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Abstract—The study of boolean function manipulation is a 
branch of discrete mathematics named Boolean Algebra, invented 
by George Boole. Logic Gates are devices (physical or not) that 
receive one or more binary inputs and performs logical operations 
to produce one (or sometimes more) binary output. Logic gates are 
a physical implementation of boolean logic. A logic gate requires at 
least one diode or transistor which acts like a switch in order to 
performits decision making using boolean logic. Logic gates are a 
necessity for a digital computer where they serve as processors. 
They can produce either 1 (high) or 0 (low) current depending on 
the input current given. A modern computer can contain more than 
100 million logic gates. The main boolean functions of a logic gates 
are: AND, OR, NOT, NAND, NOR, XOR, and XNOR. The main 
logic gates can be combined and combinations of these logic gates 
can make variations of new logic functions.  
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I.   INTRODUCTION 

[1] Boolean Algebra is the branch of mathematics that is 
known as modern algebra or abstract algebra. In Boolean 
algebra, the value of variables and the results are either true (1) 
or false (0). It was invented by George Boole in 1854. Boolean 
Algebra is usually used for analyzing or simplifying circuit that 
uses boolean logic. In Boolean Algebra there exist laws as a 
guide to show which manipulations are legit. 

Identity 
𝑎 + 0 =  1 
𝑎. 1 =  1 

Idempotent 
𝑎 + 𝑎 = 𝑎 
𝑎 . 𝑎 = 𝑎 

Complement 
𝑎 + 𝑎 = 1 
𝑎 . 𝑎′ = 0 

Annulment 
𝑎. 0 =  0 
𝑎 + 1 = 1 

Double Negation 
(𝑎’)’ =  𝑎 

Absorptive 
𝑎 +  𝑎𝑏 =  𝑎 
𝑎(𝑎 + 𝑏)  =  𝑎 

Commutative 
𝑎 +  𝑏 =  𝑏 +  𝑎 

𝑎𝑏 =  𝑏𝑎 

Associative 
𝑎 + (𝑏 + 𝑐)  =  (𝑎 +  𝑏)  +  𝑐 

𝑎(𝑏𝑐)  =  (𝑎𝑏)𝑐 
de Morgan´s Theorem 

(𝑎 +  𝑏)’ =  𝑎’𝑏’ 
(𝑎𝑏)’ =  𝑎’ +  𝑏’ 

Distributive 
𝑎 + (𝑏𝑐)  =  (𝑎 + 𝑏)(𝑎 + 𝑐) 

𝑎(𝑏 + 𝑐)  =  (𝑎𝑏 +  𝑎𝑐) 
Table 1 Laws of Boolean Algebra 

 
Our computer’s processors are one of the examples of a 

complicated logic circuit, where these circuits are called the 
logic gate.  

 
Figure 1 Simplified illustration of computer system 

 
A computer must have at lease these three components in 

order to work: the power supply, Central Processing Unit 
(CPU), and memory. The Central Processing Unit (CPU), is 
usually called the brain of the computer, that is located on the 
motherboard. It is in the CPU that all calculations (arithmetic 
and logical operations), instructions decoding, and instructions 
execution. 

The Central Processing Unit (CPU) has three main 
components: (registers and caches), datapaths (ALU), and 
Control Units. The ALU handles all the arithmetic and logical 
calculations, whereas the Control Units handle the instructions 
from memory, and calls the ALU whenever any calculation is 
needed. Caches and registers are small memory that saves 
information/instructions as the CPU can access them at a much 
higher speed rate than to access the hardware. These 
components of a CPU that were once separated are now 
constructed as an all-in-one microprocessor. 

A processor’s world is made of bits of 1 and 0, which is  
machine language instructions, so in order to do calculation, a 
processor must receive instructions through an electric 
current/signal, and change it into 0’s and 1’s using a switch-like 
component, that is a transistor, whereas a high voltage level, for 
example 2V or 5V (these voltages may vary), is translated into 
1’s and a voltage near 0 are translated as 0’s. Besides storing 
inputs of 0’s and 1’s, transistors are also capable of controlling 
the electric current flow. The key of calculation and decision 
making of a microprocessor are held by these transistors, 
implemented in logic gates. Therefore, logic gates are basically 
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circuits that manipulates the electric current that flows through 
it. This is where Boolean Algebra comes in, the study of 
manipulating various logic gates in order to make some smart 
computations, for example: addition and subtraction. 

 
II.  LOGIC GATES 

 [2, pp 3.1] Logic gates are the basic element that makes up 
digital system. A logic gate is a device that performs logical 
operations on one or more binary inputs, that is 0’s or 1’s, and 
outputs one binary input in exchange (with the exception of 
some special cases where the output is more than just one). 
Logic gates are an absolute necessity for computation and 
decision making, they use only boolean operations to solve 
problems (for example: addition, subtraction, negation of binary 
digits).   

