
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

Algorithm Complexity Comparison between Methods

Factorization and Euclidean Algorithm to Find the

Greatest Common Divisor

Saskia Imani 13517142

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13517142@std.stei.itb.ac.id

Abstract—The greatest common divisor (GCD) is the largest

integer capable of dividing two different integers. There are two

commonly known methods to find the GCD, which are

factorization and Euclidean algorithm, both utilizing the modulo

operation. This paper aims to prove that using the Euclidean

algorithm to find the GCD is more effective compared to using the

factorization method. Each method is translated into an

algorithmic notation, which complexities will be then be analyzed.

The result will be compared, and the algorithm which is least

complicated will be the more efficient algorithm.

Keywords—Algorithm, complexity, GCD, Euclidean algorithm,

factorization, modulo, remainder.

I. GREATEST COMMON DIVISOR

The greatest integer that divides both of two integers is called

the greatest common divisor of these integers, or GCD for short

[1]. The GCD is mathematically denoted as

𝐺𝐶𝐷(𝑎, 𝑏) = 𝑚𝑎𝑥 𝑜𝑓 {𝑑 ∈ 𝑍; 𝑑 | 𝑎 𝑎𝑛𝑑 𝑑 | 𝑏},

where d | a means a is divisible by d, d | b means b is divisible

by d, and so forth. In the case that both the value of a and b are

0, the GCD of a and b will also equal to 0.

There are at least two known methods to find the GCD of two

random integers, which is using factorization or the Euclidean

algorithm.

A. Factorization Method

The first method, factorization, begins with factoring or

dividing both the integers (let them be a and b) into smaller

integers called factors, which when multiplied will form a

and/or b respectively. For example, the factors of a = 3 are

{1,3}, since 3 is a prime number; the factors of a = 25 are

{1,5,5,25}; and the factors of a = 16 are {1,2,4,4,8,16}. After

factoring the two integers a and b, we look for the largest

number belonging in the factor set of both a and b, which is the

GCD of a and b.

Image 1. A visualization of the factorization method.

A thorough example of this method is as such:

1. Let a = 12 and b = 15.

2. The factors of a = 12 are A = {1,2,3,4,6,12}, while

the factors of b = 15 are B = {1,3,5,15}.

3. The largest number belonging in both A and B is 3,

and thus 3 is the GCD of a = 12 and b = 15.

B. Euclidean Algorithm Method

The second method to find the GCD of two integers uses the

Euclidean equation or Euclidean algorithm:

𝑎 = 𝑏 ∙ 𝑞1 + 𝑟1,
𝑏 = 𝑟1 ∙ 𝑞2 + 𝑟2,

…

etc.

where a, b, q1, r1, q2 and r2 are integers and a is bigger than b

[1]. The equation above illustrates the modulo operation, where

r1 is the remainder of a divided by b, or the result of a mod b.

For example, let a = 8 and b = 3. The integers are fitted into the

equation as such:

8 = 3 ∙ 2 + 2

with q = 2 and r = 2.

The Euclidean equation’s lemma concludes that

𝐺𝐶𝐷(𝑎, 𝑏) = 𝐺𝐶𝐷(𝑏, 𝑟1)

By using the Euclidean algorithm consecutively, we will

eventually come across a time where the equation results in rk =

0. In that very same equation, qk is the GCD of a and b.

2

4 6

12

5

15

1

3

A B

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

A thorough example of this method is as such:

1. Let a = 12 and b = 15.

2. Since b is the larger number, the modulo expression

used is b mod a → 15 mod 12 → 15 = 12 * 1 + 3.

Thus, the result is r1 = 3.

3. Next, we use the results of the first equation to

construct the expression 12 mod 3 → 12 = 3 * 4 + 0.

Thus, the result is r2 = 0.

4. Since r2 equals to 0, then 3 is the GCD of a = 12 and

b = 15.

It is important to note that the GCD obtained for a = 12 and b

= 15 will always be the same, whether it is obtained using

factorization or the Euclidean equation.

II. ALGORITHMIC NOTATION

An algorithmic notation is more commonly called a

pseudocode, and is a type of “language” used to illustrate

program algorithms without using any specific programming

language. The most obvious advantage of using an algorithmic

notation is, once a convention has been created, programmers

and developers hailing from different programming

backgrounds and language can easily elaborate program

structures and algorithms without relying on the others knowing

their preferred programming language.

There is no standard for an algorithmic notation, and

algorithmic notation does not adhere to any single programming

language. However, certain groups of developers may create

their own convention, tailoring certain aspects of code to match

certain language(s) for further ease of use.

In this paper, we will use a specific algorithmic notation

taught and used by the Bandung Institute of Technology, School

of Electrical Engineering and Informatics. The algorithmic

notation is used to illustrate how the two methods of finding

GCD, factorization and Euclidean equation, are applied as

program algorithms.

A. Factorization Method

In looking for GCD(a,b) using this method, there is a slightly

different approach from the original factorization method, but it

uses the same principles. The program will first compare

between a and b to look for the greater integer between the two,

resulting in x (greater) and y (lesser). The factorization method

requires checking all the integers between n = 1 and y to find

factors of y, which is every n meeting the condition n | y.

But since we are looking for a common divider, there is no

need to factor both x and y. Because we are looking for the

“greatest”, we will start from the greatest integer between 1 and

y, which is n = y. We will see if y is divisible by n. If it is

divisible, we will then see if x is divisible by n. If it is divisible,

then the integer n must be the GCD of a and b.

function Method1 (a, b: integer) → integer

LOCAL VARIABLES
 n: integer

ALGORITHM
 if (a > b) then
 n  b
 else
 n  a

 while (n > 1) do
 if (a mod n = 0) and (b mod n = 0)
 then
 → n
 else
 n  n - 1
 → 1

Notation 1. The factorization method.

The algorithm above can be further elaborated as follows:

1. Declare local variable for the integer n.

2. Compare the integers a and b.

3. Assigning the lesser between a and b to n.

4. While n does not equal to 1, repeat the following

process:

a. Divide a by n using modulo, and check if

the remainder is 0.

b. Divide b by n using modulo, and check if

the remainder is 0.

c. If both (a) and (b) is true, return the value

n as the GCD of a and b.

d. If one of (a) and (b) is false, or both are

false, decrement n by 1.

5. If n reaches 1, return 1 as the GCD of a and b.

B. Euclidean Algorithm Method

In looking for GCD(a,b) using this method, the program will

compare the greater between a and b, resulting in x (greater) and

y (lesser). