
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

Fibonacci Sequence as Matrices: An Efficient

Strategy to Count (1, 2)-Compositions of an Integer

Asif Hummam Rais — 13517099

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

asif@students.itb.ac.id

Abstract—Fibonacci numbers have peculiar relationship with

combinatorics, i.e. they represent the sum of “shallow” diagonals

in Pascal’s triangle. A well-known Fibonacci-number-finding

formula involves the exponentiation of φ, the golden ratio, which is

represented as a floating point in computers, thus affecting the

accuracy. The (1, 2)-composition of an integer n in combinatorics

is defined as a way of writing n as the sum of 1’s and 2’s that could

be solved by the sum of a combination series. This paper discusses

a better approach in finding 1-2 composition of an integer n-1 using

matrix exponentiation algorithm to find nth Fibonacci number.

Keywords—composition, divide and conquer algorithm,

Fibonacci sequence, induction, recursion.

I. INTRODUCTION

Composition is one of the branches of combinatorics that is

defined as a way of writing an integer n as the sum of a sequence

of strictly positive integers. It is proven that any positive integer

n has 2n-1 distinct compositions with the sequence consisting of

numbers ranging from 1 to n.

Unfortunately, it is much trickier to find the composition of a

positive integer with the sequence consisting only of 1’s and 2’s

— namely the (1, 2)-composition. A little approach would be

finding the combinations of zero 2’s, one 2’s, and so forth,

canonically representing the sum of “shallow” diagonals in

Pascal’s triangle.

On the other hand, Fibonacci numbers are strongly related to

the golden ratio, φ, or 1.6180339887…, that strangely has

interesting connection to the world we live in. The sum of

shallow diagonals in Pascal’s triangle also has a connection to

Fibonacci sequence, which will be discussed later in this paper.

Much to our dismay, the well-known Fibonacci-number-

finding mathematical formula has the golden ratio in it —

represented as a floating point in computers. With computers

having a limit to their maximum memory allocation, φ can’t be

represented by a floating point to the extent of an exact

representation, as the golden ratio is an irrational number.

Instead, to avoid the O(n) naïve approach in finding either the

nth Fibonacci number or a dynamic programming approach in

finding the number of (1, 2)-compositions, another approach of

finding nth Fibonacci number via matrix multiplication to count

the number of (1, 2)-compositions works better with the

algorithm complexity of O(log n).

II. THEORY

A. Combinations and Compositions

A combination is the way in selecting a number of elements

from a set, in such that the order of element does not matter. For

example, between three colors: red, green, blue, the

combinations of two from said set are red-green, red-blue, and

green-blue. Formally, a k-combination of a set S is the subset of

k distinct elements of S. The number of k-combinations is equal

to binomial coefficient and can be written mathematically as

(
𝑛
𝑘
) =

𝑛!

𝑘! (𝑛 − 𝑘)!

and has the identity

(
𝑛 + 1
𝑘

) = (
𝑛
𝑘
) + (

𝑛
𝑘 − 1

)

A k-multicombination defines a way in selecting a number of

elements from a set with different kind of elements, where

selecting duplicates count as different multicombination, i.e. the

number of elements from each kind of elements can be assumed

to be infinite, but disregarding different orderings (e.g. {1,1,2}

= {2, 1, 1}). For example, if you have three types of donuts (n =

3) to choose from and you want exactly two donuts (k = 2), the

number of 2-multicombinations of 3 is 6. Formally the number

of such k-multicombinations is denoted by

((
𝑛
𝑘
)) = (

𝑛 + 𝑘 − 1
𝑘

)

A composition of integer n defines a way of writing n as the

sum of positive integers. As composition differ by arrangement

similar to permutation, two sequences with different order of

numbers with same set of numbers define a different

composition but are considered to be the same partition. The

distinct compositions of any integer are finite, with negative

integers having zero composition and 0 having one composition

(i.e. the empty sequence). For example, the integer 4 has five

compositions: 1+1+1+1, 1+1+2, 1+2+1, 2+1+1, and 2+2.

