
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

Time-Based One-Time Password using SHA1 Hash

Function

Kevin Nathaniel Wijaya - 135170721

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

1kevin.wijaya@students.itb.ac.id

Abstract—The paper reviews the use of the Standard Hash

Algorithm 1 for time-based one-time password. The time-based

one-time password is based on the use of the hash-based one-time

password, which is based on the hash-based message

authentication code. The first part of the text explains the basic

theories that will be used such as cryptography and hash. The next

part shows the implementation of the Standard Hash Algorithm 1

in hashing a certain key and message, with the use of time to

generate a six-digit code known as the time-based one-time

password.

Keywords—Time-based one-time password, SHA1 hash

function, Hash-based one-time password, Hash-based message

authentication code .

I. INTRODUCTION

You might wonder, why you have to enter a six-digit number

which you got from either text message or an app, just to check

your mail. You have already entered your login credentials,

there should be no need of more security, right?

Nowadays, companies are starting to implement another stage

of verification using one-time passwords. This is what you

receive through some way and have to put in to continue logging

in.

A one-time password (OTP) is a set of characters that is only

valid for logging into a single session or completing a

transaction. This one-time password is normally not stored or

kept in any way in the database or storage, and is normally

discarded after its use and no longer valid. This is different from

normal passwords we have because of its single use and

uniqueness.

A time-based one-time password (TOTP) is an extension of

the one-time password. It is generated based on the time, a key,

and a hashing algorithm, which this paper will be using Secure

Hash Algorithm 1 (SHA1) from the many hashing algorithms.

The time-based one-time password algorithm will generate

normally a six-digit number which will be used as a code to

continue the authentication process the client is doing. From a

key and a time that is both agreed upon between the client and

the user, the TOTP algorithm will generate a six-digit number

with an interval of a set time, usually thirty seconds. This will

set the previously generated code unusable and the current code

will only be valid for thirty seconds. This creates a secure

environment, as even if the six-digit code is stolen, it would be

rendered useless after thirty seconds, and without the secret key,

the six-digit code would change and permanent access would

not be granted to people trying to hack in.

In this paper, the author will explain about the time-based

one-time password which uses the SHA1 hashing algorithm.

II. NUMBER THEORY

Numbers are divided into different parts such as real numbers,

rational numbers, whole numbers, natural numbers, and so on,

as shown in Fig. 1.

Fig. 1. Venn Diagram of Number Classification

(Source: moreheadmathteacher.files.wordpress.com/2013/

10/realnumbersvenn1.jpg)

The number theory is a branch of mathematics which

describes the property of whole numbers or integers which does

not have decimal numbers. Examples of this would be 0, 22, -3,

-12345, 324. Non-integer numbers, which have decimal

numbers, would be for example 3.4, 2.9, -312.43, and so on.

These integers have division property which is written with

the notation “a | b” meaning b is divisible by a without

remainders, or that a is a multiple of b. For example, writing 4 |

https://moreheadmathteacher.files.wordpress.com/2013/10/realnumbersvenn1.jpg

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

12 would mean with the factor of 3, we can get 4 * 3 = 12,

therefore 12 is divisible by 4, or that 4 is a multiple of 12 [1].

In general, any integer divided by another integer could be

written in the form of integers. Take m and n as integers with n

greater than zero, if m is divided by n, then a quotient (q) and a

remainder (r) could be acquired in the form of integers, with the

remainder being less than n.

𝑚 = 𝑛𝑞 + 𝑟

𝑛 > 0, 0 ≤ 𝑟 < 𝑛

The theorem above was founded by Euclid at around 350 BC,

and the theorem is known now to be the Euclidean theorem. The

notation above could be written in another form, through the

usage of the modulus operator (mod) and the division operator

(div) [1]. Writing the results of the quotient (q) and remainder

(r) from the equation above would be as so.

𝑞 = 𝑚 𝒅𝒊𝒗 𝑛

𝑟 = 𝑚 𝒎𝒐𝒅 𝑛

For example, 30 divided by 7 would result 4 with the

remainder of 2, as shown below.

30 = 7(4) + 2

30 𝒎𝒐𝒅 7 = 2

30 𝒅𝒊𝒗 7 = 4

The remainder of the equation has to stay positive, as to

comply with the theorem, which means that -33 divided by 5 has

to have a positive remainder, as shown below.

