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Abstract—Fibonacci numbers have peculiar relationship with 

combinatorics, i.e. they represent the sum of “shallow” diagonals 

in Pascal’s triangle. A well-known Fibonacci-number-finding 

formula involves the exponentiation of φ, the golden ratio, which is 

represented as a floating point in computers, thus affecting the 

accuracy. The (1, 2)-composition of an integer n in combinatorics 

is defined as a way of writing n as the sum of 1’s and 2’s that could 

be solved by the sum of a combination series. This paper discusses 

a better approach in finding 1-2 composition of an integer n-1 using 

matrix exponentiation algorithm to find nth Fibonacci number. 
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I.   INTRODUCTION 

Composition is one of the branches of combinatorics that is 

defined as a way of writing an integer n as the sum of a sequence 

of strictly positive integers. It is proven that any positive integer 

n has 2n-1 distinct compositions with the sequence consisting of 

numbers ranging from 1 to n. 

Unfortunately, it is much trickier to find the composition of a 

positive integer with the sequence consisting only of 1’s and 2’s 

— namely the (1, 2)-composition. A little approach would be 

finding the combinations of zero 2’s, one 2’s, and so forth, 

canonically representing the sum of “shallow” diagonals in 

Pascal’s triangle. 

On the other hand, Fibonacci numbers are strongly related to 

the golden ratio, φ, or 1.6180339887…, that strangely has 

interesting connection to the world we live in. The sum of 

shallow diagonals in Pascal’s triangle also has a connection to 

Fibonacci sequence, which will be discussed later in this paper. 

Much to our dismay, the well-known Fibonacci-number-

finding mathematical formula has the golden ratio in it — 

represented as a floating point in computers. With computers 

having a limit to their maximum memory allocation, φ can’t be 

represented by a floating point to the extent of an exact 

representation, as the golden ratio is an irrational number. 

Instead, to avoid the O(n) naïve approach in finding either the 

nth Fibonacci number or a dynamic programming approach in 

finding the number of (1, 2)-compositions, another approach of 

finding nth Fibonacci number via matrix multiplication to count 

the number of (1, 2)-compositions works better with the 

algorithm complexity of O(log n). 

 

II.  THEORY 

A. Combinations and Compositions 

A combination is the way in selecting a number of elements 

from a set, in such that the order of element does not matter. For 

example, between three colors: red, green, blue, the 

combinations of two from said set are red-green, red-blue, and 

green-blue. Formally, a k-combination of a set S is the subset of 

k distinct elements of S. The number of k-combinations is equal 

to binomial coefficient and can be written mathematically as 

(
𝑛
𝑘
) =

𝑛!

𝑘! (𝑛 − 𝑘)!
 

and has the identity 

(
𝑛 + 1
𝑘

) = (
𝑛
𝑘
) + (

𝑛
𝑘 − 1

) 

A k-multicombination defines a way in selecting a number of 

elements from a set with different kind of elements, where 

selecting duplicates count as different multicombination, i.e. the 

number of elements from each kind of elements can be assumed 

to be infinite, but disregarding different orderings (e.g. {1,1,2} 

= {2, 1, 1}). For example, if you have three types of donuts (n = 

3) to choose from and you want exactly two donuts (k = 2), the 

number of 2-multicombinations of 3 is 6. Formally the number 

of such k-multicombinations is denoted by 

((
𝑛
𝑘
)) = (

𝑛 + 𝑘 − 1
𝑘

) 

A composition of integer n defines a way of writing n as the 

sum of positive integers. As composition differ by arrangement 

similar to permutation, two sequences with different order of 

numbers with same set of numbers define a different 

composition but are considered to be the same partition. The 

distinct compositions of any integer are finite, with negative 

integers having zero composition and 0 having one composition 

(i.e. the empty sequence). For example, the integer 4 has five 

compositions: 1+1+1+1, 1+1+2, 1+2+1, 2+1+1, and 2+2. 