A weak composition of n is defined similar to composition,

with the restricting numbers that make the sum of their sequence

is n is non-negative. That is, the weak composition of an integer

could be consisting of zero elements. Incidentally, the number

of weak compositions of an integer is infinite. Succeeding

zeroes at the end of a weak composition sequence is usually not

considered, thus a weak composition can implicitly be defined

as having infinite number of zeroes at the end of the sequence.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

Formally, an A(-restricted)-composition of n defines a way of

writing n as a sequence of numbers consisting of the elements

of A.[1] Henceforth, a (1, 2)-composition of n is the composition

of n with the sequence consisting only of x where x ∈ (1, 2). For

example, the integer 5 has eight (1, 2)-compositions:

1+1+1+1+1, 1+1+1+2, 1+1+2+1, 1+2+1+1, 2+1+1+1, 1+2+2,

2+1+2, and 2+2+1.

By convention, 0 has the number of compositions 1: the

empty composition. Negative numbers have zero composition.

For any n where n ≥ 1, there are 2n-1 distinct compositions of n.

The proof is quite straightforward:

Assume there is a line of n numbers of 1’s where between two

adjacent 1’s is a box that can be placed with either a plus sign or

a comma.

(1 □ 1 □ 1 □ 1… □ 1 □ 1⏟
𝑛

)

For example, if n is 6, one of the possible compositions is

1+2+3, that can be represented in the box-comma instance as (1,

1+1, 1+1+1). As there are n-1 number of boxes and the possible

values of each box is either one of the 2, the number of

compositions of n is 2n-1.

B. Algorithmic Complexity

In computer science, an algorithm is defined as a set of

operations or rules for the computer to execute in solving a

problem. The efficiency of an algorithm depends on its

complexity, that is synonymous to the metric of an algorithm

process. Algorithmic complexity spans to time complexity and

space complexity.

Time complexity is the amount of time needed by the

algorithm to complete the set of rules in respect to the time-

factor parameters, commonly estimated by counting how many

elementary operations are being performed. Time complexity is

usually depicted as either worst-case complexity, i.e. the worst

possible time that is affected by a certain time-factor parameter

input, and the average-case complexity, which is the average of

time taken on a given size parameter input. Time complexity can

be expressed explicitly as T(n), the exact operations being

performed for a specific parameter n, or the big-O notation,

O(n), that focuses on the asymptotic behavior of the complexity,

i.e. when n is nearing infinity. Henceforth, a T((n+3)2 + 7n)

complexity would only be depicted as O(n2) by the big-O.

Space complexity, on the other hand, is the amount of space

or memory allocation needed by the algorithm to perform the

operations. It can be expressed explicitly as S(n) or asymptoticly

as O(n), similar to time complexity.

C. Recursion and Induction

Recursion is a phenomenon when a thing being defined is

applied to its own definition by any form. In computer science

or generally mathematics, a function or object will formally be

classified as having recursive behavior if it has 1) a simple base

case or a terminating case where it does not exhibit a recursion,

i.e. the function call stops and returns a value when the

parameter is within the base case, and 2) set of rules, in a way

that the function will call itself by any form, where the parameter

is getting closer to the base case.

A classic example of recursive behavior in a computer

program is the factorial function, which is defined and written

in C++ as

int Factorial (int n) {

 if (n == 0) return 1;

 else return n * Factorial (n - 1);

}

Above piece of code satisfies the recursion formal definition,

as it possesses the base case that is defined when n is equal to 0

and the set of rules that calls the function itself (Factorial) with

the parameter getting closer to the base case (n-1), thus is

classified as exhibiting recursive behavior.

A common algorithm strategy namely divide-and-conquer

also usually exhibits recursive behavior. The idea is to simplify

the problem and divide it into varying subproblems, then solve

the smaller problems using a recursive rule by calling itself. The

base case is defined when the problem has become small enough

to be handled the fastest, hence the algorithm will stop dividing

the problem into subproblems and instead return a value.

