

slower to execute than polynomial time P. The question of

whether all NP problems have polynomial time solutions or if

they are fundamentally different from one another is one of

computers sciences biggest mystery and is considered a

millennium prize problem worth 10 billion dollars to solve.

Belum is an illustration that depicts the relationship between P,

NP and NP complete problems.

Picture 4 : Venn diagram of Polynomial complexity

Source : https://en.wikipedia.org/wiki/P_versus_NP_problem

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

 D. Coloring complexity

Specifically for the graph coloring problem, the number of

colors used by an algorithm is usually given important attention.

In several cases, efficient use of colors can translate to better

performances and results which is why it becomes an extra

metric to determine an algorithms complexity [5]. Below is an

example of two identical graphs with different coloring

complexity.

Picture 5 : Two identical graphs with different coloring complexity

Source : https://martin-thoma.com/vertex-coloring/

III. PROBLEM LIMITATION

Due to the many existing variates of the vertex coloring

problem, I will limit the topic discussed in this paper to only

algorithms that are not restrictive towards certain k-colorable

graphs. There are 3 algorithms to be covered. First is an

Exhaustive search algorithm which uses a brute force method,

second is the welsh powell algorithm which uses a greedy

method, and third is a Deletion-contraction algorithm which

uses a recursive method. These algorithms were chosen to

represent different programming techniques and their implicated

results. For each of these algorithms I will give a brief

description and illustration of how they work using pseudo-code

and will derive their complexity using analysis. The complexity

will also be limited to only the worst-case scenario.

IV. BRUTE FORCE ALGORITHM

A. Description and Implementation

A brute force solution towards any problem is considered the

most intuitive to find and implement as it only concerns

checking all possible iterations until the correct result is found.

It is also considered the most resource intensive and inefficient

compared to other alternatives [6]. For the case of vertex

coloring, the algorithm works by searching all possible

mappings from a set of vertices and a set of colors until a correct

pair emerges. Given an integer k ≥ 1 which represents colors, a

graph G = (V,E) and a color mapping f, The algorithm is as

follows :

1) Create a vertex-color mapping f : v  {1,2, … , k} (this

basicly creates a vertex coloring)

2) if every edge (v1,v2) satisfies f(v1) ≠ f(v2) then return f

3) Repeat step 1 with a different mapping until a solution is

found

To illustrate the implementation of this algorithm, we shall

utilize a simple graph with two vertices connected by a single

edge

Picture 6 : 4 identical graphs with different coloring

We see that for that particular graph there are 4 possibility of

color mappings. In step 1 the algorithm will create either one of

those possible mappings and then check the solution in step 2.

The program will return a correct solution if the generated graph

is the one with two different colors.

B. Complexity Analysis

In order to easily visualize the implementation of this

algorithm we will use the following graphs with n vertices and

m edges

Picture 7 : Illustrations of three different k-colored graphs

. We shall now define the size z of a given graph as being the

sum of its vertices and edges or z = m + n. We will also define

T(z) as the number of times the algorithm performs an operation

of mapping colors to vertices and an operation of checking an

edge of a graph. Lastly, we will assume each graph is K-

colorable

Graph

No.
n m z Number of

possible mappings
Tmax(z)

1 2 1 3 K2 K2 . (1+2)

2 3 3 6 K3 K3 . (3 + 3)

3 4 5 9 K9 K9 . (4 + 5)
Table 2 : Correlation between T(z) and size of graph

For each iteration of step 2, the algorithm will have to check

every edge and compare the vertices that are connected by that

edge. That would give us (m+n) steps to do. Remember that we

need to repeat this step for every possible vertex-color mapping.