−33 = 5(−7) + 2

−33 𝒎𝒐𝒅 5 = 2

−33 𝒅𝒊𝒗 5 = −7

III. CRYPTOGRAPHY

One of the applications of number theory is cryptography.

Cryptography is widely used as a way to keep a message secret.

The way cryptography works is it changes a message into

something that does not have any meaning. The message that

wants to be kept secret is called the plaintext, and the result of

the process of cryptography, also called encryption, is called

ciphertext. The opposite of encryption, the process of changing

ciphertext back to the original plaintext, is called decryption. as

shown below (see Fig. 2).

Fig 2. Symmetric-key Cryptosystem

(Source: https://www.engadget.com/2017/03/07/a-beginner-

s-guide-to-encryption/)

The diagram above shows the process of encryption and

decryption with the use of a same key, which is called the

symmetric-key cryptosystem. The plaintext “Here’s my private

data” when encrypted becomes “U2sdGVkX1oKSus91yVnP”,

which has no meaning whatsoever to us. However, when you

have the key, this piece of unknown combination can be changed

back to “Here’s my private data”, and that is how simple

encryption works. If the keys used to encrypt and decrypt are

different, then the system is called the asymmetric cryptosystem.

There are an abundant amount of cryptography methods, such

as the Caesar cipher, which shifts each letter 3 letters forward,

which changes ‘A’ to ‘D’, ‘B’ to ‘E’, and so forth [1]. In our

case, cryptography is used in conjunction with the hash function

SHA1 to later produce the one-time password.

IV. HASH FUNCTION SHA1

A hash function in its very basis is used in data structuring. A

hash function works by taking an input and changing it into an

index for the data to be stored at. The very basic form of hashing

uses the modulus operator, which generates a number based on

the input, as shown below:

ℎ(𝑘) = 𝑘 𝒎𝒐𝒅 𝑚

where m is the memory provided, with an index from 0 to

m-1. h is the hash function, with k as the input.

A more complicated hash function accepts a record, which

when receives the input will generate hashes which is used to

map out the location of how the data should be indexed, as

shown in the illustration below.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

Fig. 3. Hashing using a hash function

(Source: https://www.quora.com/What-is-the-Hashing-

technique)

This is all good and effective, until there comes the problem

of a collision.

In the case of a collision, there are what is called the collision

resolution policy. This policy states that if there is a collision,

the record would be placed in the next available or free index,

as shown below.

Fig. 4. Collision in a hash function

(Source: https://en.wikipedia.org/wiki/File:Hash_table_4_

1_1_0_0_1_0_LL.svg)

In this case, the record “Sandara Dee” would instead be

placed in the 03 index, because it is the next free index after 02.

The combination of cryptography and hash function would

then be known as a cryptographic hash function. This type of

hash function focuses on compressing an input so that the result

would be shorter [2]. Also, this hash function is called

cryptographic because this is a one-way function, meaning it is

close to impossible to reverse the result of this hash function

(also known as the “message digest”). This “message digest”

would usually have a fixed length, as an example the SHA1 hash

function would have a “message digest” of 160 bits, or 20 bytes.

The Secure Hash Algorithm 1 or SHA1 is a type of hash function

which utilizes the hashing process to create what is called the

message digest. Below is the pseudocode for the SHA1 hash

function.

Note 1: All variables are unsigned 32-bit quantities and wrap

modulo 232 when calculating, except for

 ml, the message length, which is a 64-bit quantity, and

 hh, the message digest, which is a 160-bit quantity.

Note 2: All constants in this pseudo code are in big endian.

 Within each word, the most significant byte is stored in

the leftmost byte position

Initialize variables:

h0 = 0x67452301

h1 = 0xEFCDAB89

h2 = 0x98BADCFE

h3 = 0x10325476

h4 = 0xC3D2E1F0

ml = message length in bits (always a multiple of the number

of bits in a character).

Pre-processing:

append the bit '1' to the message e.g. by adding 0x80 if

message length is a multiple of 8 bits.

append 0 ≤ k < 512 bits '0', such that the resulting message

length in bits

 is congruent to −64 ≡ 448 (mod 512)
append ml, the original message length, as a 64-bit big-endian

integer.

 Thus, the total length is a multiple of 512 bits.

