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Abstract—Mathematics has long been with men; people coming 
out with theories, others coming out with problems, and the rest of 
us struggled with mathematical proofs of those theories mentioned. 
Although it is now completely rational to utilize computers and 
technology to prove a certain hypothesis, mathematicians in the 
past refused doing so. Most of them did not even approve proofs 
done by computers as they did not give us full understanding of the 
said theories. This paper will mainly cover The Four-Color 
Theorem. Being the first ever computer-assisted proof in 
mathematics, it was controversial at the time. 
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I.   INTRODUCTION 
The Four-Color Theorem stated that, given any separation of 

a plane into several contiguous regions, producing a map, no 
more than four colors are required to color the map such that no 
neighboring regions have the same color. It applies not only on 
the world maps, but all maps, with tens or even millions of 
countries/regions of all shapes and sizes.  

 
Figure 1. Map of the United States, perfectly colored 

with only four colors 
(http://people.math.gatech.edu/~thomas/FC/fourcolor.html, 

accessed on December 9, 2018 18:12 GMT+7) 
 

The Four-Color Problem first came out in 1852 when Francis 
Guthrie, a South African mathematician tried to color a map of 
the countries on England. He then noticed that it only took him 
four colors to correctly color the map. By correctly it means no 
two adjacent regions of the maps are of the same color, 
otherwise it would be confusing for people reading the map. 

He asked his brother Frederick Guthrie if it was true that any 

map can be colored in four colors such that two regions sharing 
the same boundary segment have different colors, who then 
communicated the speculation with his lecturer in University 
College London, Augustus De Morgan. De Morgan then 
published the problem. Being a relatively simple problem, it 
quickly gained public attention. 

There were several failed attempts at solving the problems. 
One was given by Alfred B. Kempe in 1879, followed by Peter 
G. Tait in 1880. In 1992, an attempt came from George David 
Birkhoff whose work helped Philip Franklin in proving the four-
color conjecture for maps with at most 25 regions in 1922. Until 
finally, Kennel Appel and Wolfgang Haken at University of 
Illinois announced that they had proved the theorem on June 21, 
1976, making The Four-Color Theorem the first ever proof in 
mathematics to be done using a computer. 

 
Figure 2. Few among the 1976 network configurations 

tested by Appel-Haken 
(Appel, K. and Haken, W. (1989). Every Planar Map Is Four 

Colorable: Part I. accessed at 
https://projecteuclid.org/download/pdf_1/euclid.ijm/12560490

11, on December 9, 2018 19:48 GMT+7) 
 

Appel-Haken made an enormous list of maps and checked 
each of them using a computer. The Appel-Haken proof 
consisted of massive test cases, around 1936 configurations of 
unavoidable set (which was then narrowed down to 1482 
configurations), and they proved that all of them can be colored, 
or recolored, using no more than four colors. Many 
mathematicians of the time rejected the proof, as massive case 
checking, despite being valid, did not grant better understanding 
of the problem. 

http://people.math.gatech.edu/%7Ethomas/FC/fourcolor.html
https://projecteuclid.org/download/pdf_1/euclid.ijm/1256049011
https://projecteuclid.org/download/pdf_1/euclid.ijm/1256049011
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II.  GRAPH THEORY AND TERMINOLOGY 

A. Graph 
A graph G = (V, E) consists of a non-empty set of vertices V 

and a set of edges E. Each edge has one or a pair of vertices 
connected with it, called endpoints. 
 

 
Figure 3. Graphs 

(http://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2015-
2016/Graf%20(2015).pdf, accessed on December 9, 2018 

20:21 GMT+7) 
 
For instance, graph G1 in Figure 3 can be considered as G = 

(V, E) where V = {1, 2, 3, 4} and E = {{1, 2}, {1, 3}, {2, 3}, {2, 
4}, {3, 4}} and G2 can also be considered as G = (V, E) with 
the same V as G1. However, G2 differs from G1 in terms of its 
sets of edges E, where E in G2 has 2 sets of parallel or multiple 
edges, one being e3 & e4, another being e6 & e7. Multiple edges 
are two different edges connecting the same two vertices; in this 
case, edges e3 and e4 both connect vertices 1 and 3, while edges 
e6 and e7 both connect vertices 3 and 4. Edge e8 in G3 is called 
a loop, as it starts from a vertex (vertex 3) and goes back to the 
same vertex (back to vertex 3). We can also say that a loop edge 
connects a vertex to itself. 

