
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

Boolean Algebra Applications in
Computer Processors

Eginata Kasan 13517030

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
13517030@std.stei.itb.ac.id

Abstract—The study of boolean function manipulation is a
branch of discrete mathematics named Boolean Algebra, invented
by George Boole. Logic Gates are devices (physical or not) that
receive one or more binary inputs and performs logical operations
to produce one (or sometimes more) binary output. Logic gates are
a physical implementation of boolean logic. A logic gate requires at
least one diode or transistor which acts like a switch in order to
performits decision making using boolean logic. Logic gates are a
necessity for a digital computer where they serve as processors.
They can produce either 1 (high) or 0 (low) current depending on
the input current given. A modern computer can contain more than
100 million logic gates. The main boolean functions of a logic gates
are: AND, OR, NOT, NAND, NOR, XOR, and XNOR. The main
logic gates can be combined and combinations of these logic gates
can make variations of new logic functions.

Keywords—boolean algebra, computer architecture, logic gate,

transistor.

I. INTRODUCTION

[1] Boolean Algebra is the branch of mathematics that is
known as modern algebra or abstract algebra. In Boolean
algebra, the value of variables and the results are either true (1)
or false (0). It was invented by George Boole in 1854. Boolean
Algebra is usually used for analyzing or simplifying circuit that
uses boolean logic. In Boolean Algebra there exist laws as a
guide to show which manipulations are legit.

Identity
𝑎 + 0 = 1
𝑎. 1 = 1

Idempotent
𝑎 + 𝑎 = 𝑎
𝑎 . 𝑎 = 𝑎

Complement
𝑎 + 𝑎 = 1
𝑎 . 𝑎′ = 0

Annulment
𝑎. 0 = 0
𝑎 + 1 = 1

Double Negation
(𝑎’)’ = 𝑎

Absorptive
𝑎 + 𝑎𝑏 = 𝑎
𝑎(𝑎 + 𝑏) = 𝑎

Commutative
𝑎 + 𝑏 = 𝑏 + 𝑎

𝑎𝑏 = 𝑏𝑎

Associative
𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐

𝑎(𝑏𝑐) = (𝑎𝑏)𝑐
de Morgan´s Theorem

(𝑎 + 𝑏)’ = 𝑎’𝑏’
(𝑎𝑏)’ = 𝑎’ + 𝑏’

Distributive
𝑎 + (𝑏𝑐) = (𝑎 + 𝑏)(𝑎 + 𝑐)

𝑎(𝑏 + 𝑐) = (𝑎𝑏 + 𝑎𝑐)
Table 1 Laws of Boolean Algebra

Our computer’s processors are one of the examples of a

complicated logic circuit, where these circuits are called the
logic gate.

Figure 1 Simplified illustration of computer system

A computer must have at lease these three components in

order to work: the power supply, Central Processing Unit
(CPU), and memory. The Central Processing Unit (CPU), is
usually called the brain of the computer, that is located on the
motherboard. It is in the CPU that all calculations (arithmetic
and logical operations), instructions decoding, and instructions
execution.

The Central Processing Unit (CPU) has three main
components: (registers and caches), datapaths (ALU), and
Control Units. The ALU handles all the arithmetic and logical
calculations, whereas the Control Units handle the instructions
from memory, and calls the ALU whenever any calculation is
needed. Caches and registers are small memory that saves
information/instructions as the CPU can access them at a much
higher speed rate than to access the hardware. These
components of a CPU that were once separated are now
constructed as an all-in-one microprocessor.

A processor’s world is made of bits of 1 and 0, which is
machine language instructions, so in order to do calculation, a
processor must receive instructions through an electric
current/signal, and change it into 0’s and 1’s using a switch-like
component, that is a transistor, whereas a high voltage level, for
example 2V or 5V (these voltages may vary), is translated into
1’s and a voltage near 0 are translated as 0’s. Besides storing
inputs of 0’s and 1’s, transistors are also capable of controlling
the electric current flow. The key of calculation and decision
making of a microprocessor are held by these transistors,
implemented in logic gates. Therefore, logic gates are basically

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

circuits that manipulates the electric current that flows through
it. This is where Boolean Algebra comes in, the study of
manipulating various logic gates in order to make some smart
computations, for example: addition and subtraction.

II. LOGIC GATES

 [2, pp 3.1] Logic gates are the basic element that makes up
digital system. A logic gate is a device that performs logical
operations on one or more binary inputs, that is 0’s or 1’s, and
outputs one binary input in exchange (with the exception of
some special cases where the output is more than just one).
Logic gates are an absolute necessity for computation and
decision making, they use only boolean operations to solve
problems (for example: addition, subtraction, negation of binary
digits).

