
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

Simple Algorithm to Generate Random Number

Based on Image

Steve Andreas Immanuel - 13517039

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13517039@std.stei.itb.ac.id

Abstract—Randomness is widely used in real life more than we

realize. In science, art, some simple experiments, and more

importantly computer simulation, cryptography. Computer

simulation uses random number to make sure that the simulation

is really applicable and the result really holds up to what happen

in real life. In cryptography, one of the application of random

number is to generate random password that is safe and secured.

Therefore, such algorithm is required to generate random number

that is not just seem random, but really random. This paper shows

one of the simple algorithm that can be used to generate such

random number

Keywords—Random number, computer simulation,

cryptography, algorithm.

I. INTRODUCTION

Randomness is something that we cannot predict, contains no

patterns or regularities whatsoever. One of the main usage of

randomness lies in random number. As said before, random

number can be very useful in computer simulation and

cryptography. In real life, to generate random number, we can

simply ask several people to choose a number from a certain

range. The result should be totally random. However, in

computer, we can’t really do such think. To achieve totally

random number, computer usually has predetermined function

which is used. That predetermined function makes the result of

random number not totally random, in fact hackers can detect

the pattern rather easily. All they need to do is get some number

samples and then their cracking algorithm can show them the

predetermined function.

Dealing with these kind of problems, many cyber security

company try to develop such algorithm that the randomness

cannot be detected. There are two kind of random number that

computer can generate. One is pseudo-random number and the

other is true random number.

II. BASIC THEORY

One of the main application of number theory in discrete

mathematics is to generate random number. As mentioned

before, there are two kind of random number. They are pseudo-

random number and true random number. Pseudo-random

number can be generated using pseudo-random number

generator whereas true random number can be generated using

true random generator.

A. Pseudo-random Number Generator

Also known as deterministic random bit generator, pseudo-

random number generator is a program written for, and used in,

probability and statistics applications when large quantities of

random digits are needed [4]. Pseudo-random generator works

based on certain predetermined function and seeds. Seeds are

value that is also predetermined in order to generate the number

using the predetermined function. The weakness of this kind of

generator is that you will get the same random number every

time you give the same input, thus the number generated is not

totally random.

One of the simplest algorithm for pseudo-random number

generator is called linear congruential generator (LCG). Linear

congruential generators use this formula:

𝑟𝑛+1 = (𝑎 𝑥 𝑟𝑛 + 𝑐) 𝑚𝑜𝑑 𝑚

Where:

 r0 is a seed.

 r1, r2, r3, r4, r5, ..., are the generated random

numbers.

 a, c, m are predetermined constants.

Fig. 1 Linear Congruential Generator (LCG)

Source:

http://www.wikiwand.com/en/Linear_congruential_generator

As shown above the linear congruential generator needs a seed

and some constant predetermined in order to generate number.

This makes the rn and rn+1 has certain connectivity with one

another. Hence, anyone who knows the formula would easily

predict the resulted generated number. That is the reason why

this kind of algorithm is called pseudo-random number

generator, because the result is not totally random.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

B. True Random Number Generator

True randomness is impossible to be achieved by any kind of

Turing Machines in theory [5]. That is why in order to generate

true random generator, additional hardware is required by the

computer to access an external source which the result then

processed to generate such randomness.

Without the external source, all computer does is merely

deterministic. As shown in the previous section, pseudo-random

number generator needs predetermined function and

predetermined seed in order to work.

The external source for the true random number generator

could be anything. The more random the better.

One example of an external source is mouse movement.

Based on a study [2], mouse movement could be a great source

to generate random number. The background for the use of

mouse movement is that it is cheap, considerably fast, and users

don’t need to buy additional hardware to make it work. Fig. 2

shows the tracked mouse movement done by several users.

(a) (b)

 (c)

Fig. 2 Images Modeling Mouse Movements

(a) first image of user A (b) first image of user B (c) first image

of user C [2]

The resulted tracked movement is then processed through

several steps and then can be used to generate random number.