Based on the presence of parallel edges and loop edges, there 
are different types of graphs: 

a. Simple Graph, which has no parallel edges or loop edges. 
Graph G1 in Figure 3 is a simple graph. 

b. Multi-Graph, which is a graph having at least one loop or 
parallel edges. Graph G2 and G3 in Figure 3 are 
examples of multi-graph. 

 
A graph may have ‘direction’ in its edges, meaning it has sets 

of edges made of ordered vertex pair. Such graph is called a 
directed graph. If it has sets of edges made of unordered vertex 
pair on the other hand, it is an undirected graph. Graphs G1, G2, 
G3 in Figure 3 are all undirected graphs as they do not have 
direction associated with their edges. 

 

 

Figure 4. Examples of directed graphs 
(http://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2015-
2016/Graf%20(2015).pdf, accessed on December 9, 2018 

20:44 GMT+7) 
 
Graph G4 and G5 from Figure 4 has sets of edges made of 

ordered pair of vertex, which can be denoted as G = (V, E) where 
E = (sets of {a, b}), implying a ‘direction’ from vertex a to 
vertex b, and further implying that {a, b} ≠ {b, a}. 
 

B. Graph Terminology 
B.1. Adjacency and Incidence 

Two vertices a and b are said to be adjacent if a and be are 
both the endpoints of the same edge. For instance, vertex 1 and 
2 in graph G1 from Figure 3 are adjacent. Vertex 1 and 4 from 
the same graph, however, are not adjacent.  

An edge is incident on a vertex if said vertex is an endpoint 
of said edge. Thus, for each e = {a, b}, e incident on a, or, e is 
incident on b. e = {1, 3} in graph G1 from Figure 3 is incident 
on vertex 1 and vertex 3.  
 
B.2. Isolated Vertex and Null Graph 

    
Figure 5. Isolated Vertex (Left) and Null Graph (Right) 

(http://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2015-
2016/Graf%20(2015).pdf, accessed on December 9, 2018 

21:14 GMT+7) 
 

A vertex is isolated when there are no incident edge on it, or 
when it is not adjacent with another vertex. Vertex 5 from the 
left graph on Figure 5 is an isolated vertex as it is not connected 
to any other vertices. 

A null graph is a graph with null set of edges, meaning it has 
no edges. The right graph on Figure 5 is an example of null 
graph. 
 
B.3. Degree 

The degree of a vertex v is the amount of edges incident with 
v, noted as d(v), d(v) ϵ Z. Looking at the left graph in Figure 5: 
d(1) = 2, d(2) = 2, d(3) = 3, d(4) = 1, and d(5) = 0. 
 
B.4. Path and Cycle 

A path with length n from vertex a to vertex b in a graph G is 
a sequence of alternating vertices and edges such that each 
successive vertex is connected by the edge. Frequently, only the 
vertices are listed. Path length n is the amount of edges the path 
contains. The path from vertex 2 to vertex 4 in the left graph 
from Figure 5 can be noted as P = 2, 3, 4, with its path length n 
= 2. 

A cycle or a circuit is a path that initiates and terminates at 

http://informatika.stei.itb.ac.id/%7Erinaldi.munir/Matdis/2015-2016/Graf%20(2015).pdf
http://informatika.stei.itb.ac.id/%7Erinaldi.munir/Matdis/2015-2016/Graf%20(2015).pdf
http://informatika.stei.itb.ac.id/%7Erinaldi.munir/Matdis/2015-2016/Graf%20(2015).pdf
http://informatika.stei.itb.ac.id/%7Erinaldi.munir/Matdis/2015-2016/Graf%20(2015).pdf
http://informatika.stei.itb.ac.id/%7Erinaldi.munir/Matdis/2015-2016/Graf%20(2015).pdf
http://informatika.stei.itb.ac.id/%7Erinaldi.munir/Matdis/2015-2016/Graf%20(2015).pdf
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the same vertex. Looking at the left graph in Figure 5: P = 1, 2, 
3, 1 is a cycle, with its cycle length n = 3. 
 