A weak composition of n is defined similar to composition, 

with the restricting numbers that make the sum of their sequence 

is n is non-negative. That is, the weak composition of an integer 

could be consisting of zero elements. Incidentally, the number 

of weak compositions of an integer is infinite. Succeeding 

zeroes at the end of a weak composition sequence is usually not 

considered, thus a weak composition can implicitly be defined 

as having infinite number of zeroes at the end of the sequence. 
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Formally, an A(-restricted)-composition of n defines a way of 

writing n as a sequence of numbers consisting of the elements 

of A.[1] Henceforth, a (1, 2)-composition of n is the composition 

of n with the sequence consisting only of x where x ∈ (1, 2). For 

example, the integer 5 has eight (1, 2)-compositions: 

1+1+1+1+1, 1+1+1+2, 1+1+2+1, 1+2+1+1, 2+1+1+1, 1+2+2, 

2+1+2, and 2+2+1. 

By convention, 0 has the number of compositions 1: the 

empty composition. Negative numbers have zero composition. 

For any n where n ≥ 1, there are 2n-1 distinct compositions of n. 

The proof is quite straightforward: 

Assume there is a line of n numbers of 1’s where between two 

adjacent 1’s is a box that can be placed with either a plus sign or 

a comma. 

(1 □ 1 □ 1 □ 1…  □ 1 □ 1⏟              
𝑛

) 

For example, if n is 6, one of the possible compositions is 

1+2+3, that can be represented in the box-comma instance as (1, 

1+1, 1+1+1). As there are n-1 number of boxes and the possible 

values of each box is either one of the 2, the number of 

compositions of n is 2n-1. 

 

B. Algorithmic Complexity 

In computer science, an algorithm is defined as a set of 

operations or rules for the computer to execute in solving a 

problem. The efficiency of an algorithm depends on its 

complexity, that is synonymous to the metric of an algorithm 

process. Algorithmic complexity spans to time complexity and 

space complexity. 

Time complexity is the amount of time needed by the 

algorithm to complete the set of rules in respect to the time-

factor parameters, commonly estimated by counting how many 

elementary operations are being performed. Time complexity is 

usually depicted as either worst-case complexity, i.e. the worst 

possible time that is affected by a certain time-factor parameter 

input, and the average-case complexity, which is the average of 

time taken on a given size parameter input. Time complexity can 

be expressed explicitly as T(n), the exact operations being 

performed for a specific parameter n, or the big-O notation, 

O(n), that focuses on the asymptotic behavior of the complexity, 

i.e. when n is nearing infinity. Henceforth, a T((n+3)2 + 7n) 

complexity would only be depicted as O(n2) by the big-O. 

Space complexity, on the other hand, is the amount of space 

or memory allocation needed by the algorithm to perform the 

operations. It can be expressed explicitly as S(n) or asymptoticly 

as O(n), similar to time complexity. 

 

C. Recursion and Induction 

Recursion is a phenomenon when a thing being defined is 

applied to its own definition by any form. In computer science 

or generally mathematics, a function or object will formally be 

classified as having recursive behavior if it has 1) a simple base 

case or a terminating case where it does not exhibit a recursion, 

i.e. the function call stops and returns a value when the 

parameter is within the base case, and 2) set of rules, in a way 

that the function will call itself by any form, where the parameter 

is getting closer to the base case. 

A classic example of recursive behavior in a computer 

program is the factorial function, which is defined and written 

in C++ as 

 
int Factorial (int n) { 

 if (n == 0) return 1; 

 else return n * Factorial (n - 1); 

}  

 

Above piece of code satisfies the recursion formal definition, 

as it possesses the base case that is defined when n is equal to 0 

and the set of rules that calls the function itself (Factorial) with 

the parameter getting closer to the base case (n-1), thus is 

classified as exhibiting recursive behavior. 

A common algorithm strategy namely divide-and-conquer 

also usually exhibits recursive behavior. The idea is to simplify 

the problem and divide it into varying subproblems, then solve 

the smaller problems using a recursive rule by calling itself. The 

base case is defined when the problem has become small enough 

to be handled the fastest, hence the algorithm will stop dividing 

the problem into subproblems and instead return a value. 

