Simple Algorithm to Generate Random Number
Based on Image

Steve Andreas Immanuel - 13517039
Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, JI. Ganesha 10 Bandung 40132, Indonesia
13517039@std.stei.itb.ac.id

Abstract—Randomness is widely used in real life more than we
realize. In science, art, some simple experiments, and more
importantly computer simulation, cryptography. Computer
simulation uses random number to make sure that the simulation
is really applicable and the result really holds up to what happen
in real life. In cryptography, one of the application of random
number is to generate random password that is safe and secured.
Therefore, such algorithm is required to generate random number
that is not just seem random, but really random. This paper shows
one of the simple algorithm that can be used to generate such
random number

Keywords—Random number, simulation,

cryptography, algorithm.

computer

[. INTRODUCTION

Randomness is something that we cannot predict, contains no
patterns or regularities whatsoever. One of the main usage of
randomness lies in random number. As said before, random
number can be very useful in computer simulation and
cryptography. In real life, to generate random number, we can
simply ask several people to choose a number from a certain
range. The result should be totally random. However, in
computer, we can’t really do such think. To achieve totally
random number, computer usually has predetermined function
which is used. That predetermined function makes the result of
random number not totally random, in fact hackers can detect
the pattern rather easily. All they need to do is get some number
samples and then their cracking algorithm can show them the
predetermined function.

Dealing with these kind of problems, many cyber security
company try to develop such algorithm that the randomness
cannot be detected. There are two kind of random number that
computer can generate. One is pseudo-random number and the
other is true random number.

II. BASIC THEORY

One of the main application of number theory in discrete
mathematics is to generate random number. As mentioned
before, there are two kind of random number. They are pseudo-
random number and true random number. Pseudo-random
number can be generated using pseudo-random number
generator whereas true random number can be generated using
true random generator.

Makalah IF2120 Matematika Diskrit — Sem. | Tahun 2018/2019

A. Pseudo-random Number Generator

Also known as deterministic random bit generator, pseudo-
random number generator is a program written for, and used in,
probability and statistics applications when large quantities of
random digits are needed (. Pseudo-random generator works
based on certain predetermined function and seeds. Seeds are
value that is also predetermined in order to generate the number
using the predetermined function. The weakness of this kind of
generator is that you will get the same random number every
time you give the same input, thus the number generated is not
totally random.

One of the simplest algorithm for pseudo-random number
generator is called linear congruential generator (LCG). Linear
congruential generators use this formula:

The1 = (@x 1, +c) mod m
Where:
e rpisaseed.
. l1, r2, I3, I4 Ts,
numbers.
e 3, c, mare predetermined constants.

..., are the generated random

m=29 SO/D g Yo g Yy 1 -‘fa‘_.~°1 s Y1 EO}/(D
a7 2 17 W@ L3 7 g 2 Q) 2 T4 2T 2
a=2, 3 8 3 6 ER a\Jaa’asga
c=0 5 5 4 5 5 (4 5 4 54
seed =1 ouput2 oulput4 output8 output7 ouiputs oulputl
0 0 0
m=9, ’ ' 2 7 . 27 " 2
a=2 . g s%
c=0 5 4 5 47 75 4
seed =3 oulput6 output3
s @y 50 s P s "1 et @1 @
m=9 ; S
a-a' 2 7 27 M2 7 27 L2 RN 2 2
6 3.6 36 38 0 6 38 < 3 @EF 3
c=1 5 1 5 4 ° 4 5 5 (1 5 4
seed =0 ouputl oulput5 output3 output4 oulput8 oulpute
Fig. 1 Linear Congruential Generator (LCG)
Source:

http://www.wikiwand.com/en/Linear_congruential_generator

As shown above the linear congruential generator needs a seed
and some constant predetermined in order to generate number.
This makes the r, and rn+«1 has certain connectivity with one
another. Hence, anyone who knows the formula would easily
predict the resulted generated number. That is the reason why
this kind of algorithm is called pseudo-random number
generator, because the result is not totally random.

B. True Random Number Generator

True randomness is impossible to be achieved by any kind of
Turing Machines in theory . That is why in order to generate
true random generator, additional hardware is required by the
computer to access an external source which the result then
processed to generate such randomness.

Without the external source, all computer does is merely
deterministic. As shown in the previous section, pseudo-random
number generator needs predetermined function and
predetermined seed in order to work.

The external source for the true random number generator
could be anything. The more random the better.

One example of an external source is mouse movement.
Based on a study [, mouse movement could be a great source
to generate random number. The background for the use of
mouse movement is that it is cheap, considerably fast, and users
don’t need to buy additional hardware to make it work. Fig. 2
shows the tracked mouse movement done by several users.