Process the message in successive 512-bit chunks:

break message into 512-bit chunks

for each chunk

 break chunk into sixteen 32-bit big-endian words w[i], 0 ≤ i

≤ 15

 Extend the sixteen 32-bit words into eighty 32-bit words:

 for i from 16 to 79

 w[i] = (w[i-3] xor w[i-8] xor w[i-14] xor w[i-16])

leftrotate 1

 Initialize hash value for this chunk:

 a = h0

 b = h1

 c = h2

 d = h3

 e = h4

 Main loop:

 for i from 0 to 79

 if 0 ≤ i ≤ 19 then

 f = (b and c) or ((not b) and d)

 k = 0x5A827999

 else if 20 ≤ i ≤ 39

 f = b xor c xor d

 k = 0x6ED9EBA1

 else if 40 ≤ i ≤ 59

 f = (b and c) or (b and d) or (c and d)

 k = 0x8F1BBCDC

 else if 60 ≤ i ≤ 79

 f = b xor c xor d

 k = 0xCA62C1D6

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

 temp = (a leftrotate 5) + f + e + k + w[i]

 e = d

 d = c

 c = b leftrotate 30

 b = a

 a = temp

 Add this chunk's hash to result so far:

 h0 = h0 + a

 h1 = h1 + b

 h2 = h2 + c

 h3 = h3 + d

 h4 = h4 + e

Produce the final hash value (big-endian) as a 160-bit number:

hh = (h0 leftshift 128) or (h1 leftshift 96) or (h2 leftshift 64)

or (h3 leftshift 32) or h4

In the end, we will have the hh variable to be the 160 bits or

20 bytes of message digest that would be used as the result of

the hash function. This is an example of the SHA1 hash function

at work.

Fig. 5. SHA1 Hash Function

(Source: https://commons.wikimedia.org/wiki/File:

Cryptographic_Hash_Function.svg)

Because of the SHA1 hash function’s complexity, even a

letter difference or switching would result in a quite different

message digest, as seen from the second and fourth example,

which has the word “over” misspelled. With the message digest,

servers store them and when a password is entered, the hash

function is applied to the password, and if the 160 bits string

matches with the one on the server, access is granted to the user.

Something that does this is also called an HMAC, or a hash-

based message authentication code.

V. HASH-BASED MESSAGE AUTHENTICATION CODE

The hash-based message authentication code (HMAC) is a

piece of information to authenticate a message, in this case the

message will be the password. A secret key will be used, which

has to be randomized for the sake of security, and is usually kept

secret so people could not try brute-forcing because they need

the key to be able to do that. Without the key, the HMAC

function is simply useless. The definition of HMAC from RFC

2104 [4]:

𝐻𝑀𝐴𝐶(𝐾, 𝑚) = 𝐻 ((𝐾′ ⊕ 𝑜𝑝𝑎𝑑) ∥ 𝐻((𝐾′ ⊕ 𝑖𝑝𝑎𝑑) ∥ 𝑚))

𝐾′ = {
𝐻(𝐾) 𝐾 𝑖𝑠 𝑙𝑎𝑟𝑔𝑒𝑟 𝑡ℎ𝑎𝑛 𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒
𝐾 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where

H is a cryptographic hash function, in our case the SHA1,

m is the message to be authenticated,

K is the secret key,

K' is a block-sized key derived from the secret key, K;

either by padding to the right with 0s, up to the block

size, or by hashing down to the block size,

∥ denotes concatenation,

⊕ denotes bitwise exclusive or (XOR),

opad is the outer padding, consisting of repeated bytes,

valued 0x5c, up to the block size, and

ipad is the inner padding, consisting of repeated bytes,

valued 0x36, up to the block size.