For example, an efficient integer exponentiation algorithm 

applies divide-and-conquer, recursive strategy to yield an 

effective time complexity of O(log n) where n is the exponent, 

written in C++ as follows 

 
int Power (int x, int n) { 

 if (n == 0) return 1; 

 if (n == 1) return x; 

 int sub = Power (x, n/2); 

 return sub * sub * Power (x, n%2); 

}  

 

Moreover, by recursive behavior analysis, we can prove a 

property P(n) holds for every number n, if a finite number of n 

has been proven as the base case and the recursive behavior 

proves the next n for P(n). This proof technique is called the 

mathematical induction, where the first step requires the base 

case proving that the property holds for a certain number, and 

the induction step proving that if the property holds for one 

natural number n, then it holds for n+1, practically proving that 

it works for all n where n is greater or equal to the base case. 

Metaphorically speaking, induction is proving that we can 

climb the ladder as high as we can, as long as we can climb onto 

the bottom rung, the base case, and for each rung we can then 

climb to the rung exactly above the rung we’re on, the step.[2] 

 

D. Fibonacci Numbers 

Fibonacci numbers, denoted as 𝐹𝑛, are numbers exhibiting 

recursive behavior that form a sequence, Fibonacci sequence, 

where each number is the sum of two previous numbers in the 

same sequence, starting from 0 at the zeroth index and 1 for the 

first index. Fibonacci number can also be formally expressed as 

The base case, 

𝐹0 = 0, 𝐹1 = 1  
And the recursive rule, 

𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 
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As such, the beginning of the sequence is thus, 

(0, ) 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, … 

Fibonacci numbers appear unexpectedly frequently in 

mathematics and have a strong connection to the golden ratio, 

φ, such that there exists a formula for finding the nth Fibonacci 

number expressed in terms of n and the golden ratio, and implies 

that the ratio of two consecutive Fibonacci tends to the golden 

ratio when n is nearing infinity, namely Binet’s formula: 

 

𝐹𝑛 =
𝜑𝑛 − 𝛹𝑛

𝜑 − 𝛹
 

𝑤ℎ𝑒𝑟𝑒 𝜑 =
1 + √5

2
≈ 1.6180339887… 

𝑎𝑛𝑑 𝛹 =
1 − √5

2
= −

1

𝜑
≈ −0.6180339887… 

 

E. Matrices 

Matrix is a form of depicting a two-dimensional array of 

numbers, symbols, or expressions, usually written in box 

brackets or parentheses. A matrix has the number of row and 

column identity, i.e. an n x m matrix denotes a two-dimensional 

array with n rows and m columns. The element of a matrix M 

can be referred as mij, where i is the row index and j is the 

column index. For example, below is a 2 x 3 matrix A whose 

element aij equals to i + j. 

 

𝑨 = (
𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23

) = (
2 3 4
3 4 5

) 

 

Basic operations of matrices include addition, scalar 

multiplication, transposition, matrix multiplication, row 

operations, and submatrix obtaining. Here, we focus on matrix 

multiplication. 

Matrix multiplication is a binary or two-parameter operation 

in such a way that for an n x m matrix A and an m x p matrix B 

being multiplied (order matters), the resulted product is an n x p 

matrix AB where each entry of AB is the summation of the m 

entries across a row of A that are multiplied with the m entries 

down a column of B. 

Or more formally, the definition of matrix multiplication is 

that if A is an n x m matrix and B is an m x p matrix, 

 

𝑨 = (

𝑎11 ⋯ 𝑎1𝑚
⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑚

) , 𝑩 = (

𝑏11 ⋯ 𝑏1𝑝
⋮ ⋱ ⋮
𝑏𝑚1 ⋯ 𝑏𝑚𝑝

) 

 

then the matrix product C = AB is defined as an n x p matrix: 

 

𝑪 = (

𝑐11 ⋯ 𝑐1𝑝
⋮ ⋱ ⋮
𝑐𝑛1 ⋯ 𝑐𝑛𝑝

) 

such that 

𝑐𝑖𝑗 = 𝑎𝑖1𝑏1𝑗 +⋯+ 𝑎𝑖𝑚𝑏𝑚𝑗 =∑𝑎𝑖𝑘𝑏𝑘𝑗

𝑚

𝑘=1

 

𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑛 𝑎𝑛𝑑 𝑗 = 1, 2, … , 𝑝 

 