There are 3 basic boolean functions in logic gates: AND, OR, 
NOT. There is also XOR which is a very useful boolean 
function. There are also popular combinations of the basic 
boolean functions: NAND, NOR, and XNOR. 

 
a. AND gate 
 The AND gate produces an output of 1 (high) if all of the 
inputs are 1, otherwise it will output a 0 (low). 
 

 
Figure 2.1 AND gate 

 
 
 
 
 

 
 

Table 2.1 Truth table of AND gate 
 

b. OR gate 
The OR gate produces an output of 0 (low) if any of the 
inputs (just one or more) are high. It will only output 0 (low) 
if all the outputs are also 0. 

 
Figure 2.2 OR gate 

 
 
 
 
 
 
 

Table 2.2 Truth table of OR gate 
 

c. NOT gate 
The NOT gate is an inverter gate, meaning it will output a 
1 (high) if the input is 0 (low), and will output 0 (low) if the 
input is 1 (high). The NOT gate accepts only one input. 

 

 
 
    Figure 2.3 NOT gate           Table 2.3 Truth table of NOT gate  

  
 
d. NAND gate 
The NAND gate is a NOT-AND gate, it yields an output 
that is the opposite of the AND gate (an inverted output 
from AND gate). The NAND gate only accepts two or more 
inputs. 
 

 
Figure 2.4 NAND gate 

 
 
 
 
 
 
 

Table 2.4 Truth table of NAND gate 
 

e. NOR gate 
The NOR gate is a NOT-OR gate, it yields an output that is 
the opposite of the OR output (an inverted output from OR 
gate). 

 
Figure 2.5 NOR gate 

 
 
 
 
 
 

 
Table 2.5 Truth table of NOR gate 

 
f. XOR gate 
The XOR gate is Exclusive Or gate, in the case of 2 inputs, 
it produces an output of 1 if one of the inputs are 1. If both 
of the inputs are 1, it will produce a 0. 

 
Figure 2.6 XOR gate 

 
 
 
 
 
 

Table 2.6 Truth table of XOR gate 

A B Z 
1 1 1 
1 0 0 
0 1 0 
0 0 0 

A Z 
1 1 
0 0 

A B Z 
1 1 1 
1 0 1 
0 1 1 
0 0 0 

A Z 
1 1 
0 0 

A Z 
1 0 
0 1 

A B Z 
1 1 0 
1 0 1 
0 1 1 
0 0 1 

A Z 
1 0 
0 1 

A B Z 
1 1 0 
1 0 0 
0 1 0 
0 0 1 

A Z 
1 0 
0 1 

A Z 
1 0 
0 1 

A B Z 
1 1 0 
1 0 1 
0 1 1 
0 0 0 
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g. XNOR gate 
The XOR gate is a combination of NOT and XOR 
gate, it inverts the output of the XOR gate. It 
produces 1 (high) if both of the inputs have the same 
value, else it produces a 0 (low). 

 
 
 
 

Figure 2.8 XNOR gate 
 
 
 

 
 
 

Table 2.8 Truth table of XNOR gate 
 

III.   APPLICATIONS 

There are a huge number of logic gates applications: 
arithmetic calculator, digits display, automatic shutdown circuit, 
used for making combinatorial circuits, a three-way light switch, 
flow directors, or anything that depends on “switches” to make 
the desired output. There are also more practical applications for 
logic gates. For example, the one installed in every house: the 
doorbell. The doorbell circuit needs the logic gate OR in case of 
multiple doorbells in one house (for example: one doorbell for 
the front door, one for the back door, etc.) so that when the front 
door bell and the back doorbell are pressed at the same time or 
a short time after the other was just pressed, the output stays as 
1 (high) and it will ring. This circuit will also make it ring for if 
only one of the doorbells are pressed due to the logic gate OR. 

 

 
Figure 3.1 Illustration for the use of logic gate in doorbells 

 
Logic gates are crucial in ALU (Arithmetic Logic Unit) in the 

CPU. Examples of the logic gates used in ALU are multiplexors, 
bitwise AND gate, bitwise OR gate, adders, subtractors, 
overflow output, negative output, and zero output. The 
multiplexors are for choosing inputs based on the control line. 
The bitwise gates have many useful applications, for example 
the AND is to calculate an IP network's identity. The adders and 
subtractors, as the names suggest, is used to do calculations of 
addition and subtraction of binary digits.  