(©

Fig. 2 Images Modeling Mouse Movements
(a) first image of user A (b) first image of user B (c) first image
of user C @

The resulted tracked movement is then processed through
several steps and then can be used to generate random number.

Another great example of external source is images of lava
lamp. The movement part of lava lamp is truly random that we
cannot predict, which is why it is so great to extract the
randomness.

Makalah 1F2120 Matematika Diskrit — Sem. | Tahun 2018/2019

Fig. 3 Lava Lamb
Source: https://blog.cloudflare.com/randomness-101-
lavarand-in-production/

Another example of external source is physical phenomena
such as thermal noise, atmospheric noise, radioactive decay,
even coin-tossing or dice-tossing. @

Fig. 4 Coin Tossing and Dice Tossing
Source:
https://www2.palomar.edu/users/warmstrong/coinflip.htm

In this paper, the algorithm to generate random number is
very simple yet pretty effective. The main reason for the use of
image is that because all images are unique which is why it
makes sense to use it.

https://www2.palomar.edu/users/warmstrong/coinflip.htm

1I. IMPLEMENTATION OF THE ALGORITHM

A. The Way it Works

The algorithm that the author develops is simply extract the
RGB from each pixel of an image, then develop such random
sequence of number which then processed.

The fact that the value of a pixel is based on the color of the
image makes it pretty random and it will differ from one image
to another. Fig. 5 shows the visualization of how the
algorithm works.

120|137 | 44 (120 | 44| 56 | 44 |120 | 78

289| 56 |120 | 56 (120| 78 | 137|120 | 44

137289120 | 44 | 44 | 137|120 78 | 289

v Resulted List

120 120 44 289 56 137 137 L 120
137 7 44 4 120 |y, 56 4 120 |y 120 |7 289 1 44 1 78
44 56 78 120 78 44 120 137 289

Resulted Number

12044782891204413744289

Fig. 5 Visualization of The Algorithm
Source: author’s document

All of the pixel values are then appended into a long number
sequence. To generate random number from this sequence, nine
consecutive numbers will be selected and processed. The reason
why the author take only nine numbers is considering the size of
an integer is only up to 23!-1 (10 digits).

Makalah IF2120 Matematika Diskrit — Sem. | Tahun 2018/2019

B. The Algorithm

The algorithm is developed using python 3.7.0. Using the
Python Imaging Library (PIL), the program then extracts all the
image value of an image. Below is the pseudo-code.

from PIL import Image

def removerepeated(X) :
loop=True
while (loop) :
changed=X
for i in range(0,10):
if (i==0):

changed=changed.replace('000000000"," ")
else:

changed=changed.replace(str(i*111111111)
)
if (changed==X) :
loop=False
else:
X=changed
return changed

filename =
'F53402 FW18 fvgz abisko view 2 21.jpg'
image = Image.open(filename)

allpix=list(image.getdata())

sequenceseries=""

for i in range(0,len(allpix)):
modthree=i%3

sequenceseries+=str(allpix[i] [modthree])

sequenceseries=removerepeated(sequenceseries)
print (sequenceseries)

First, the program will open the desired image. Then, it
extracts all the pixel value from the image and put them to a list
called a11pix. Because each pixel contains three value (Red,
Green, and Blue), each element of a11pix will then contains
three values as shown in Fig. 5. The program will iterate for
every value in the list and take the pixel value based on modulo
three (to increase the randomness). The value taken is then
appended to a string variable called sequenceseries. When
the iteration has finished, sequenceseries would become a
very long string of random number sequence that depends on the
image size. The final step is to remove any unwanted repeated
number. Repeated number could exist when certain area of the
image contains only one or two colors.

Fig. 6 shows the image that the author use to generate random
number.

i. 6 Sample Image That is Used
Source: https://www.fjallraven.com/shop/fjallraven-abisko-
view-2-F53402/

From the image in Fig. 6, the program will generate sequence
of random number that is shown in Fig. 7.

@8 Cormmand Prompt - python imageprocess.py - o X
679@358785521017525127184575943057834110010449794314110137361 g
1910928636537617287146116731811701191581456111089391101002811
4160741611381563595290459921146271772861562187615286370496216
5593508767153622172873964856980444373414776644775735613213170
1401405275110345680367964165386717266974610103134801421233170
7096988418888106559353602360702339380788132055591951307713110
9591048155111501579945170684310058277977639588491231448210169
2810372176374501481042779674286592498521176985491784871473897
7930908422798607051275101208289561011088312710248101765475022
9411460115630655905252583740312305830664413014214010415811054
6220118014811616917251115835264685443352552757622663594389852
6989243961033428191340462034362463715410187325653215790328183
2061671513416357899733103111567986671331574372560323962154143
6674773052807113710306994181121132189115721126518555038865230
6040175565347856191121658791640183038433212386114141411201045
9125864911882471311176710075439259066119114171109146179231541
5280104713011210640961326211810245858780110653789520243215728
1541351104511810972186168681001105811396651038282945931515439

Fig. 7 The Sequence of Number Generated from Fig. 6
Source: author’s document

The resulted number is truly random as it doesn’t depend on
any predetermined function or seed.