There are 3 basic boolean functions in logic gates: AND, OR,
NOT. There is also XOR which is a very useful boolean
function. There are also popular combinations of the basic
boolean functions: NAND, NOR, and XNOR.

a. AND gate
 The AND gate produces an output of 1 (high) if all of the
inputs are 1, otherwise it will output a 0 (low).

Figure 2.1 AND gate

Table 2.1 Truth table of AND gate

b. OR gate
The OR gate produces an output of 0 (low) if any of the
inputs (just one or more) are high. It will only output 0 (low)
if all the outputs are also 0.

Figure 2.2 OR gate

Table 2.2 Truth table of OR gate

c. NOT gate
The NOT gate is an inverter gate, meaning it will output a
1 (high) if the input is 0 (low), and will output 0 (low) if the
input is 1 (high). The NOT gate accepts only one input.

 Figure 2.3 NOT gate Table 2.3 Truth table of NOT gate

d. NAND gate
The NAND gate is a NOT-AND gate, it yields an output
that is the opposite of the AND gate (an inverted output
from AND gate). The NAND gate only accepts two or more
inputs.

Figure 2.4 NAND gate

Table 2.4 Truth table of NAND gate

e. NOR gate
The NOR gate is a NOT-OR gate, it yields an output that is
the opposite of the OR output (an inverted output from OR
gate).

Figure 2.5 NOR gate

Table 2.5 Truth table of NOR gate

f. XOR gate
The XOR gate is Exclusive Or gate, in the case of 2 inputs,
it produces an output of 1 if one of the inputs are 1. If both
of the inputs are 1, it will produce a 0.

Figure 2.6 XOR gate

Table 2.6 Truth table of XOR gate

A B Z
1 1 1
1 0 0
0 1 0
0 0 0

A Z
1 1
0 0

A B Z
1 1 1
1 0 1
0 1 1
0 0 0

A Z
1 1
0 0

A Z
1 0
0 1

A B Z
1 1 0
1 0 1
0 1 1
0 0 1

A Z
1 0
0 1

A B Z
1 1 0
1 0 0
0 1 0
0 0 1

A Z
1 0
0 1

A Z
1 0
0 1

A B Z
1 1 0
1 0 1
0 1 1
0 0 0

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

g. XNOR gate
The XOR gate is a combination of NOT and XOR
gate, it inverts the output of the XOR gate. It
produces 1 (high) if both of the inputs have the same
value, else it produces a 0 (low).

Figure 2.8 XNOR gate

Table 2.8 Truth table of XNOR gate

III. APPLICATIONS

There are a huge number of logic gates applications:
arithmetic calculator, digits display, automatic shutdown circuit,
used for making combinatorial circuits, a three-way light switch,
flow directors, or anything that depends on “switches” to make
the desired output. There are also more practical applications for
logic gates. For example, the one installed in every house: the
doorbell. The doorbell circuit needs the logic gate OR in case of
multiple doorbells in one house (for example: one doorbell for
the front door, one for the back door, etc.) so that when the front
door bell and the back doorbell are pressed at the same time or
a short time after the other was just pressed, the output stays as
1 (high) and it will ring. This circuit will also make it ring for if
only one of the doorbells are pressed due to the logic gate OR.

Figure 3.1 Illustration for the use of logic gate in doorbells

Logic gates are crucial in ALU (Arithmetic Logic Unit) in the

CPU. Examples of the logic gates used in ALU are multiplexors,
bitwise AND gate, bitwise OR gate, adders, subtractors,
overflow output, negative output, and zero output. The
multiplexors are for choosing inputs based on the control line.
The bitwise gates have many useful applications, for example
the AND is to calculate an IP network's identity. The adders and
subtractors, as the names suggest, is used to do calculations of
addition and subtraction of binary digits.

The discussion and the details of ALU logic gates in this
paper will be limited to only adders and subtractors and showing
the boolean algebra applications in it. The half-adder is one of
the simple yet most important part of arithmetic computation.
The half-adder can do simple addition of two single-digit
binaries.
Here are some examples of single binary digit addition:

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1

1 + 1 = 10
The 1+1 yielded a two-digit binary output (10), so a circuit that
outputs two digits is needed in this case. In other words, addition
of two bits will be done when the instruction says addition of
two numbers whereas both numbers only consist of one digit.
The half-adder consists only of a XOR and an AND gate, where
the output is 1 bit for each. [2, pp. 4.3 – 4.4] The AND gate will
output CARRY that will hold the higher significant byte,
whereas the XOR gate will output SUM, that is the least
significant byte.

Below is an illustration of how the logic gates are used in the
half-adder.