B.5. Connectivity 

Vertex a and vertex b in a graph G is said to be connected if 
there is a valid path from vertex a to vertex b. Vertex 1 in the 
left graph from Figure 5 is connected to vertex 4, but not to 
vertex 5. 

A graph G is a connected graph if each vertex in G is 
connected to all other vertices in said graph. Graph G1 in Figure 
3 is a connected graph, while the left graph in Figure 5 is not a 
connected graph, or a disconnected graph. 
 
B.6. Subgraphs and Spanning Subgraphs 

 
Figure 6. Subgraph (Right) of a Graph (Left) 

(http://mathworld.wolfram.com/Vertex-
InducedSubgraph.html, accessed on December 9, 2018 21:39 

GMT+7) 
 
Say we have a graph G = (V, E). G1 = (V1, E1) is a subgraph 

of graph G if V1 ⊆ V and E1 ⊆ E. In Figure 6, the graph on the 
right is a subgraph of the graph on the left. 

 

 
Figure 7. Spanning Subgraph (Right) of a Graph (Left) 

(https://www.slideshare.net/Tech_MX/graph-theory-1, 
accessed on December 9, 2018 21:46 GMT+7) 

 
A subgraph G1 = (V1, E1) is a spanning subgraph of graph G 

= (V, E) if G1 contains all the vertices of G, or V1 = V. In Figure 
7, the subgraph on the right is a spanning subgraph of the graph 
on the left. 
 
B.7. Weighted Graphs 

 
Figure 8. Weighted Graph 

(http://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2015-
2016/Graf%20(2015).pdf, accessed on December 9, 2018 

22:21 GMT+7) 
 

Weighted graph is a graph in which each edge is given a 
numerical weight. A common operation on weighted graphs is 
the shortest-path computation; deciding paths from vertex a to 
vertex b such that the sum of the weight of the path is minimal. 
Graph in Figure 8 is a weighted graph, with each number beside 
each edge representing the respective edges’ values. 
 

C. Planar Graph 

 
Figure 9. A Planar Graph 

(http://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2015-
2016/Graf%20(2015).pdf, accessed on December 9, 2018 

22:41 GMT+7) 
 

 
Figure 10. A Non-Planar Graph 

(http://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2015-
2016/Graf%20(2015).pdf, accessed on December 9, 2018 

22:41 GMT+7) 
 
Graph G is a planar graph if it can be drawn in a plane such 

that no edges are crossed with each other. Else, it is called a non-
planar graph. The graph in Figure 9 is a planar graph as it can be 
redrawn and have its edges restructured such that there are no 
crossing edges. The graph in Figure 10, however, is a non-planar 
graph as there is no such configuration that allows non-crossing 

http://mathworld.wolfram.com/Vertex-InducedSubgraph.html
http://mathworld.wolfram.com/Vertex-InducedSubgraph.html
https://www.slideshare.net/Tech_MX/graph-theory-1
http://informatika.stei.itb.ac.id/%7Erinaldi.munir/Matdis/2015-2016/Graf%20(2015).pdf
http://informatika.stei.itb.ac.id/%7Erinaldi.munir/Matdis/2015-2016/Graf%20(2015).pdf
http://informatika.stei.itb.ac.id/%7Erinaldi.munir/Matdis/2015-2016/Graf%20(2015).pdf
http://informatika.stei.itb.ac.id/%7Erinaldi.munir/Matdis/2015-2016/Graf%20(2015).pdf
http://informatika.stei.itb.ac.id/%7Erinaldi.munir/Matdis/2015-2016/Graf%20(2015).pdf
http://informatika.stei.itb.ac.id/%7Erinaldi.munir/Matdis/2015-2016/Graf%20(2015).pdf
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edges in said graph when drawn in a plane. 
The concept of planar graphs is widely used in other 

discipline, mainly engineering. In the design of an Integrated 
Circuit (IC) for instance, no crossing edges may be present 
within the board as such configuration might lead to circuit 
malfunction. 

All separation of planes into several regions, including, but 
not restricted to, maps, can be converted into their 
corresponding planar graphs, with each vertex in the graph 
representing regions, and each edge in the graph representing 
respective regions’ borders. 