But this very long sequence of number is not what we wanted
to have. So in order to generate number from certain range, the
author use algorithm below.

generated=randomnumber [1i]
generated%$=(high-low+1)

generated+=low
print ('Generated number
' ,generated)

i+=1
else:
print('All sequence has been
used, please use new image.')
elif (userinput==2):
low=int (input (' Insert lowest number
"))
high=int (input('Insert highest number
"))
result=[]

for j in range(1,1001):
generated=randomnumber [i]
generated%$=(high-low+1)
generated+=low
i+=1
result.append (generated)
for j in range(low,high+l):
print(j,
',result.count(j),'\n'")

i=0
userinput=1
randomnumber=[]
while (i+9<len(sequenceseries)):
randomnumber.append (int (sequenceseries[i:1i49]
))
i+=9

i=0
while (userinput!=3):
userinput=int (input ('1.
Test Result\n3. Exit\n'))
if (userinput==1):
low=int (input ('Insert lowest

Generate Number\n2.

number
"))
high=int (input ('Insert highest number
"))

if (i<len(randomnumber)) :

Makalah IF2120 Matematika Diskrit — Sem. | Tahun 2018/2019

Using the algorithm above, the author can generate random
number in a certain range and test the result.

IV. EXPERIMENT AND ANALYSIS

A. Experiment

The author tested the developed algorithm to check the
randomness of the resulted generated number. At first glance,
the resulted number seems to be truly random, but upon further
examination there are some regularities in the resulted number.
To test the randomness that is generated, the author generates
one thousand random number in certain range and then count
how many times each number appears in the result.

The algorithm to do so is also provided in the previous
algorithm. From the result, a graph is made to show whether the
distribution of number generated even or not. The X-axis
represents the number that is generated, whereas the Y-axis
represents the probability of the number generated to appear in
the result. If the distribution is even, the graph is expected to
form a straight horizontal line.

Fig. 8 shows the randomness test result in range 20 to 35.
From Fig. 8, even though it is not a straight horizontal line, it
shows a pretty decent distribution of the generated number.

https://www.fjallraven.com/shop/fjallraven-abisko-view-2-F53402/
https://www.fjallraven.com/shop/fjallraven-abisko-view-2-F53402/

Generated Number From 20 to 25
0.1
0.09 ®
0.08 { J
0.07 C‘
0.06 e o & ©
0.05 ®
0.04
0.03 { J
0.02

0.01

0 10 20 30 40

Fig. 8 Graph Probability of Appearance of Numbers from 20
to 35 in the Generated Result
Source: author’s document

However, problem arises when the program is used to
generate number in a big range. For instance, when the program
is used to generate number from range 1000 to 5000, there are
certain regularities that occurs.

As shown in Fig. 9, certain numbers are prone to appear more
than another number. The graph fluctuation shows that the
resulted generated number are not very random.

Generated Number
From 1000 to 5000

0.016
o []
0.014
®
0.012 ®
[]
0.01 o O o @
[] [_J (_J
0.008 ® ® o O
® 0 ® o
0.006 o O O
® ® o o o
0.004 a O & ¢ o e o
oOGE O ® o
0.002 D O @b CIDED ¢ ¢ GIID D
.]
0 G
0 1000 2000 3000 4000 5000 6000

Fig. 9 Graph Probability of Appearance of Numbers from
1000 to 5000 in the Generated Result
Source: author’s document

Makalah IF2120 Matematika Diskrit — Sem. | Tahun 2018/2019

B. Analysis

The algorithm gives some good results when generating
number in small range. This could be very useful as the
algorithm is very simple and easy to understand.

However, when the algorithm is used to generate number in
big range, the results are not very good. There are a lot of factors
that could make this happen. These are the main factor that the
author thinks could affect the result :

1. The Image Itself

The variety of color in image has direct effect to the result of
the program. This is because the program merely takes the pixel
value and processed them.

For instance, an image that consists of many different colors
will theoretically have a better result than an image that consists
of some colors.

2. The Color Distribution of the Image

This is almost the same as the previous reason. Even though
an image consists of many different color, if the same color
converges in certain area of the image, it will make the result
less random. This is why in the real complex algorithm, the
randomness of an image is not extracted from the pixel value.
Instead, it is extracted from the noise of the image, exposure,
and many other things. The reason is because a slight change in
those aspects have big impact in the result, thus can increase the
randomness.

3. The Algorithm to Generate Number

The way the author generates random number after acquiring
the sequence random number is simply doing a modulo
operation to the number. The base of the modulo is the highest
range minus the lowest range plus one. This will create certain
regularities because the base of the modulo of certain range can
be the same as another range.