 

III.  (1, 2)-COMPOSITION AND FIBONACCI NUMBERS 

It is a bit trickier to count the number of (1, 2)-compositions 

of n instead of the number of general compositions of n. To start 

with, we can divide the (1, 2)-compositions of n into n - k cases 

as multicombinations using the stars-and-bars representation: 

the first case, (𝑛
0
) is defining the number of (1, 2) compositions 

of n where it consists of zero 2’s, the second case, (𝑛−1
1
) is 

defining the number of (1, 2)-compositions of n where it consists 

of one 2’s, and so on until the last case, (𝑛−𝑘
𝑘
) is defining the 

number of compositions of n where it consists of k 2’s. Hence, 

k is the floor of n/2 as there is no composition of n where the 

number of 2’s exceeds k/2. 

Henceforth, the function that returns the number of (1, 2)-

compositions of n can be expressed formally as 

𝑓𝑛 = (
𝑛

0
) + (

𝑛 − 1

1
) +⋯+ (

𝑛 − 𝑘

𝑘
) 

𝑤ℎ𝑒𝑟𝑒 𝑘 =  ⌊ 
𝑛

2
 ⌋ 

or sophisticatedly, 

𝑓𝑛 =∑(
𝑛 − 𝑘

𝑘
)

⌊ 
𝑛
2
 ⌋

𝑘=0

 

Furthermore, we elaborate the connection between Fibonacci 

sequence to the sum of shallow diagonals in Pascal’s triangle 

that can be figured as follows 

 

Figure 1. Fibonacci sequence and Pascal’s triangle. 

 

Now, we have the premise that the sum of shallow lesser 

diagonals with row index n in Pascal’s triangle is the n+1th 

Fibonacci number[3], which is formally described as, and we 

want to show that  

𝑓𝑛 =∑(
𝑛 − 𝑘

𝑘
)

⌊ 
𝑛
2
 ⌋

𝑘=0

= 𝐹𝑛+1 

The easiest way to prove something Fibonacci-sequence-

related is probably to use induction theory. The proof is simpler 

if we include the terms where k is greater than n - k, i.e. 

𝑓𝑛 =∑(
𝑛 − 𝑘

𝑘
)

𝑛

𝑘=0

= 𝐹𝑛+1 

and where n – k < k, the terms hold zero. 

For the base cases, we can easily verify that 

𝑓0 =∑(
0 − 𝑘

𝑘
)

0

𝑘=0

= (
0
0
) = 1 = 𝐹1 
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𝑓1 =∑(
1 − 𝑘

𝑘
)

0

𝑘=0

= (
1
0
) = 1 = 𝐹2 

(0! = 1, therefore (0
0
) = (1

0
) = 1) 

For the recursive behavior, it is satisfied that 

𝑓𝑛 + 𝑓𝑛+1 =∑(
𝑛 − 𝑘

𝑘
)

𝑛

𝑘=0

+∑(
𝑛 + 1 − 𝑘

𝑘
)

𝑛+1

𝑘=0

 

by changing the left sum index k ↦ k – 1 we got 

∑(
𝑛 + 1 − 𝑘

𝑘 − 1
)

𝑛+1

𝑘=1

+∑(
𝑛 + 1 − 𝑘

𝑘
)

𝑛+1

𝑘=0

 

pulling out the k = 0 term from the right sum we got 

∑(
𝑛 + 1 − 𝑘

𝑘 − 1
)

𝑛+1

𝑘=1

+ (
𝑛 + 1 − 0

0
) +∑(

𝑛 + 1 − 𝑘

𝑘
)

𝑛+1

𝑘=1

 

= 1 +∑(
𝑛 + 1 − 𝑘

𝑘 − 1
)

𝑛+1

𝑘=1

+∑(
𝑛 + 1 − 𝑘

𝑘
)

𝑛+1

𝑘=1

 

using the combination property (𝑛 + 1
𝑘
) = (

𝑛
𝑘
) + (

𝑛
𝑘 − 1

) we got 

1 +∑(
𝑛 + 2 − 𝑘

𝑘
)