If we assume the graph uses k colors, using combinatorics we

can derive that there are kn possible combinations. From there

we can derive that the brute force algorithm has an order of

O(kn(m+n)) in the worst case scenario because it will only

arrive at a solution after checking all possible mappings. This is

considered to be non-polynomial time

https://martin-thoma.com/vertex-coloring/

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

V. GREEDY ALGORITHM

A. Description and Implementation

The greedy method towards solving problems centers on the

idea that we should identify the most optimal local choice with

the intent of finding the most optimal global one [7]. By

applying this paradigm to the vertex coloring problem, we now

focus on finding the most optimal vertex to check for every

iteration. A basic greedy algorithm for vertex coloring goes as

follows :

1) Arbitrarily assign numbers to each of the vertices and list

them in descending order

2) Color the first vertex on the list (the one with the highest

number)

3) Color other vertices that are not connected with the

vertex on step 2 with the same color

4) Remove all colored vertices from the list

5) Repeat step 3 until all vertices are colored

Ever since its creation, many people have tried to adjust the

greedy algorithm in order to produce more efficient results. The

most well-known variation is the Welsh-Powell variant [8]. In

this algorithm, the numberings are not arbitrarily assigned but

are based on the degree of the vertices. The pseudo-code goes as

follows:

1) Find the degree for each vertex

2) List the vertices in descending order based on their

degree

3) Color the vertex with the highest degree

4) Color other vertices that are not adjacent to the one in

step 3 with the same color

5) Remove the colored vertices from the list

6) Repeat step 3 until all vertices are successfully colored

Below is an illustration of the Welsh-Powell algorithm on a

graph with 5 vertices

Picture 8.1: A graph with 5 vertices, numbered according to the

Welsh-Powell algorithm

Picture 8.2: The result of implementing steps 3 and 4

Picture 8.3: The result of implementing steps 3 and 4 during the second

iteration

Picture 8.4: The final result of the graph

B. Complexity Analysis

From a glance this method clearly overperforms the brute

force methods because it eliminates the need to iterate over all

possible solutions. This eliminates the time-costly kn variable in

the brute force method thus reducing it into the order O(m+n).

the m variable appears because the algorithm would have to

assign numbers for every m-number of vertices. In order to

prove this, we will again define n to be the number of vertices,

m to be the number of edges, and z to be the sum of both edges

and vertices of a given graph. We will also define T(z) as the

number of times the algorithm assigns a color to a vertex and

checks an edge. This would give us the following table

n m z Tmax(z)

2 1 3 (1+2)

3 3 6 (3 + 3)

4 5 9 (4 + 5)

5 9 14 (5+9)
Table 3

 But there is also a weakness in the greedy method. This

weakness is clearly seen in the application of this algorithm to

the crown graph where different numbering could result in

completely different outcomes [8].

Picture 9: Two different results in the application of greedy algorithm to the

crown graph

In the best case scenario, the basic greedy algorithm produces

a 2-colored crown graph, but in the worst case where the

numbering happens to be in that particular order it will result in

a 4-colored graph that is inefficient in terms of color complexity.

Notice how even with the introduction of the Welsh-Powell

method, this algorithm can still produce the 4-colored result

because all vertices have the same degree hence it will still result

in random numbering.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

VI. DELETION-CONTRACTION ALGORITHM

A. Description and Implementation

The contraction algorithm emerged as another alternative that

is still related with the concept and approach of greedy method

but relies on recursive techniques and on deleting edges one by

one [6]. The pseudo-code is a s follows :

1) Choose a vertex V that has the highest degree

2) Find the set of all vertices that is not adjacent to V

3) From the same set, find a vertex Y that is similar to V

in terms of its connections

4) Join V and Y into one vertex V,Y

5) Remove Y from the set of vertices

6) Repeat steps 2 until 5 until the set becomes empty

(where the recursion happens)

7) Remove the vertex V from the graph

8) Repeat steps 1 through 6 until a solution is found

For this algorithm, we will use the same graph example as the

previous one. We shall also use the same numbering result in

order to easily reference specific vertices.