Another great example of external source is images of lava

lamp. The movement part of lava lamp is truly random that we

cannot predict, which is why it is so great to extract the

randomness.

Fig. 3 Lava Lamp

Source: https://blog.cloudflare.com/randomness-101-

lavarand-in-production/

Another example of external source is physical phenomena

such as thermal noise, atmospheric noise, radioactive decay,

even coin-tossing or dice-tossing. [2]

Fig. 4 Coin Tossing and Dice Tossing

Source:

https://www2.palomar.edu/users/warmstrong/coinflip.htm

In this paper, the algorithm to generate random number is

very simple yet pretty effective. The main reason for the use of

image is that because all images are unique which is why it

makes sense to use it.

https://www2.palomar.edu/users/warmstrong/coinflip.htm

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

III. IMPLEMENTATION OF THE ALGORITHM

A. The Way it Works

The algorithm that the author develops is simply extract the

RGB from each pixel of an image, then develop such random

sequence of number which then processed.

The fact that the value of a pixel is based on the color of the

image makes it pretty random and it will differ from one image

to another. Fig. 5 shows the visualization of how the

algorithm works.

Fig. 5 Visualization of The Algorithm

Source: author’s document

All of the pixel values are then appended into a long number

sequence. To generate random number from this sequence, nine

consecutive numbers will be selected and processed. The reason

why the author take only nine numbers is considering the size of

an integer is only up to 231-1 (10 digits).

B. The Algorithm

The algorithm is developed using python 3.7.0. Using the

Python Imaging Library (PIL), the program then extracts all the

image value of an image. Below is the pseudo-code.

from PIL import Image

def removerepeated(X):

 loop=True

 while(loop):

 changed=X

 for i in range(0,10):

 if (i==0):

 changed=changed.replace('000000000','')

 else:

 changed=changed.replace(str(i*111111111)

,'')

 if(changed==X):

 loop=False

 else:

 X=changed

 return changed

filename =

'F53402_FW18_fvqz_abisko_view_2_21.jpg'

image = Image.open(filename)

allpix=list(image.getdata())

sequenceseries=''

for i in range(0,len(allpix)):

 modthree=i%3

 sequenceseries+=str(allpix[i][modthree])

sequenceseries=removerepeated(sequenceseries)

print(sequenceseries)

First, the program will open the desired image. Then, it

extracts all the pixel value from the image and put them to a list

called allpix. Because each pixel contains three value (Red,

Green, and Blue), each element of allpix will then contains

three values as shown in Fig. 5. The program will iterate for

every value in the list and take the pixel value based on modulo

three (to increase the randomness). The value taken is then

appended to a string variable called sequenceseries. When

the iteration has finished, sequenceseries would become a

very long string of random number sequence that depends on the

image size. The final step is to remove any unwanted repeated

number. Repeated number could exist when certain area of the

image contains only one or two colors.

Fig. 6 shows the image that the author use to generate random

number.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

Fig. 6 Sample Image That is Used

Source: https://www.fjallraven.com/shop/fjallraven-abisko-

view-2-F53402/

From the image in Fig. 6, the program will generate sequence

of random number that is shown in Fig. 7.

Fig. 7 The Sequence of Number Generated from Fig. 6

Source: author’s document

The resulted number is truly random as it doesn’t depend on

any predetermined function or seed.

But this very long sequence of number is not what we wanted

to have. So in order to generate number from certain range, the

author use algorithm below.

i=0

userinput=1

randomnumber=[]

while (i+9<len(sequenceseries)):

 randomnumber.append(int(sequenceseries[i:i+9]

))

 i+=9

i=0

while(userinput!=3):

 userinput=int(input('1. Generate Number\n2.