Figure 3.2 Logic diagram of half-adder

The half-adder receives 2 inputs (A and B), that represents the
digits that needs to be added and outputs two values, sum and
carry value. The XOR and the AND gate are connected to both
A and B. Using the XOR output as the SUM, and the AND gates
as the CARRY, we get:

A B CARRY SUM
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0
Table 3.1 Truth Table of half-adder

The CARRY acts as the most significant bit of the two-digit
output in half-adders, so the table shows that

0 + 0 = 00
0 + 1 = 01
1 + 0 = 01
1 + 1 = 10

for the SUM, the boolean expression is:
 𝑆 = 𝐴 ⊕ 𝐵
while for the CARRY, it is:
 𝐶 = 𝐴 . 𝐵

However, there is a limitation of using half-adders that is the
half-adder only works for addition of single bits (it cannot do
additions like 11+11). This is because the half-adder has room
of input for only 2 bits, whereas to do addition of, for example,
4-digit inputs, 3 bits of inputs are needed: two for the binary
digits, and one for the carry-out from the digit before them. Here
are some examples of addition of 4 bits:

0000 + 0001 = 0001
1100 + 1000 = 10100
1111 + 1111 = 11110

In the case of half-adder, there is no consideration for carry-outs,
therefore, a more complex circuit is needed. The full-adder was
made exactly for this purpose. [4] A full-adder is a combinatorial

A B Z
1 1 1
1 0 0
0 1 0
0 0 1

A Z
1 0
0 1

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

circuit that forms the arithmetic sum of three input bits. The full-
adder is more or less the combination of two half-adders, and an
OR gate. It can do addition for 1 or more number of bits. Below
is the illustration of the full-adder circuit.

Figure 3.3 Logic diagram of half-adder

Understanding the full-adder may not be as simple as
understanding the half-adder. There is an OR gate that receives
input from two AND gates, it is the one that will give the final
COUT. The full-adder treats input A and B the same way as the
half-adder does, but there is an input for carry-outs in full-adders
(CIN), which will affect the SUM and also COUT. The third
input CIN, represents the carry from the previous lower
significant position. The truth table for the full-adders is shown
as below:

A B CIN COUT SUM
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0

1 0 0 0 1
1 0 1 1 0
1 1 0 1 0

1 1 1 1 1
Table 3.2 Truth Table of full-adder

For the SUM in full-adder, it is
 𝑆 = (𝐴 ⊕ 𝐵) ⊕ 𝐶𝑖𝑛
and for the COUT:
 𝐶𝑜𝑢𝑡 = (𝐴 ⊕ 𝐵). 𝐶𝑖𝑛 + (𝐴. 𝐵)

But unlike the half-adder where the COUT is used directly as
the most significant bit, the COUT of the full-adder will be used
as CIN for the addition of the next digit until the last digit, where
the resulting value size will be plus one bit more than the size of
the inputs, like the half-adder (1+1 actually means addition of
two bits).

Take 11+10 for an example of addition using full-adder. The
rightmost bit of 11 and 10 will be the first A and B accordingly,
with the CIN being 0.

Input:
A 1
B 0
CIN 0

Output:
COUT 0
SUM 1

Next, we take the second bit from the left out of the two

inputs. We then take the COUT from the step before, which is
0, and save it as CIN for this next step.

Input:
A 1
B 1
CIN 0

Output:
COUT 1
SUM 0

Now the two binary numbers have been calculated, but 11+10

is 101, so far, the results yielded a 01. Though there is COUT
with the value of 1 in the step before. Thus, that is why the true
output digit count has to be 1 bit more than the inputs, so that
there are no COUTs left uncalculated. For example, if the input
is a 2 bit, then the output must be a 3 bit. For the final step, the
next A and B will be 0s, because the numbers have been
calculated. Using the last COUT as CIN, we then continue.

Input:
A 0
B 0
CIN 1

Output:
COUT 0
SUM 1

The final answer of 11+10 is now 101.

The subtractor in processors, instead of producing SUM and
CARRY, it instead produces DIFFERENCE and BORROW.
Like in adders, there are Half-Subtractors and Full-Subtractors.
[3, pp. 240-242] A Half-Subtractor is a combinatorial circuit that
can be used to subtract one binary digit from another to produce
a DIFFERENCE output and a BORROW output.
DIFFERENCE has the value of 1 if the A and the B has a
difference of 1, whereas BORROW indicates whether the
minuend needs borrowing because it is smaller than the
subtrahend.