Suppose we have this map of Austria: 

 
Figure 11. Map of Austria 

(https://commons.wikimedia.org/wiki/File:Austria_states_en
glish.png, accessed on December 9, 2018 23:01 GMT+7) 
 
We can convert the map in Figure 11 into a planar graph by 

putting a dot, representing the vertices of the graph, and drawing 
a line connecting two respective vertices whenever two regions 
border each other, representing the edges of the graph. 

 
Figure 12. Planar graph converted from the map in 

Figure 11 
(https://math.stackexchange.com/questions/2206138/proof-

that-every-map-produces-a-planar-graph-four-colour-theorem, 
accessed on December 9, 2018 23:01 GMT+7) 

 
It also works the other way around; for every planar graph, 

there is at least one map-like representation of said graph on a 
plane. 

 
 
III.   APPROACHES ON THE FOUR-COLOR THEOREM: 

PROOFS AND BOUNDARIES 

A. Problem Boundaries 
The statement of The Four-Color Theorem “that given any 

separation of a plane into contiguous regions, called a map, the 
regions can be colored using at most four colors so that no two 
adjacent regions have the same color” has several boundaries in 
its interpretation. 

First, points that belong to three or more countries must be 
ignored. Second, no two disconnected regions representing a 
single country (which will then require same coloring) can exist. 
Every country has to be a connected region, or contiguous, 
meaning there is no obligation that two separated regions have 
the same colors. 

 
Figure 13. Example of an invalid test case for The Four-

Color Theorem 
(https://en.wikipedia.org/wiki/Four_color_theorem#CITERE

FHudson2003, accessed on December 10, 2018 05:03 
GMT+&7) 

 
In the map in Figure 13, there are two regions representing a 

single segment, both labeled A, and both must be of the same 
color. Such map requires five colors, thus cannot exist in the 
discussion of The Four-Color Theorem.  
 

B. Kempe Chain Method 
Albert B. Kempe wrote his proof of The Four-Color Theorem 

in 1879, which was later shown incorrect by Percy Heawood in 
1890. Despite being inaccurate, Kempe Chain was later used as 
an extremely important tool in proving The Five-Color 
Theorem. 

The formal definition of Kempe’s Chain theory goes as 
following: 

Definition 1 (C1C2-Kempe chain). Let G be a planar graph 
whose vertices have been properly four-colored and suppose v 
∈ V(G) is colored C1. The C1C2-Kempe chain containing v is 
the maximal connected component of G that contains v and 
contains only vertices colored C1 or C2. [Gethner and Springer 
2003]. 

Definition 2 (C1C2-Kempe chain switch). Let K be a C1C2-
Kempe chain. A C1C2-Kempe chain switch interchanges all 
values of C1 and C2 in K. [Gethner and Springer 2003]. 

Kempe attempted to show that a graph with n number of 
vertices can be four-colored and assumed that all graphs with 

https://commons.wikimedia.org/wiki/File:Austria_states_english.png
https://commons.wikimedia.org/wiki/File:Austria_states_english.png
https://math.stackexchange.com/questions/2206138/proof-that-every-map-produces-a-planar-graph-four-colour-theorem
https://math.stackexchange.com/questions/2206138/proof-that-every-map-produces-a-planar-graph-four-colour-theorem
https://en.wikipedia.org/wiki/Four_color_theorem#CITEREFHudson2003
https://en.wikipedia.org/wiki/Four_color_theorem#CITEREFHudson2003
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R 

less than n vertices can too, be four-colored. With Euler’s 
Theorem for planar graphs, he showed that a graph in which all 
its vertices have degree 6 or higher is never a planar graph. This 
leads him to prove that any maximal planar graph – a planar 
graph in which no new edges can be added without disturbing 
its planarity – must have at least one node with degree 5 or less. 

“If we denote the number of nodes, edges, and faces (i.e., the 
bounded regions) of a planar graph by V, E, and F respectively, 
then Euler's theorem for a plane (or a sphere) is V - E + F = 2 
(the outside face counts too).  Each face of a maximal planar 
graph is bounded by three edges, and each edge is on the 
boundary of two faces, so we have F = 2E/3.  Euler's formula for 
a complete planar graph then becomes simply E = 
3V - 6.  The degree of a node is the number of edges incident to 
it.  Now each edge is connected to two nodes, so the sum of the 
degrees of all the nodes 2E = 6V - 12, and hence the average 
degree per node is 6 - 12/V < 6 (assuming the graph is 
finite).  This implies that at least one vertex has degree five or 
less.” Retrieved from http://web.stonehill.edu/compsci/lc/four-
color/four-color.htm. 