The discussion and the details of ALU logic gates in this 
paper will be limited to only adders and subtractors and showing 
the boolean algebra applications in it. The half-adder is one of 
the simple yet most important part of arithmetic computation. 
The half-adder can do simple addition of two single-digit 
binaries. 
Here are some examples of single binary digit addition: 

0 + 0 = 0  
0 + 1 = 1 
1 + 0 = 1 

1 + 1 = 10 
The 1+1 yielded a two-digit binary output (10), so a circuit that 
outputs two digits is needed in this case. In other words, addition 
of two bits will be done when the instruction says addition of 
two numbers whereas both numbers only consist of one digit. 
The half-adder consists only of a XOR and an AND gate, where 
the output is 1 bit for each. [2, pp. 4.3 – 4.4] The AND gate will 
output CARRY that will hold the higher significant byte, 
whereas the XOR gate will output SUM, that is the least 
significant byte. 
 

Below is an illustration of how the logic gates are used in the 
half-adder. 

 
Figure 3.2 Logic diagram of half-adder 

 
The half-adder receives 2 inputs (A and B), that represents the 
digits that needs to be added and outputs two values, sum and 
carry value. The XOR and the AND gate are connected to both 
A and B. Using the XOR output as the SUM, and the AND gates 
as the CARRY, we get: 
 

A B CARRY SUM 
0 0 0 0 
0 1 0 1 
1 0 0 1 
1 1 1 0 
Table 3.1 Truth Table of half-adder 

 
The CARRY acts as the most significant bit of the two-digit 
output in half-adders, so the table shows that 

0 + 0 = 00 
0 + 1 = 01 
1 + 0 = 01 
1 + 1 = 10 

for the SUM, the boolean expression is: 
 𝑆 =  𝐴 ⊕  𝐵 
while for the CARRY, it is: 
 𝐶 =  𝐴 . 𝐵 

However, there is a limitation of using half-adders that is the 
half-adder only works for addition of single bits (it cannot do 
additions like 11+11). This is because the half-adder has room 
of input for only 2 bits, whereas to do addition of, for example, 
4-digit inputs, 3 bits of inputs are needed: two for the binary 
digits, and one for the carry-out from the digit before them. Here 
are some examples of addition of 4 bits: 

0000 + 0001 = 0001 
1100 + 1000 = 10100 
1111 + 1111 = 11110 

In the case of half-adder, there is no consideration for carry-outs, 
therefore, a more complex circuit is needed. The full-adder was 
made exactly for this purpose. [4] A full-adder is a combinatorial 

A B Z 
1 1 1 
1 0 0 
0 1 0 
0 0 1 

A Z 
1 0 
0 1 
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circuit that forms the arithmetic sum of three input bits. The full-
adder is more or less the combination of two half-adders, and an 
OR gate. It can do addition for 1 or more number of bits. Below 
is the illustration of the full-adder circuit. 
 

 
 

Figure 3.3 Logic diagram of half-adder 
 

Understanding the full-adder may not be as simple as 
understanding the half-adder. There is an OR gate that receives 
input from two AND gates, it is the one that will give the final 
COUT. The full-adder treats input A and B the same way as the 
half-adder does, but there is an input for carry-outs in full-adders 
(CIN), which will affect the SUM and also COUT. The third 
input CIN, represents the carry from the previous lower 
significant position. The truth table for the full-adders is shown 
as below: 

A B CIN COUT SUM 
0 0 0 0 0 
0 0 1 0 1 
0 1 0 0 1 
0 1 1 1 0 

1 0 0 0 1 
1 0 1 1 0 
1 1 0 1 0 

1 1 1 1 1 
Table 3.2 Truth Table of full-adder 

 
For the SUM in full-adder, it is 
 𝑆 = (𝐴 ⊕ 𝐵) ⊕ 𝐶𝑖𝑛 
and for the COUT: 
 𝐶𝑜𝑢𝑡 = (𝐴 ⊕ 𝐵). 𝐶𝑖𝑛 + (𝐴. 𝐵) 

But unlike the half-adder where the COUT is used directly as 
the most significant bit, the COUT of the full-adder will be used 
as CIN for the addition of the next digit until the last digit, where 
the resulting value size will be plus one bit more than the size of 
the inputs, like the half-adder (1+1 actually means addition of 
two bits). 

Take 11+10 for an example of addition using full-adder. The 
rightmost bit of 11 and 10 will be the first A and B accordingly, 
with the CIN being 0. 

Input: 
A 1 
B 0 
CIN 0 

Output: 
COUT 0 
SUM 1 

 
Next, we take the second bit from the left out of the two 

inputs. We then take the COUT from the step before, which is 
0, and save it as CIN for this next step. 