𝑛+1

𝑘=1

−∑(
𝑛 + 1 − 𝑘

𝑘
)

𝑛+1

𝑘=1

+∑(
𝑛 + 1 − 𝑘

𝑘
)

𝑛+1

𝑘=1

 

= 1 +∑(
𝑛 + 2 − 𝑘

𝑘
) = (

𝑛 + 2 − 0

0
) +∑(

𝑛 + 2 − 𝑘

𝑘
)

𝑛+1

𝑘=1

𝑛+1

𝑘=1

 

= ∑(
𝑛 + 2 − 𝑘

𝑘
) = 𝑓𝑛+2 = 𝑓𝑛 + 𝑓𝑛+1

𝑛+1

𝑘=0

 

thus completing the proof. 

 

Trivially, another proof showing that fn = Fn+1 using logical 

analysis on the recursive behavior is that we can describe the 

problem into a conjecture that defines as: if fn is the number of 

(1, 2)-compositions of n, then we can conduct premises and 

recursive function behavior as follows: 

• For n = 0, the only possible (1, 2)-composition is the empty 

composition. Thus, f0 = 1. 

• For n = 1, the only possible (1, 2)-composition is 1. Thus, 

f1 = 1. 

• For n > 1, we can either take a 1 as the first composition 

element such that the remaining n will be n – 1 or take 2 

such that the remaining n will be n – 2. This way, we deduce 

that fn = fn-1 + fn-2. 

• As fn holds the recursive property of Fn, which is gn where 

gn = gn-1 + gn-2, and with f0 having the same value as F1 and 

f1 having the same value as F2, we can safely conclude that 

fn = Fn+1. 

 

 

IV.  FASTER FIBONACCI ALGORITHMS 

As we have found out that the number of (1, 2)-compositions 

of n, fn is equals to the Fibonacci sequence Fn+1, we now shall 

conduct a deeper analysis on finding the most efficient and 

accurate algorithm to be executed on computer programs. We 

will begin by analyzing the crudest, brute-force algorithm, to the 

most efficient, divide-and-conquer matrix-Fibonacci algorithm, 

and show how each of the algorithm perform in terms of their 

respective algorithmic (i.e. time and space) complexity and 

perhaps return value accuracy. 

A. Naïve Algorithm 

Let’s begin by going with the formal definition of Fibonacci, 

where F0 = 0, F1 = 1, and Fn = Fn-1 + Fn-2. Henceforth, there is a 

naïve approach for a computer program written in C++ to find 

the nth Fibonacci number using a recursive function that exactly 

tells the properties of a Fibonacci sequence as-is, which is 

 
int SlowF (int n) { 

 if (n == 0) return 0; 

 if (n == 1) return 1; 

 return SlowF (n - 1) + SlowF (n - 2); 

} 

 

With a little analysis, we can deduce that each of the function 

call will call another two of itself, with the parameter being 

passed is the number preceding the current parameter (i.e. n – 1 

and n – 2) and ends only when the parameter input hits 0 or 1. 

By this means, SlowF(n) will call SlowF(n – 1) and SlowF(n – 

2), and for each of the SlowF’s being called, it will call another 

two SlowF’s. Henceforth, the time complexity of this algorithm 

is T(n) = T(n - 1) + T(n - 2), or in big-O notation, O(2n) as it 

keeps multiplying by two until the base case that is being 

reduced by one at a time, i.e. the exponential time complexity. 

 

 
Figure 2. Every increase in n means approximately a double 

increase in time for SlowF(n) function calls. 

 

As for the space complexity, seemingly not much is different. 

With each function call being stored in the function stack, the 

memory allocation for every SlowF function being called is 

probably also O(2n). But this might not be that simple, as the 

recursive calls are not computed in the same time, but 

sequentially. That means that SlowF(n – 2) will only compute 

after SlowF(n – 1). Hence, even though we create 2n recursive 

calls, only n will be active at a time, meaning that the function 

stack space complexity of this algorithm is O(n) at the worst. 