For example, an efficient integer exponentiation algorithm

applies divide-and-conquer, recursive strategy to yield an

effective time complexity of O(log n) where n is the exponent,

written in C++ as follows

int Power (int x, int n) {

 if (n == 0) return 1;

 if (n == 1) return x;

 int sub = Power (x, n/2);

 return sub * sub * Power (x, n%2);

}

Moreover, by recursive behavior analysis, we can prove a

property P(n) holds for every number n, if a finite number of n

has been proven as the base case and the recursive behavior

proves the next n for P(n). This proof technique is called the

mathematical induction, where the first step requires the base

case proving that the property holds for a certain number, and

the induction step proving that if the property holds for one

natural number n, then it holds for n+1, practically proving that

it works for all n where n is greater or equal to the base case.

Metaphorically speaking, induction is proving that we can

climb the ladder as high as we can, as long as we can climb onto

the bottom rung, the base case, and for each rung we can then

climb to the rung exactly above the rung we’re on, the step.[2]

D. Fibonacci Numbers

Fibonacci numbers, denoted as 𝐹𝑛, are numbers exhibiting

recursive behavior that form a sequence, Fibonacci sequence,

where each number is the sum of two previous numbers in the

same sequence, starting from 0 at the zeroth index and 1 for the

first index. Fibonacci number can also be formally expressed as

The base case,

𝐹0 = 0, 𝐹1 = 1
And the recursive rule,

𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

As such, the beginning of the sequence is thus,

(0,) 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …

Fibonacci numbers appear unexpectedly frequently in

mathematics and have a strong connection to the golden ratio,

φ, such that there exists a formula for finding the nth Fibonacci

number expressed in terms of n and the golden ratio, and implies

that the ratio of two consecutive Fibonacci tends to the golden

ratio when n is nearing infinity, namely Binet’s formula:

𝐹𝑛 =
𝜑𝑛 − 𝛹𝑛

𝜑 − 𝛹

𝑤ℎ𝑒𝑟𝑒 𝜑 =
1 + √5

2
≈ 1.6180339887…

𝑎𝑛𝑑 𝛹 =
1 − √5

2
= −

1

𝜑
≈ −0.6180339887…

E. Matrices

Matrix is a form of depicting a two-dimensional array of

numbers, symbols, or expressions, usually written in box

brackets or parentheses. A matrix has the number of row and

column identity, i.e. an n x m matrix denotes a two-dimensional

array with n rows and m columns. The element of a matrix M

can be referred as mij, where i is the row index and j is the

column index. For example, below is a 2 x 3 matrix A whose

element aij equals to i + j.

𝑨 = (
𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23

) = (
2 3 4
3 4 5

)

Basic operations of matrices include addition, scalar

multiplication, transposition, matrix multiplication, row

operations, and submatrix obtaining. Here, we focus on matrix

multiplication.

Matrix multiplication is a binary or two-parameter operation

in such a way that for an n x m matrix A and an m x p matrix B

being multiplied (order matters), the resulted product is an n x p

matrix AB where each entry of AB is the summation of the m

entries across a row of A that are multiplied with the m entries

down a column of B.

Or more formally, the definition of matrix multiplication is

that if A is an n x m matrix and B is an m x p matrix,

𝑨 = (

𝑎11 ⋯ 𝑎1𝑚
⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑚

) , 𝑩 = (

𝑏11 ⋯ 𝑏1𝑝
⋮ ⋱ ⋮
𝑏𝑚1 ⋯ 𝑏𝑚𝑝

)

then the matrix product C = AB is defined as an n x p matrix:

𝑪 = (

𝑐11 ⋯ 𝑐1𝑝
⋮ ⋱ ⋮
𝑐𝑛1 ⋯ 𝑐𝑛𝑝

)

such that

𝑐𝑖𝑗 = 𝑎𝑖1𝑏1𝑗 +⋯+ 𝑎𝑖𝑚𝑏𝑚𝑗 =∑𝑎𝑖𝑘𝑏𝑘𝑗

𝑚

𝑘=1

𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑛 𝑎𝑛𝑑 𝑗 = 1, 2, … , 𝑝

III. (1, 2)-COMPOSITION AND FIBONACCI NUMBERS

It is a bit trickier to count the number of (1, 2)-compositions

of n instead of the number of general compositions of n. To start

with, we can divide the (1, 2)-compositions of n into n - k cases

as multicombinations using the stars-and-bars representation:

the first case, (𝑛
0
) is defining the number of (1, 2) compositions

of n where it consists of zero 2’s, the second case, (𝑛−1
1
) is

defining the number of (1, 2)-compositions of n where it consists

of one 2’s, and so on until the last case, (𝑛−𝑘
𝑘
) is defining the

number of compositions of n where it consists of k 2’s. Hence,

k is the floor of n/2 as there is no composition of n where the

number of 2’s exceeds k/2.