Figure 3.4 minuend and subtrahend

Here are some examples of very simple single binary digit
subtraction:

0 – 0 = 0
1 – 1 = 0
1 – 0 = 1

The subtraction above are cases of simple subtractions with no
borrowing, so they are rather simple to do. A case of subtraction
with borrows are when the subtrahend is smaller than the
minuend, like: 0 – 1 (0 is the minuend, 1 is the subtrahend). Like
how we do 31 – 8 = 23, the 1 in “31” borrows a 10 from 3 in
“31” in order to be subtracted to 8, and the 3 becomes a 2, thus
the answer is 28. This method is the same with binary numbers,
but instead of a 10, a binary number borrows a 1 (meaning 2 in
decimals).

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

Figure 3.5 Illustration of subtraction using borrows

The logic diagram of the half-subtractor and the truth table is

shown below:

Figure 3.6 Logic diagram of half-subtractor

Table 3.3 Truth table of half-subtractor

The boolean expression for the DIFFERENCE is:
 𝐷 = 𝐴 ⊕ 𝐵

whereas for the BORROW, it is:
 𝐵 = �̅� . 𝐵
The half-subtractor only works for subtractions of one digit

since it cannot receive inputs of borrow-ins from the previous
digit. [3, pp. 242] The full-subtractor performs subtraction
operation on two bits, a minuend and a subtrahend, and also
takes into considering whether a ‘1’ has already been borrowed
by the previous adjacent lower minuend bit or not. The full-
subtractor considers the borrows from the digit before and uses
it as input “Borrow In”. Like how the full-adders are made by
two half-adders, the full-subtractor is also made of two half-
subtractors.

Figure 3.7 logic diagram of full-subtractor

A B Bin Bout D
0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 1 0
1 0 0 0 1
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

Table 3.4 Truth Table of full-subtractor

The Bin is used to store if there are any borrows from the
digit before, the value depends on the Bout on the previous

subtraction of the same number. Take figure 3.3 for example,
the 3 in “31” has the Bin of 1 when it was subtracted by 0 in
“08”.
In Full-Subtractors, the boolean expression for Difference (D)
is

𝐷 = (𝐴 ⊕ 𝐵) ⊕ 𝐵
Whereas for the Bout the boolean expression is

𝐵 = �̅� . 𝐵 + 𝐵
In order to show how the full-subtractor works and prove it,

take 101-10 as a case for this example (translated to decimal,
5-2 = 3).

Figure 3.7 Illustration of binary subtraction

 First, the A and B should be the least significant bit of the

binary numbers, that is 1 and 0 respectively. The Bin will be a
0 since there are no Bout saved yet

 input
A 1
B 0
Bin 0

output

Bout 0
D 1

Next the A and B take a step towards the next binary digit.
The Bout is used as the Bin for this next step

input
A 0
B 1
Bin 0

output
Bout 1
D 1

Because 0 – 1 is subtraction where the 0 needs borrowing,
the Bout is now a 1. Then we take another step with the Bout
used as the next Bin.

input
A 1
B 0
Bin 1

output
Bout 0
D 0

Thus, the final answer of the subtraction of 101-10 is now
011.

IV. ACKNOWLEDGMENT

Author would like to express her deepest appreciation to all
those who provided me the possibility to complete this report.
Thank God, for His blessings, for it is His grace that made this
paper can be finished in time. A thanks to my friends who gave
great advices for this paper. A thanks to Dr. Judhi Santoso,

A B BORROW DIFFERENCE
0 0 0 0
0 1 1 1
1 0 0 1
1 1 0 0

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

M.Sc. and to Dra. Harlili M.Sc, Author’s lecturers, who taught
classes about discrete mathematics, for their knowledge are
passed well to the students and thanks to Dr. Ir. Rinaldi Munir,
MT. for his loving support of all the students, his informative
website, and for his ever glowing spirit he shows everyone in his
works.

REFERENCES

[1] J. Eldon Whitesitt , “Boolean Algebra and Its Applications” , New York:
Dover Publications, pp. 1.
[2] A.P.Godse, “Digital Logic Circuits” , D.A.Godse, India:Technical
Publications Pune, chapter 3 pp.1-2
[3] Anil K. Maini, “Digital Electronics: Principles, Devices and
Applications”, India: John Wiley & Sons.
[4] John, Half Adder and Full Adder on July 31, 2018, retrieved December 7,
2017 from http://www.circuitstoday.com/half-adder-and-full-adder
[5] Administrator, Implementation of Boolean Functions using Logic Gates
on August 7, 2015 retrieved December 7, 2018 from
https://www.electronicshub.org/implementation-of-boolean-functions-using-
logic-gates/
[6] IEEE Referencing: Getting started with IEEE referencing retrieved
December 9, 2018, from
http://libraryguides.vu.edu.au/ieeereferencing/gettingstarted#s-lg-box-wrapper-
9929081

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 3 Desember 2017

13517030
Eginata Kasan