Input: 
A 1 
B 1 
CIN 0 

Output: 
COUT 1 
SUM 0 

 
Now the two binary numbers have been calculated, but 11+10 

is 101, so far, the results yielded a 01. Though there is COUT 
with the value of 1 in the step before. Thus, that is why the true 
output digit count has to be 1 bit more than the inputs, so that 
there are no COUTs left uncalculated. For example, if the input 
is a 2 bit, then the output must be a 3 bit. For the final step, the 
next A and B will be 0s, because the numbers have been 
calculated. Using the last COUT as CIN, we then continue. 

Input: 
A 0 
B 0 
CIN 1 

Output: 
COUT 0 
SUM 1 

The final answer of 11+10 is now 101.  
 

The subtractor in processors, instead of producing SUM and 
CARRY, it instead produces DIFFERENCE and BORROW. 
Like in adders, there are Half-Subtractors and Full-Subtractors. 
[3, pp. 240-242] A Half-Subtractor is a combinatorial circuit that 
can be used to subtract one binary digit from another to produce 
a DIFFERENCE output and a BORROW output. 
DIFFERENCE has the value of 1 if the A and the B has a 
difference of 1, whereas BORROW indicates whether the 
minuend needs borrowing because it is smaller than the 
subtrahend.  

 
Figure 3.4 minuend and subtrahend 

 
Here are some examples of very simple single binary digit 
subtraction: 

0 – 0 = 0 
1 – 1 = 0 
1 – 0 = 1 

The subtraction above are cases of simple subtractions with no 
borrowing, so they are rather simple to do. A case of subtraction 
with borrows are when the subtrahend is smaller than the 
minuend, like: 0 – 1 (0 is the minuend, 1 is the subtrahend). Like 
how we do 31 – 8 = 23, the 1 in “31” borrows a 10 from 3 in 
“31” in order to be subtracted to 8, and the 3 becomes a 2, thus 
the answer is 28. This method is the same with binary numbers, 
but instead of a 10, a binary number borrows a 1 (meaning 2 in 
decimals). 
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Figure 3.5 Illustration of subtraction using borrows 

 
The logic diagram of the half-subtractor and the truth table is 

shown below: 

 
Figure 3.6 Logic diagram of half-subtractor 

 
 
 
 
 
 

Table 3.3 Truth table of half-subtractor 
 

The boolean expression for the DIFFERENCE is: 
 𝐷 =  𝐴 ⊕  𝐵 

whereas for the BORROW, it is: 
 𝐵 = �̅� . 𝐵 
The half-subtractor only works for subtractions of one digit 

since it cannot receive inputs of borrow-ins from the previous 
digit. [3, pp. 242] The full-subtractor performs subtraction 
operation on two bits, a minuend and a subtrahend, and also 
takes into considering whether a ‘1’ has already been borrowed 
by the previous adjacent lower minuend bit or not. The full-
subtractor considers the borrows from the digit before and uses 
it as input “Borrow In”. Like how the full-adders are made by 
two half-adders, the full-subtractor is also made of two half-
subtractors.  
 

 
Figure 3.7 logic diagram of full-subtractor 

 
A B Bin Bout D 
0 0 0 0 0 
0 0 1 1 1 
0 1 0 1 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 0 0 
1 1 0 0 0 
1 1 1 1 1 

Table 3.4 Truth Table of full-subtractor 
 

The Bin is used to store if there are any borrows from the 
digit before, the value depends on the Bout on the previous 

subtraction of the same number. Take figure 3.3 for example, 
the 3 in “31” has the Bin of 1 when it was subtracted by 0 in 
“08”. 
In Full-Subtractors, the boolean expression for Difference (D) 
is 

𝐷 = (𝐴 ⊕ 𝐵) ⊕ 𝐵  
Whereas for the Bout the boolean expression is 

𝐵 = �̅� . 𝐵 + 𝐵  
In order to show how the full-subtractor works and prove it, 

take 101-10 as a case for this example (translated to decimal, 
5-2 = 3). 

 
Figure 3.7 Illustration of binary subtraction 

 
 First, the A and B should be the least significant bit of the 

binary numbers, that is 1 and 0 respectively. The Bin will be a 
0 since there are no Bout saved yet 

 input 
A 1 
B 0 
Bin 0 

 
output 

Bout 0 
D 1 

Next the A and B take a step towards the next binary digit. 
The Bout is used as the Bin for this next step   

input 
A 0 
B 1 
Bin 0 

output 
Bout 1 
D 1 

Because 0 – 1 is subtraction where the 0 needs borrowing, 
the Bout is now a 1. Then we take another step with the Bout 
used as the next Bin. 

input 
A 1 
B 0 
Bin 1 

output 
Bout 0 
D 0 

Thus, the final answer of the subtraction of 101-10 is now 
011. 
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