Henceforth, the function that returns the number of (1, 2)-

compositions of n can be expressed formally as

𝑓𝑛 = (
𝑛

0
) + (

𝑛 − 1

1
) +⋯+ (

𝑛 − 𝑘

𝑘
)

𝑤ℎ𝑒𝑟𝑒 𝑘 = ⌊
𝑛

2
 ⌋

or sophisticatedly,

𝑓𝑛 =∑(
𝑛 − 𝑘

𝑘
)

⌊
𝑛
2
 ⌋

𝑘=0

Furthermore, we elaborate the connection between Fibonacci

sequence to the sum of shallow diagonals in Pascal’s triangle

that can be figured as follows

Figure 1. Fibonacci sequence and Pascal’s triangle.

Now, we have the premise that the sum of shallow lesser

diagonals with row index n in Pascal’s triangle is the n+1th

Fibonacci number[3], which is formally described as, and we

want to show that

𝑓𝑛 =∑(
𝑛 − 𝑘

𝑘
)

⌊
𝑛
2
 ⌋

𝑘=0

= 𝐹𝑛+1

The easiest way to prove something Fibonacci-sequence-

related is probably to use induction theory. The proof is simpler

if we include the terms where k is greater than n - k, i.e.

𝑓𝑛 =∑(
𝑛 − 𝑘

𝑘
)

𝑛

𝑘=0

= 𝐹𝑛+1

and where n – k < k, the terms hold zero.

For the base cases, we can easily verify that

𝑓0 =∑(
0 − 𝑘

𝑘
)

0

𝑘=0

= (
0
0
) = 1 = 𝐹1

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

𝑓1 =∑(
1 − 𝑘

𝑘
)

0

𝑘=0

= (
1
0
) = 1 = 𝐹2

(0! = 1, therefore (0
0
) = (1

0
) = 1)

For the recursive behavior, it is satisfied that

𝑓𝑛 + 𝑓𝑛+1 =∑(
𝑛 − 𝑘

𝑘
)

𝑛

𝑘=0

+∑(
𝑛 + 1 − 𝑘

𝑘
)

𝑛+1

𝑘=0

by changing the left sum index k ↦ k – 1 we got

∑(
𝑛 + 1 − 𝑘

𝑘 − 1
)

𝑛+1

𝑘=1

+∑(
𝑛 + 1 − 𝑘

𝑘
)

𝑛+1

𝑘=0

pulling out the k = 0 term from the right sum we got

∑(
𝑛 + 1 − 𝑘

𝑘 − 1
)

𝑛+1

𝑘=1

+ (
𝑛 + 1 − 0

0
) +∑(

𝑛 + 1 − 𝑘

𝑘
)

𝑛+1

𝑘=1

= 1 +∑(
𝑛 + 1 − 𝑘

𝑘 − 1
)

𝑛+1

𝑘=1

+∑(
𝑛 + 1 − 𝑘

𝑘
)

𝑛+1

𝑘=1

using the combination property (𝑛 + 1
𝑘
) = (

𝑛
𝑘
) + (

𝑛
𝑘 − 1

) we got

1 +∑(
𝑛 + 2 − 𝑘

𝑘
)

𝑛+1

𝑘=1

−∑(
𝑛 + 1 − 𝑘

𝑘
)

𝑛+1

𝑘=1

+∑(
𝑛 + 1 − 𝑘

𝑘
)

𝑛+1

𝑘=1

= 1 +∑(
𝑛 + 2 − 𝑘

𝑘
) = (

𝑛 + 2 − 0

0
) +∑(

𝑛 + 2 − 𝑘

𝑘
)

𝑛+1

𝑘=1

𝑛+1

𝑘=1

= ∑(
𝑛 + 2 − 𝑘

𝑘
) = 𝑓𝑛+2 = 𝑓𝑛 + 𝑓𝑛+1

𝑛+1

𝑘=0

thus completing the proof.