 

B. Bottom-Up Dynamic Programming 

The next faster algorithm we can consider is using memorized 

brute-force, i.e. the dynamic programming. Implementation is 

quite simple, there will be a while-do loop that stores the value 

of cur (Fidx), b1 (Fidx-1), b2 (Fidx-2), and idx: 
 

int DpF (int n) { 

 if (n == 0) return 0; 

 int b2, b1 = 0, cur = 1, index = 1; 

 while (index < n) { 

  b2 = b1; b1 = cur; 

  cur = b1 + b2; index++; 

 } 

 return cur; 

} 
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The difference between bottom-up and top-down dynamic 

programming is that top-down is practically the SlowF 

algorithm with the addition of a memo, i.e. an array to store the 

value of Fn that has been calculated and returns that value 

instead of the function definition if the value is not NULL 

(undefined) thus increasing the memory allocation by O(n), 

while bottom-up finds the value of Fn from the bottom, F1, thus 

is able to throw away the value of unneeded Fn-3, Fn-4, and so 

forth. 

As we can see, there is only a while-do loop that runs 

depending on the n, i.e. T(n) = n – 1. Thus, for this algorithm, 

the complexity of DpF(n) is undoubtedly O(n) with a space 

complexity of O(1) as the memory allocation is constant. 

 

 
Figure 3. Every increase in n means approximately a linear 

increase in time for DpF(n) function calls. 

 

C. Binet’s Formula 

As Binet’s formula is a well-known formula in finding the nth 

Fibonacci number, a faster Fibonacci-finding algorithm, also 

written in C++, now arises:  
 

int BinetF (int n) { 

 float phi = (1 + sqrt(5))/2; 

 float res = pow(phi, n); 

 res -= pow((-1/phi), n); 

 res /= sqrt(5); 

 return int(res);  

} 

 

For this algorithm, the time complexity depends on how the 

pow function works in C++. As the pow function uses a divide-

and-conquer approach for the implementation (i.e. pow(a,b) = 

pow(a,b/2) * pow(a,b/2) * pow(a,b%2)), we can deduce that the 

time complexity of Binet’s Formula depicted as BinetF(n) is at 

average and at worst O(log n). 

The space complexity is pretty similar, by BinetF being called 

in parameter inputs of n, n/2, …, 0, the calls will be put into a 

function stack memory, which is O(log n) as the parameter 

keeps dividing by two until the base case, 0 or 1. 

Unfortunately, Binet’s Formula implementation in a 

computer program has a little caveat: as floating number is 

depicted in binary, where the mantissa and exponent are strictly 

producing the power of 2’s, it is physically impossible for an 

entity to act as the exact copy of φ, an irrational number.[4] As 

a result, the reduced time complexity comes with a cost of 

accuracy — something we must avoid at any cost. 

  

 

 
Figure 4. Inaccuracy for larger n in BinetF(n). 

 

D. Matrix Exponentiation 

There is a little trick in finding the nth Fibonacci number, or 

even generally back-calling recursive functions, by utilizing 

matrix exponentiation. The algorithm is quite straightforward, 

what drives it to efficiency the most is actually the mathematical 

theory behind recursive functions being depicted as matrices. 

For Fibonacci sequence, suppose we have these matrices 

𝑨 = (
1 1
1 0

) , 𝑭 = (
𝐹𝑛
𝐹𝑛−1

) 

if we perform AF, it will result as follows 

(
1 1
1 0

) (
𝐹𝑛
𝐹𝑛−1

) = (
𝐹𝑛 + 𝐹𝑛−1

𝐹𝑛
) = (

𝐹𝑛+1
𝐹𝑛
) 

if n equals to 1, then 

(
1 1
1 0

) (
𝐹1
𝐹0
) = (

𝐹2
𝐹1
) 

and if we multiply A to the left and the right side, then 

(
1 1
1 0

) (
1 1
1 0

) (
𝐹1
𝐹0
) = (

1 1
1 0

) (
𝐹2
𝐹1
) = (

𝐹3
𝐹2
) 

that means generally for a matrix exponentiation of An 

(
1 1
1 0

)
𝑛

(
𝐹1
𝐹0
) = (

𝐹𝑛+1
𝐹𝑛
) 

Going by this equation, we can implement an algorithm based 

on the properties of a matrix and divide-and-conquer strategy to 

find Fn with the efficiency and accuracy nearing perfect. To 

begin with, we will export the integer exponentiation at O(log 

n) to matrix exponentiation, as such the base cases of 

MatrixPow(M, n) will be defined as: 

• For n = 0, returns the identity matrix, I. 