First, we identify that vertex number 1 has the maximum

number of degrees. Second, we find that vertex number 4 has

the most similarities with vertex 1, hence we combine the two

to form vertex 1,4. Because no other vertex can be combined,

we remove vertex 4 from the graph (picture 8.1)

Picture 10.1 : Illustration of first and second step

Third, we remove the conjoined vertex 1,4 from the graph

(picture 8.2)

Picture 10.2

Fourth, we repeat the previous steps until we are left with only

one vertex or an empty graph after the next step (picture 8.3).

For this case, we are left with just the vertex number 5.

Picture 10.3

After eliminating vertex 3,2 we will now have three groupings

of vertices that are not connected to one another, those are {1,4},

{3,2}, and {5}. We will now assign separate colors to each of

those groups, the final result is illustrated in picture 8.4

Picture 10.4 : The final result

B. Complexity Analysis

Measuring the complexity of this algorithm is rather

interesting because the golden ratio 1.619 appears as a result of

the recursive implementation [6]. First, we let T(x) be the

number of executions of step 1 to 4 for graphs with n vertices

and m edges. We will define x as being the size of the graph

which is equal to n + m. When we arrive at step 5, the resulting

graph will have n-1 number of vertices and m-1 number of

edges, this results in the following to be true

1) n – 1 + m – 1 = x – 2

2) n + m – 1 = x – 1

Because of this T can satisfy the function T(x) = T(x - 1) +

T(x – 2) which has a well known solution of ϕx where ϕ ≈ 1.619

and is known as the golden ratio. Therefore, we can write the

time complexity of this algorithm to be T(x) = ϕm+n or in big-O

notation as O(1.619m+n).

Picture 11 : One of many ways to derive the golden ratio

source : https://www.mathisfun.com

VII. CONCLUSION

In terms of time complexity, the best performance is seen

using the greedy method. Both the basic and Welsh-Powell

variant are able of producing O(n+m) complexity in it’s best

case. The second best goes to the deletion-contraction algorithm

which has an order of O(1.619m+n), it is significantly slower than

the greedy method but is able to produce efficient color usage

under any condition. The last and unsurprisingly goes to the

brute force method which produces the longest running time of

O(kn(n+m)).

Algorithm Time Complexity Colors used

Brute Force O(kn(n+m)) χ(G)

Greedy O(n+m) k

Recursive O(1.619m+n) χ(G)

Table 3 : Comparative of the 3 Algorithms covered

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

IX. ACKNOWLEDGMENTS

This paper would not come into fruition without the already

established research referenced in the next part. I would also like

to thank my lecturers and Mr. Rinaldi Munir for his brilliant

methods in teaching discrete mathematics.

REFERENCES

[1] Wing, Jeannete. (2010, November 17). Computational Thinking : What

and why. https://www.cs.cmu.edu/~CompThink/resources/TheLinkWing

accessed on December 8 2018

[2] Munir, R. 2009. Matematika Diskrit, Bandung: Informatika Bandung

[3] Rosen, Kenneth H, 2012, Discrete Mathematics and Its Applications,

NewYork:McGraw-Hill,

[4] Irving, Robert W. 1982. Discrete Applied Mathematics. Hollang : North-

Holland Publishing. 111-117

[5] Binca, A.K. 2017. Graph Coloring and its Real Time Applications, an

Overview. International Journal of Mathematics and its Application, 5,

845-849.

[6] Husfeldt, Thore. (2013, September 09). Graph Coloring Algorithms.

https://compscicenter.ru/media/course_class_attachments/Thore_Husfeld

t_Graph_colouring_algorithms.pdf, accessed on December 8 2018

[7] Black, Paul E. 2005. Dictionary of Algorithms and Data Structures, U.S.

National Institute of Standards and Structures.

[8] http://mrsleblancsmath.pbworks.com/w/file/fetch/46119304/vertex%20co

loring%20algorithm.pdf, accessed on December 9 2018

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 9 Desember 2017

Gardahadi - 13517144