This results in a pseudocode as such:

Function hmac

 Inputs:

 key: Bytes //array of bytes

 message: Bytes //array of bytes to be hashed

 hash: Function //the hash function to use (e.g. SHA-1)

 blockSize: Integer //the block size of the underlying hash

function (e.g. 64 bytes for SHA-1)

 outputSize: Integer //the output size of the underlying hash

function (e.g. 20 bytes for SHA-1)

 //Keys longer than blockSize are shortened by hashing them

 if (length(key) > blockSize) then

 key ← hash(key) //Key becomes outputSize bytes long

 //Keys shorter than blockSize are padded to blockSize by

padding with zeros on the right

 if (length(key) < blockSize) then

 key ← Pad(key, blockSize) //pad key with zeros to make it

blockSize bytes long

 o_key_pad = key xor [0x5c * blockSize] //Outer padded

key

 i_key_pad = key xor [0x36 * blockSize] //Inner padded key

 return hash(o_key_pad ∥ hash(i_key_pad ∥ message))

//Where ∥ is concatenation

To better understand the HMAC algorithm, here is a diagram

explaining how it works.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

Fig. 6. HMAC based on SHA1 hash function

(Source: https://commons.wikimedia.org/wiki/

File:SHAhmac.svg)

First of all, we have the concatenation of the repeated byte

0x36 by 64 times, also known as the ipad, xor the key, and also

the concatenation of the repeated byte 0x5c by 64 times, also

known as the opad, xor the key. This ipad xor key will be

concatenated by the message and will be used to create the first

hash sum. The opad xor key will then be concatenated with the

first hash sum and will be used to create the second hash sum,

which will be the result of the HMAC algorithm. This HMAC

algorithm will be the basis of the time-based one-time password.

VI. TIME-BASED ONE-TIME PASSWORD ALGORITHM

The time-based one-time password algorithm (TOTP) is

based on the usage of the HMAC-based one-time password

algorithm (HOTP). To understand TOTP, we must first

understand HOTP and how it works.

The HOTP is an algorithm to provide authentication and

generate human-readable values so as to ease the use of the one-

time authentication attempt [5]. Using the HMAC algorithm

from the previous section, we can essentially simplify the HOTP

process into a single equation:

𝐻𝑂𝑇𝑃(𝐾, 𝐶) = 𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒(𝐻𝑀𝐴𝐶(𝐾, 𝐶))

 where

K is the secret key, which is generated at random and only

the server and the client has,

C is a counter that has to be kept in synchronized between

the client and the server.

This truncate function serves as a conversion method from the

160 bit message digest to become an HOTP value, usually in the

form of a six-digit number, readable for humans. This 160-bit

message digest will be converted to a 4-byte string, then will be

converted again to a digit somewhere between 0 and (2^31) – 1,

which will then be applied the modulo operator by 10 ^ digits,

which would be 10 ^ 6, resulting in a six-digit number. Here is

the pseudocode for the conversion:

Let Sbits = DT(message digest) // DT, defined below,

 // returns a 31-bit string

Let Snum = StToNum(Sbits) // Convert S to a number in

0...2^{31}-1

Return D = Snum mod 10^Digit // D is a number in the range

0...10^{Digit}-1

DT(String) // String = String[0]...String[19]

Let OffsetBits be the low-order 4 bits of String[19]

Offset = StToNum(OffsetBits) // 0 <= OffSet <= 15

Let P = String[OffSet]...String[OffSet+3]

Return the Last 31 bits of P

For example, the ASCII string "12345678901234567890"

when put in the HMAC algorithm with a count of 1 will result

in a hexadecimal like so, “75a48a19d4cbe100644e8ac1397eea7

47a2d33ab”. This will then be truncated to “41397eea”, which

will be turned into a decimal form “1094287082”, and then mod

by 10^6 which will result in the number “287082”, which the

user will use to authenticate. As soon as the authentication

process is done, the count will increase and a new HOTP will be

generated based on the new count.

TOTP is based on HOTP. The only difference between TOTP

and HOTP is the count variable [6]. With HOTP, the count

variable has to be kept in sync with the user, and has to manually

increment based on its use. On the other hand, with TOTP, the

count variable is now dynamic not based on manual count, but

based on Unix time, a type of time which is the number of

seconds that have elapsed since 00:00:00 (UTC) of Thursday, 1

January 1970. As soon as a key is set and a handshake is created,

the client and server agrees on a few things, such as the interval

of the counter (X), which defaults to 30 seconds, and the Unix

time to start counting (𝑇0), which defaults to 0. The TOTP value

is calculated by:

𝑇𝑂𝑇𝑃(𝐾) = 𝐻𝑂𝑇𝑃(𝐾, 𝑇)

𝑇 =
(𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑈𝑛𝑖𝑥 𝑡𝑖𝑚𝑒 − 𝑇0)

𝑋

Here are the examples of TOTP which has its counter based

on time.