Suppose we have a map in which each region is colored with 
one of our chosen four colors; in this case, say we have red, blue, 
green, and yellow. Each region of said map is colored with one 
of the colors, except for one single region, say region R. If this 
region R is not surrounded by four other regions each with 
different colors, then there is a color left for R. Thus, suppose 
region R is surrounded by regions of all four colors, namely A, 
B, C, and D, each with their colors in order: red, blue, green, and 
yellow. 

 
Figure 14. Region R surrounded by four regions, each 

with different colors 
(http://mathworld.wolfram.com/WheelGraph.html, accessed 

on December 10, 2018 04:02 GMT+7) 
 

There are two possible scenarios to consider: 
i. Regions A and C are not adjacent, meaning there is no 

chain or edge connecting A to C.  
If this is the case, then change A to green. Then 
interchange the color of the red/green regions in the 
chain connecting A. There is now no red region 
adjacent with R. R can now be colored red. 

ii. Regions A and C are adjacent, meaning there is a chain 
or edge connecting A to C. 
If this is the case, then there must be no chain 
connecting region B and D, else the graph is no longer 
a planar graph, and non-planar graphs cannot be 
represented on a plane. The property in point (i) 
becomes true for B and D, and we change the colors 
accordingly. 

This method applies to all regions in given map, with vertices 
having degree 4 or less. 

For graph with vertices having degree 5, we use the same 
approach as the degree 4 situation. Our uncolored region R is 
now surrounded by five regions.  

 
Figure 15. Case i. (Left) and Case ii. (Right) 

(http://web.stonehill.edu/compsci/lc/four-color/four-
color.htm, accessed on December 10, 2018 06:03 GMT+7) 

 
There are another two scenarios to consider: 

1. Two nodes with the same color are next to each other 
as in the left part of Figure 15, where red colored 
regions are next to each other. 
If this is the case, the argument is similar with the 
degree 4 situation, since the two red regions can be 
treated as a single region, producing a semi four-degree 
region R. 

2. Two nodes with the same color are not next to each 
other as in the right part of Figure 15.  

The main idea in proving case (ii) is to create two Kempe 
chains: (a) starting from the region colored blue and following 
all edges connecting vertices colored blue or yellow. As before, 
if this chain does not contain the vertex adjacent to R that is 
colored yellow, we then toggle the colors of the chain, resulting 
in the top region (previously blue) being colored yellow. There 
is now no blue region adjacent to R. R can now be colored blue. 
However, if the chain contains the yellow-colored vertex, we 
move on to the other chain; (b) starting from the region colored 
blue and following all edges connecting vertices colored blue or 
green.  If this chain does not contain the vertex adjacent to R that 
is colored green, we can then toggle the colors of this chain, 
once again allowing us to color R blue.  If this second chain 
contains the green-colored vertex, we must reject this chain as 
well. We then can no longer be using Kempe Chain starting from 
the blue region. 

 
Figure 16. Kempe Chain 

(http://web.stonehill.edu/compsci/lc/four-color/four-
color.htm, accessed on December 10, 2018 06:27 GMT+7) 
Kempe's solution in this case is to start at each of the two 

vertices colored red and create two Kempe chains, one with 
colors red and green, and the other with colors red and 
yellow.  From the vertex colored red that is surrounded by the 
blue-yellow Kempe chain (the red on the right), he creates a 

B A 

D C 

http://web.stonehill.edu/compsci/lc/four-color/four-color.htm
http://web.stonehill.edu/compsci/lc/four-color/four-color.htm
http://mathworld.wolfram.com/WheelGraph.html
http://web.stonehill.edu/compsci/lc/four-color/four-color.htm
http://web.stonehill.edu/compsci/lc/four-color/four-color.htm
http://web.stonehill.edu/compsci/lc/four-color/four-color.htm
http://web.stonehill.edu/compsci/lc/four-color/four-color.htm
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Kempe chain with colors red and green.  From the vertex 
colored red that is surrounded by the blue-green Kempe chain 
(the red on the left), he creates a Kempe chain with colors red 
and yellow.  The new Kempe chain with colors red and green 
cannot reach the vertex adjacent to R colored green, so the 
colors can be toggled, and red becomes green.  The new Kempe 
chain with colors red and yellow cannot reach the vertex 
adjacent to R colored yellow, so red becomes yellow. The red 
vertex on the right is colored green and the red vertex on the left 
is colored yellow.  This leaves color red free for R, which is now 
adjacent to colors yellow-green-blue-yellow-green (in counter-
clockwise order around R). 