Trivially, another proof showing that fn = Fn+1 using logical

analysis on the recursive behavior is that we can describe the

problem into a conjecture that defines as: if fn is the number of

(1, 2)-compositions of n, then we can conduct premises and

recursive function behavior as follows:

• For n = 0, the only possible (1, 2)-composition is the empty

composition. Thus, f0 = 1.

• For n = 1, the only possible (1, 2)-composition is 1. Thus,

f1 = 1.

• For n > 1, we can either take a 1 as the first composition

element such that the remaining n will be n – 1 or take 2

such that the remaining n will be n – 2. This way, we deduce

that fn = fn-1 + fn-2.

• As fn holds the recursive property of Fn, which is gn where

gn = gn-1 + gn-2, and with f0 having the same value as F1 and

f1 having the same value as F2, we can safely conclude that

fn = Fn+1.

IV. FASTER FIBONACCI ALGORITHMS

As we have found out that the number of (1, 2)-compositions

of n, fn is equals to the Fibonacci sequence Fn+1, we now shall

conduct a deeper analysis on finding the most efficient and

accurate algorithm to be executed on computer programs. We

will begin by analyzing the crudest, brute-force algorithm, to the

most efficient, divide-and-conquer matrix-Fibonacci algorithm,

and show how each of the algorithm perform in terms of their

respective algorithmic (i.e. time and space) complexity and

perhaps return value accuracy.

A. Naïve Algorithm

Let’s begin by going with the formal definition of Fibonacci,

where F0 = 0, F1 = 1, and Fn = Fn-1 + Fn-2. Henceforth, there is a

naïve approach for a computer program written in C++ to find

the nth Fibonacci number using a recursive function that exactly

tells the properties of a Fibonacci sequence as-is, which is

int SlowF (int n) {

 if (n == 0) return 0;

 if (n == 1) return 1;

 return SlowF (n - 1) + SlowF (n - 2);

}

With a little analysis, we can deduce that each of the function

call will call another two of itself, with the parameter being

passed is the number preceding the current parameter (i.e. n – 1

and n – 2) and ends only when the parameter input hits 0 or 1.

By this means, SlowF(n) will call SlowF(n – 1) and SlowF(n –

2), and for each of the SlowF’s being called, it will call another

two SlowF’s. Henceforth, the time complexity of this algorithm

is T(n) = T(n - 1) + T(n - 2), or in big-O notation, O(2n) as it

keeps multiplying by two until the base case that is being

reduced by one at a time, i.e. the exponential time complexity.

Figure 2. Every increase in n means approximately a double

increase in time for SlowF(n) function calls.

As for the space complexity, seemingly not much is different.

With each function call being stored in the function stack, the

memory allocation for every SlowF function being called is

probably also O(2n). But this might not be that simple, as the

recursive calls are not computed in the same time, but

sequentially. That means that SlowF(n – 2) will only compute

after SlowF(n – 1). Hence, even though we create 2n recursive

calls, only n will be active at a time, meaning that the function

stack space complexity of this algorithm is O(n) at the worst.

B. Bottom-Up Dynamic Programming

The next faster algorithm we can consider is using memorized

brute-force, i.e. the dynamic programming. Implementation is

quite simple, there will be a while-do loop that stores the value

of cur (Fidx), b1 (Fidx-1), b2 (Fidx-2), and idx:

int DpF (int n) {

 if (n == 0) return 0;

 int b2, b1 = 0, cur = 1, index = 1;

 while (index < n) {

 b2 = b1; b1 = cur;

 cur = b1 + b2; index++;

 }

 return cur;

}

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

The difference between bottom-up and top-down dynamic

programming is that top-down is practically the SlowF

algorithm with the addition of a memo, i.e. an array to store the

value of Fn that has been calculated and returns that value

instead of the function definition if the value is not NULL

(undefined) thus increasing the memory allocation by O(n),

while bottom-up finds the value of Fn from the bottom, F1, thus

is able to throw away the value of unneeded Fn-3, Fn-4, and so

forth.