Test Result\n3. Exit\n'))

 if(userinput==1):

 low=int(input('Insert lowest number :

'))

 high=int(input('Insert highest number

: '))

 if(i<len(randomnumber)):

 generated=randomnumber[i]
 generated%=(high-low+1)

 generated+=low

 print('Generated number :

',generated)

 i+=1

 else:

 print('All sequence has been

used, please use new image.')

 elif(userinput==2):

 low=int(input('Insert lowest number :

'))

 high=int(input('Insert highest number

: '))

 result=[]

 for j in range(1,1001):

 generated=randomnumber[i]

 generated%=(high-low+1)

 generated+=low

 i+=1

 result.append(generated)

 for j in range(low,high+1):

 print(j,' :

',result.count(j),'\n')

Using the algorithm above, the author can generate random

number in a certain range and test the result.

IV. EXPERIMENT AND ANALYSIS

A. Experiment

The author tested the developed algorithm to check the

randomness of the resulted generated number. At first glance,

the resulted number seems to be truly random, but upon further

examination there are some regularities in the resulted number.

To test the randomness that is generated, the author generates

one thousand random number in certain range and then count

how many times each number appears in the result.

The algorithm to do so is also provided in the previous

algorithm. From the result, a graph is made to show whether the

distribution of number generated even or not. The X-axis

represents the number that is generated, whereas the Y-axis

represents the probability of the number generated to appear in

the result. If the distribution is even, the graph is expected to

form a straight horizontal line.

Fig. 8 shows the randomness test result in range 20 to 35.

From Fig. 8, even though it is not a straight horizontal line, it

shows a pretty decent distribution of the generated number.

https://www.fjallraven.com/shop/fjallraven-abisko-view-2-F53402/
https://www.fjallraven.com/shop/fjallraven-abisko-view-2-F53402/

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

Fig. 8 Graph Probability of Appearance of Numbers from 20

to 35 in the Generated Result

Source: author’s document

However, problem arises when the program is used to

generate number in a big range. For instance, when the program

is used to generate number from range 1000 to 5000, there are

certain regularities that occurs.

As shown in Fig. 9, certain numbers are prone to appear more

than another number. The graph fluctuation shows that the

resulted generated number are not very random.

Fig. 9 Graph Probability of Appearance of Numbers from

1000 to 5000 in the Generated Result

Source: author’s document

B. Analysis

The algorithm gives some good results when generating

number in small range. This could be very useful as the

algorithm is very simple and easy to understand.

However, when the algorithm is used to generate number in

big range, the results are not very good. There are a lot of factors

that could make this happen. These are the main factor that the

author thinks could affect the result :

1. The Image Itself

The variety of color in image has direct effect to the result of

the program. This is because the program merely takes the pixel

value and processed them.

For instance, an image that consists of many different colors

will theoretically have a better result than an image that consists

of some colors.

2. The Color Distribution of the Image

This is almost the same as the previous reason. Even though

an image consists of many different color, if the same color

converges in certain area of the image, it will make the result

less random. This is why in the real complex algorithm, the

randomness of an image is not extracted from the pixel value.

Instead, it is extracted from the noise of the image, exposure,

and many other things. The reason is because a slight change in

those aspects have big impact in the result, thus can increase the

randomness.

3. The Algorithm to Generate Number

The way the author generates random number after acquiring

the sequence random number is simply doing a modulo

operation to the number. The base of the modulo is the highest

range minus the lowest range plus one. This will create certain

regularities because the base of the modulo of certain range can

be the same as another range.

For example, when generating number from range 1 to 5, the

base of the modulo will be 5 (5-1+1). When generating number

from range 101 to 105, the base of the modulo will also be 5

(105-101+1).

The program also has some other weaknesses. One of the

main one is the time execution. This is because when processing

image in big resolution (1920x1080, or higher), the iteration to

get all pixel value from the image will be repeated so many

times. The sample image that is used is also very important in

this algorithm. To get the best result, it is recommended to use

image that has a lot of color variety.