This implies that Kempe uses strong induction in his proof, 
where he assumed that the statement holds true for all values 
preceding n. 

 
C. The Flaw in Kempe’s Proof 
Percy J. Heawood exposed a flaw in Kempe’s proof of the 

Four-Color Theorem in 1890. The flaw lies under the following 
statements from Kempe’s proof: “The new Kempe chain with 
colors red and green cannot reach the vertex adjacent 
to R colored green, so the colors can be toggled, and red 
becomes green.  The new Kempe chain with colors red and 
yellow cannot reach the vertex adjacent to R colored yellow, so 
red becomes yellow.” 

The problem is, it is possible to have edges between yellow 
vertices in the red-yellow Kempe Chain and the green vertices 
in the red-green Kempe Chain. If we change the colors based on 
Kempe Chain Method, both yellow and blue vertices, which are 
adjacent, will be changed to red, resulting in one or more 
adjacent pair of vertices having the same color. It turns out that 
a green vertex surrounded by the blue-yellow Kempe Chain can 
be adjacent to a yellow vertex surrounded by the blue-green 
Kempe Chain, as shown in Figure 17. 

 
Figure 17. The flaw lies on the squared region 

(http://web.stonehill.edu/compsci/lc/four-color/four-
color.htm, accessed on December 10, 2018 06:54 GMT+7) 
 
Kempe Chain Method does not go wasted, however. Utilizing 

Kempe’s Chain Theory, Heawood proved a similar but less 
powerful Five-Color Theorem.  

 

D. Appel-Haken Proof 
The Four-Color Theorem was finally proven by Kennel Appel 

and Wolfgang Haken at University of Illinois on June 21, 1976, 
basing their methods on reducibility using Kempe Chain. They 
stated that if The Four-Color Theorem were false, then there 
would be at least one map with the smallest number of regions 
which require five colors. They proceeded to prove this through: 
(a) the making of a very long list of networks called the 
unavoidable set, a set of configurations such that every map that 
satisfies necessary conditions for being a non-four-colorable 
triangulation (all faces bounded by three edges) must have at 
least one configuration from said set; (b) the concept of 
reducible configuration, an arrangement of maps that cannot 
occur in a minimal counter-example. If a map contains a 
reducible configuration, then it can be reduced into smaller 
maps. If this smaller map is four-colorable, then the original map 
is, too. This implies that if the original map is not four-colorable, 
then the smaller map is not, either, and said original map is not 
minimal. 

Appel and Haken later found an unavoidable set of reducible 
configurations, proving that a minimal counter-example for the 
four-color conjecture can never exist. Their proof reduced the 
number of possible maps down to 1936 configurations (which 
was then reduced to 1482), and such massive number of cases 
was checked one by one using a computer. It took over a 
thousand hours to complete the checking. The reducibility part 
of the proof was then double checked with different programs, 
again with different computers. The unavoidability part, 
however, had to checked manually.  

However, there was a flaw in this proof, specifically in the 
discharging procedure, proposed by Ulrich Schmidt. This was 
later corrected in 1989, the same year in which they published 
their greatest work, Every Planar Map is Four-Colorable, a 
book containing a complete and detailed proof of the theorem, 
including the explanation of Schmidt’s discovery and several 
errors found by others.  

 
 

IV.   CONCLUSION 
The Four-Color Theorem may not be one of the best proofs in 

mathematics, but it is now widely accepted by public and people 
are getting advantages from it. One direct application of The 
Four-Color Theorem is in mobile phone towers. Towers cover 
certain areas with some overlaps, thus they cannot all transmit 
on the same frequency. The trick here is to give them all 
different frequencies. In deciding the minimum possible number 
of frequencies, one can utilize The Four-Color Theorem. The 
Four-Color Theorem is not just about graphs and maps, but it 
can also be used in modeling real-life problems, like expressing 
some binary relation among objects and test scheduling. 
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