As we can see, there is only a while-do loop that runs

depending on the n, i.e. T(n) = n – 1. Thus, for this algorithm,

the complexity of DpF(n) is undoubtedly O(n) with a space

complexity of O(1) as the memory allocation is constant.

Figure 3. Every increase in n means approximately a linear

increase in time for DpF(n) function calls.

C. Binet’s Formula

As Binet’s formula is a well-known formula in finding the nth

Fibonacci number, a faster Fibonacci-finding algorithm, also

written in C++, now arises:

int BinetF (int n) {

 float phi = (1 + sqrt(5))/2;

 float res = pow(phi, n);

 res -= pow((-1/phi), n);

 res /= sqrt(5);

 return int(res);

}

For this algorithm, the time complexity depends on how the

pow function works in C++. As the pow function uses a divide-

and-conquer approach for the implementation (i.e. pow(a,b) =

pow(a,b/2) * pow(a,b/2) * pow(a,b%2)), we can deduce that the

time complexity of Binet’s Formula depicted as BinetF(n) is at

average and at worst O(log n).

The space complexity is pretty similar, by BinetF being called

in parameter inputs of n, n/2, …, 0, the calls will be put into a

function stack memory, which is O(log n) as the parameter

keeps dividing by two until the base case, 0 or 1.

Unfortunately, Binet’s Formula implementation in a

computer program has a little caveat: as floating number is

depicted in binary, where the mantissa and exponent are strictly

producing the power of 2’s, it is physically impossible for an

entity to act as the exact copy of φ, an irrational number.[4] As

a result, the reduced time complexity comes with a cost of

accuracy — something we must avoid at any cost.

Figure 4. Inaccuracy for larger n in BinetF(n).

D. Matrix Exponentiation

There is a little trick in finding the nth Fibonacci number, or

even generally back-calling recursive functions, by utilizing

matrix exponentiation. The algorithm is quite straightforward,

what drives it to efficiency the most is actually the mathematical

theory behind recursive functions being depicted as matrices.

For Fibonacci sequence, suppose we have these matrices

𝑨 = (
1 1
1 0

) , 𝑭 = (
𝐹𝑛
𝐹𝑛−1

)

if we perform AF, it will result as follows

(
1 1
1 0

) (
𝐹𝑛
𝐹𝑛−1

) = (
𝐹𝑛 + 𝐹𝑛−1

𝐹𝑛
) = (

𝐹𝑛+1
𝐹𝑛
)

if n equals to 1, then

(
1 1
1 0

) (
𝐹1
𝐹0
) = (

𝐹2
𝐹1
)

and if we multiply A to the left and the right side, then

(
1 1
1 0

) (
1 1
1 0

) (
𝐹1
𝐹0
) = (

1 1
1 0

) (
𝐹2
𝐹1
) = (

𝐹3
𝐹2
)

that means generally for a matrix exponentiation of An

(
1 1
1 0

)
𝑛

(
𝐹1
𝐹0
) = (

𝐹𝑛+1
𝐹𝑛
)

Going by this equation, we can implement an algorithm based

on the properties of a matrix and divide-and-conquer strategy to

find Fn with the efficiency and accuracy nearing perfect. To

begin with, we will export the integer exponentiation at O(log

n) to matrix exponentiation, as such the base cases of

MatrixPow(M, n) will be defined as:

• For n = 0, returns the identity matrix, I.

• For n = 1, returns the matrix itself, M.

• For n > 1, returns the MatrixPow(M, n/2) * MatrixPow(M,

n/2) * MatrixPow(M, n%2) where % is the modulo

operation.