• For n = 1, returns the matrix itself, M. 

• For n > 1, returns the MatrixPow(M, n/2) * MatrixPow(M, 

n/2) * MatrixPow(M, n%2) where % is the modulo 

operation. 

As such, the implementation of this algorithm is as follows 
 

#define ROW 2 

#define COL 2 

 

struct Matrix { 

  int Elmt[ROW][COL]; 

}; 

 

Matrix MatrixMul (Matrix M, Matrix N) { 

  Matrix R; 

  for (int i = 0; i < ROW; i++)  

    for (int j = 0; j < COL; j++) { 

      int sum = 0; 

      for (int k = 0; k < COL; k++) 

        sum += M.Elmt[i][k]*N.Elmt[k][j]; 

      R.Elmt[i][j] = sum; 

    } 

  return R; 

} 
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Matrix MatrixPow (Matrix M, int n) { 

  if (n == 0){ 

    Matrix Identity; 

    Identity.Elmt[0][0] = 1; 

    Identity.Elmt[0][1] = 0; 

    Identity.Elmt[1][0] = 0; 

    Identity.Elmt[1][1] = 1; 

    return Identity; 

  } 

  if (n == 1) return M; 

  Matrix sub = MatrixPow (M, n/2); 

  sub = MatrixMul(sub, sub); 

  sub = MatrixMul(MatrixPow(M, n%2), sub); 

  return sub; 

} 

 

int Fibonacci (int n){ 

  if (n == 0) return 0; 

  Matrix F; 

  F.Elmt[0][0] = 1; 

  F.Elmt[0][1] = 1; 

  F.Elmt[1][0] = 1; 

  F.Elmt[1][1] = 0; 

  F = MatrixPow (F, n); 

  return F.Elmt[1][0]; 

} 

 

As this algorithm behaves similar to the pow algorithm, with 

an addition of the constant O(1) matrix multiplication, the time 

complexity is T(n) = 1 + T(n/2), where T(1) = T(0) = 1. 

Henceforth, the algorithm runs in a logarithmic time, as such, 

the time complexity in the big-O notation is O(log n). The space 

complexity also is affected by the dynamically stored matrices 

which is allocated at O(log n) and the stack functions which is 

also allocated at O(log n), thus the space complexity in the big-

O notation is also O(log n). 

 

 
Figure 4. O(log n) time complexity, logarithmically related. 

 

 
Figure 5. Accuracy is not affected as it involves no floating 

point. The only limiter is the int size, which could be overcome 

by representing integers as strings or BigInts (Java). Note that 

above picture is implemented using long long instead of int. 

 

As such, the nth Fibonacci number can be found via matrix 

multiplication. And to count the number of (1, 2)-compositions 

of n, i.e. fn can be solved by finding Fn+1. 
 

 

V.   CONCLUSION 

Induction is a common mathematical proof technique that can 

be used in mainly to properties that exhibit recursive behaviors. 

The number of (1, 2)-compositions of n, i.e. ways n could be 

arranged with the sum of 1’s and 2’s where the order matters, or 

fn can be proven by induction to have the same value as the 

n+1th Fibonacci number, Fn+1. That is, 

𝑓𝑛 = 𝐹𝑛+1 

 

Divide-and-conquer strategy is one of the most efficient 

strategy in solving most of programming problems, as it reduces 

the algorithmic complexity to as low as logarithmic time 

complexity. Utilizing divide-and-conquer in matrix 

exponentiation helps reducing the Fibonacci-number-finding 

function without sacrificing the accuracy. Time complexity for 

the provided solution is at worst O(log n). 

 

 

VI.   APPENDIX 

Figure 1 is taken from RDBury’s image upload on Commons. 

All images shown after Figure 1 are taken personally by the 

author. The time calculation in microseconds is done in a 

machine with Intel i7-8550U processor, using chrono library 

coded in C++ and compiled using gcc version 6.3.0 (MinGW). 
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