V. CONCLUSION

In conclusion, the algorithm to generate random number that

is introduced in this paper is quiet powerful when dealing with

small data range. However, the algorithm is not very effective

when being used to generate data in big range. For further

development, it is best to use not only the pixel value of image

but also the noise, exposure, and so on in order to generate true

random number.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 10 20 30 40

Generated Number From 20 to 25

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0 1000 2000 3000 4000 5000 6000

Generated Number
From 1000 to 5000

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

VII. ACKNOWLEDGMENT

Praise to God Almighty, for the presence of His mercy and

grace, so that the author has the chance to create and complete

this paper. The author would also like to thank Dr. Judhi Santoso

as the author’s lecturer in IF2120 Discrete Mathematics class for

his guidance and knowledge that has been given. Last but not

least, the author would like to thank all family members and

friends for their support in making this paper.

REFERENCES

[1] Rongzhong Li. A True Random Number Generator Algorithm Using
Digital Camera Image Noises Under Varying Lighting Conditions.

WakeSpace [Online]. Available from :

https://wakespace.lib.wfu.edu/bitstream/handle/10339/62642/Li_wfu_024
8M_10943.pdf [Accessed 8th December 2018]

[2] Qing Zhou, Xiaofeng Liao, Kwok-wo Wong, Yue Hu. A True Random
Number Generator Based on Mouse Movement and Chaotic Cryptography.

ResaearchGate [Online]. Available from :

https://www.researchgate.net/publication/222856978_A_true_random_nu
mber_generator_based_on_mouse_movement_and_chaotic_cryptography

[Accessed 7th December 2018]

[3] https://rosettacode.org/wiki/Linear_congruential_generator [Accessed 8th
December 2018]

[4] https://whatis.techtarget.com/definition/pseudo-random-number-

generator-PRNG [Accessed 8th December 2018]
[5] https://cs.stackexchange.com/questions/7729/how-can-it-be-detected-that-

a-number-generator-is-not-really-random [Accessed 8th December 2018]

[6] https://lemire.me/blog/2017/08/22/cracking-random-number-generators-
xoroshiro128/ [Accessed 8th December 2018]

[7] https://crypto.stackexchange.com/questions/43115/how-can-i-extract-

randomness-from-a-jpeg-file [Accessed 8th December 2018]
[8] P. Murali, R. Palraj. True Random Number Generator Method Based on

Image for Key Exchange Algorithm. Available from :

https://pdfs.semanticscholar.org/f623/539dd7905e54935e3215686f9856ec
544f5c.pdf [Accessed 8th December 2018]

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 9 Desember 2018

Steve Andreas Immanuel - 13517039

https://wakespace.lib.wfu.edu/bitstream/handle/10339/62642/Li_wfu_0248M_10943.pdf
https://wakespace.lib.wfu.edu/bitstream/handle/10339/62642/Li_wfu_0248M_10943.pdf
https://www.researchgate.net/publication/222856978_A_true_random_number_generator_based_on_mouse_movement_and_chaotic_cryptography
https://www.researchgate.net/publication/222856978_A_true_random_number_generator_based_on_mouse_movement_and_chaotic_cryptography
https://rosettacode.org/wiki/Linear_congruential_generator
https://whatis.techtarget.com/definition/pseudo-random-number-generator-PRNG
https://whatis.techtarget.com/definition/pseudo-random-number-generator-PRNG
https://cs.stackexchange.com/questions/7729/how-can-it-be-detected-that-a-number-generator-is-not-really-random
https://cs.stackexchange.com/questions/7729/how-can-it-be-detected-that-a-number-generator-is-not-really-random
https://lemire.me/blog/2017/08/22/cracking-random-number-generators-xoroshiro128/
https://lemire.me/blog/2017/08/22/cracking-random-number-generators-xoroshiro128/
https://crypto.stackexchange.com/questions/43115/how-can-i-extract-randomness-from-a-jpeg-file
https://crypto.stackexchange.com/questions/43115/how-can-i-extract-randomness-from-a-jpeg-file
https://pdfs.semanticscholar.org/f623/539dd7905e54935e3215686f9856ec544f5c.pdf
https://pdfs.semanticscholar.org/f623/539dd7905e54935e3215686f9856ec544f5c.pdf