As such, the implementation of this algorithm is as follows

#define ROW 2

#define COL 2

struct Matrix {

 int Elmt[ROW][COL];

};

Matrix MatrixMul (Matrix M, Matrix N) {

 Matrix R;

 for (int i = 0; i < ROW; i++)

 for (int j = 0; j < COL; j++) {

 int sum = 0;

 for (int k = 0; k < COL; k++)

 sum += M.Elmt[i][k]*N.Elmt[k][j];

 R.Elmt[i][j] = sum;

 }

 return R;

}

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

Matrix MatrixPow (Matrix M, int n) {

 if (n == 0){

 Matrix Identity;

 Identity.Elmt[0][0] = 1;

 Identity.Elmt[0][1] = 0;

 Identity.Elmt[1][0] = 0;

 Identity.Elmt[1][1] = 1;

 return Identity;

 }

 if (n == 1) return M;

 Matrix sub = MatrixPow (M, n/2);

 sub = MatrixMul(sub, sub);

 sub = MatrixMul(MatrixPow(M, n%2), sub);

 return sub;

}

int Fibonacci (int n){

 if (n == 0) return 0;

 Matrix F;

 F.Elmt[0][0] = 1;

 F.Elmt[0][1] = 1;

 F.Elmt[1][0] = 1;

 F.Elmt[1][1] = 0;

 F = MatrixPow (F, n);

 return F.Elmt[1][0];

}

As this algorithm behaves similar to the pow algorithm, with

an addition of the constant O(1) matrix multiplication, the time

complexity is T(n) = 1 + T(n/2), where T(1) = T(0) = 1.

Henceforth, the algorithm runs in a logarithmic time, as such,

the time complexity in the big-O notation is O(log n). The space

complexity also is affected by the dynamically stored matrices

which is allocated at O(log n) and the stack functions which is

also allocated at O(log n), thus the space complexity in the big-

O notation is also O(log n).

Figure 4. O(log n) time complexity, logarithmically related.

Figure 5. Accuracy is not affected as it involves no floating

point. The only limiter is the int size, which could be overcome

by representing integers as strings or BigInts (Java). Note that

above picture is implemented using long long instead of int.

As such, the nth Fibonacci number can be found via matrix

multiplication. And to count the number of (1, 2)-compositions

of n, i.e. fn can be solved by finding Fn+1.

V. CONCLUSION

Induction is a common mathematical proof technique that can

be used in mainly to properties that exhibit recursive behaviors.

The number of (1, 2)-compositions of n, i.e. ways n could be

arranged with the sum of 1’s and 2’s where the order matters, or

fn can be proven by induction to have the same value as the

n+1th Fibonacci number, Fn+1. That is,

𝑓𝑛 = 𝐹𝑛+1

Divide-and-conquer strategy is one of the most efficient

strategy in solving most of programming problems, as it reduces

the algorithmic complexity to as low as logarithmic time

complexity. Utilizing divide-and-conquer in matrix

exponentiation helps reducing the Fibonacci-number-finding

function without sacrificing the accuracy. Time complexity for

the provided solution is at worst O(log n).

VI. APPENDIX

Figure 1 is taken from RDBury’s image upload on Commons.

All images shown after Figure 1 are taken personally by the

author. The time calculation in microseconds is done in a

machine with Intel i7-8550U processor, using chrono library

coded in C++ and compiled using gcc version 6.3.0 (MinGW).

VII. ACKNOWLEDGMENT

The author would like to express gratitude to Dr. Judhi

Santoso, M. Sc. as the lecturer of IF2120 Discrete Mathematics

in the author’s class. The author would also like to thank the

Stack Overflow community that helped a lot with tutorials

regarding testing the time complexity and induction theorems.

The author also is grateful to the author’s friends and family for

always giving inspirations and the passion to never give up.

REFERENCES

[1] Heubach, Silvia; Mansour, Toufik. "Compositions of n with parts in a set".

Congressus Numerantium, 2004. 168: 33–51.
[2] Graham, Ronald L.; Knuth, Donald E.; Patashnik, Oren. Concrete

Mathematics - A foundation for computer science (2nd ed.). Reading, MA,

USA: Addison-Wesley Professional, 1994, page 3 margins.
[3] Stanley, Richard. Enumerative Combinatorics I (2nd ed.). Cambridge

University, 2011, p. 121, Ex 1.35.

[4] Rojas, Raúl. "The Z1: Architecture and Algorithms of Konrad Zuse's First
Computer". arXiv:1406.1886 article, 2014.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 9 Desember 2018

Asif Hummam Rais

13517099