Time (s) UTC Time T (hex) TOTP

59 1970-01-01

00:00:59
0x1 287082

1111111109 2005-03-18

01:58:29

0x23523EC

081804

20000000000 2603-10-11

11:33:20

0x27BC86AA 353130

Table 1. Example of TOTP [6]

With this kind of implementation, there are benefits and

compromises when compared to its predecessor, HOTP. The

benefits of TOTP are first, they are very dynamic and is harder

https://upload.wikimedia.org/wikipedia/commons/7/7f/SHAhmac.svg

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

to break through because of its 30-second changing time. It also

eliminates the need of syncing count, because it is synced

through time. Although, the compromise of this implementation

is that once there is a significant time drift between the client

and server, there needs to be a solution to resync the time, which

could be done by connecting to the internet and syncing time.

For minor cases, a small margin of error could be added, but not

too big or it could compromise the system. This TOTP method

is becoming more and more common, as we see popular sites

like Google enforcing users to use their authenticator app, which

is based on TOTP.

VII. IMPLEMENTATION OF TOTP

One of the famous apps that uses TOTP is Google

Authenticator. For the authenticator to work, there will be a key

sent by the server for the client to input, which could be in the

form of a QR code or an alphanumeric string which is generated

at random. The server would then ask for the six-digit code that

is generated by the app to synchronize the time used. Here is an

example of the app in use.

Fig. 7. Example of Google Authenticator

(Source: https://www.joshmoulin.com/wp-content/uploads/

2015/07/Google-Authenticator.png)

 This image shows the six-digit one-time passwords which

comes from multiple servers. These passwords also have 30-

second countdowns on the right-hand corner, which when it

ends, another six-digit password will appear.

VIII. CONCLUSION

From the explanation above, we can now see the use of the

SHA1 hash function to generate one-time passwords which are

based on both time and a secret key that is agreed upon by both

the client and the server. This type of authentication is used as a

supplementary protection for logging in or completing a

transaction.

Although time-based one-time passwords raises the security

of accounts by a significant amount, clients are still susceptible

to attacks like phishing, because phishing does not concern the

algorithm, but instead gains access of the keys by faking the

client’s identity.

As for the future, with the advancement of technology and

also computing power, it might be a good idea to start to use

these two-factor authentication methods which uses the TOTP

as it creates another barrier for people who are trying to break in

to the digital privacy.

VIII. ACKNOWLEDGMENT

The author would like to thank first of all God as the author

was able to finish writing this paper well. The author would also

like to thank lecturer Dr. Judhi Santoso, M.Sc. from the Discrete

Mathematics IF2120 class for his lectures and support. Also, the

author would like to express his gratitude for his family and

friends for their constant support.

REFERENCES

[1] Munir, Rinaldi. Matematika Diskrit. 3rd ed., Penerbit INFORMATIKA

Bandung, 2010.

[2] Christensson, Per. "Hash Definition." TechTerms. Sharpened Productions,

21 April 2018. Web, https://techterms.com/definition/hash. Accessed 8

Dec. 2018.
[3] Mihir, Bellare. “Hash Functions.” University of California, 2018,

cseweb.ucsd.edu/~mihir/cse207/w-hash.pdf. Accessed 8 Dec. 2018.

[4] Krawczyk, H, et al. “HMAC: Keyed-Hashing for Message

Authentication.” IETF Tools, Feb. 1997, tools.ietf.org/html/rfc2104.

Accessed 8 Dec. 2018.
[5] M’Raihi, D, et al. “HOTP: An HMAC-Based One-Time Password

Algorithm.” IETF Tools, Dec. 2005, tools.ietf.org/html/rfc4226. Accessed

8 Dec. 2018.

[6] M’Raihi, D, et al. “TOTP: Time-Based One-Time Password Algorithm.”

IETF Tools, May 2011, tools.ietf.org/html/rfc6238. Accessed 8 Dec. 2018.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 9 Desember 2018

Kevin Nathaniel Wijaya

13517072

	I. Introduction
	II. Number Theory
	III. Cryptography
	IV. Hash Function SHA1
	V. Hash-based Message Authentication Code
	VI. Time-based One-time Password Algorithm
	VII. Implementation of TOTP
	VIII. Conclusion
	VIII. Acknowledgment
	References
	Pernyataan