For example, when generating number from range 1 to 5, the
base of the modulo will be 5 (5-1+1). When generating number
from range 101 to 105, the base of the modulo will also be 5
(105-101+1).

The program also has some other weaknesses. One of the
main one is the time execution. This is because when processing
image in big resolution (1920x1080, or higher), the iteration to
get all pixel value from the image will be repeated so many
times. The sample image that is used is also very important in
this algorithm. To get the best result, it is recommended to use
image that has a lot of color variety.

V. CONCLUSION

In conclusion, the algorithm to generate random number that
is introduced in this paper is quiet powerful when dealing with
small data range. However, the algorithm is not very effective
when being used to generate data in big range. For further
development, it is best to use not only the pixel value of image
but also the noise, exposure, and so on in order to generate true
random number.

VII. ACKNOWLEDGMENT

Praise to God Almighty, for the presence of His mercy and
grace, so that the author has the chance to create and complete
this paper. The author would also like to thank Dr. Judhi Santoso
as the author’s lecturer in IF2120 Discrete Mathematics class for
his guidance and knowledge that has been given. Last but not
least, the author would like to thank all family members and
friends for their support in making this paper.

REFERENCES

[1] Rongzhong Li. A True Random Number Generator Algorithm Using
Digital Camera Image Noises Under Varying Lighting Condltlons
WakeSpace [Online]. Available from
https://wakespace.lib.wfu.edu/bitstream/handle/10339/62642/Li_wfu 024
8M_10943.pdf [Accessed 8" December 2018]

[2] Qing Zhou, Xiaofeng Liao, Kwok-wo Wong, Yue Hu. A True Random

Number Generator Based on Mouse Movement and Chaotic Cryptography

ResaearchGate [Online]. Auvailable from

https://www.researchgate.net/publication/222856978_A_true_random_nu

mber_generator_based_on_mouse_movement_and_chaotic_cryptography

[Accessed 7" December 2018]

https://rosettacode.org/wiki/Linear_congruential_generator [Accessed 8"

December 2018]

[4] https://whatis.techtarget.com/definition/pseudo-random-number-
generator-PRNG [Accessed 8" December 2018]

[5] https://cs.stackexchange.com/questions/7729/how-can-it-be-detected-that-
a-number-generator-is-not-really-random [Accessed 8" December 2018]

[6] https://lemire.me/blog/2017/08/22/cracking-random-number-generators-
xoroshiro128/ [Accessed 8" December 2018]

[7] https://crypto.stackexchange.com/questions/43115/how-can-i-extract-
randomness-from-a-jpeg-file [Accessed 8" December 2018]

[8] P. Murali, R. Palraj. True Random Number Generator Method Based on
Image for Key Exchange Algorithm. Available from
https://pdfs.semanticscholar.org/f623/539dd7905e54935e3215686f9856ec
544f5¢.pdf [Accessed 8" December 2018]

[3

—

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 9 Desember 2018

Steve Andreas Immanuel - 13517039

Makalah IF2120 Matematika Diskrit — Sem. | Tahun 2018/2019

https://wakespace.lib.wfu.edu/bitstream/handle/10339/62642/Li_wfu_0248M_10943.pdf
https://wakespace.lib.wfu.edu/bitstream/handle/10339/62642/Li_wfu_0248M_10943.pdf
https://www.researchgate.net/publication/222856978_A_true_random_number_generator_based_on_mouse_movement_and_chaotic_cryptography
https://www.researchgate.net/publication/222856978_A_true_random_number_generator_based_on_mouse_movement_and_chaotic_cryptography
https://rosettacode.org/wiki/Linear_congruential_generator
https://whatis.techtarget.com/definition/pseudo-random-number-generator-PRNG
https://whatis.techtarget.com/definition/pseudo-random-number-generator-PRNG
https://cs.stackexchange.com/questions/7729/how-can-it-be-detected-that-a-number-generator-is-not-really-random
https://cs.stackexchange.com/questions/7729/how-can-it-be-detected-that-a-number-generator-is-not-really-random
https://lemire.me/blog/2017/08/22/cracking-random-number-generators-xoroshiro128/
https://lemire.me/blog/2017/08/22/cracking-random-number-generators-xoroshiro128/
https://crypto.stackexchange.com/questions/43115/how-can-i-extract-randomness-from-a-jpeg-file
https://crypto.stackexchange.com/questions/43115/how-can-i-extract-randomness-from-a-jpeg-file
https://pdfs.semanticscholar.org/f623/539dd7905e54935e3215686f9856ec544f5c.pdf
https://pdfs.semanticscholar.org/f623/539dd7905e54935e3215686f9856ec544f5c.pdf

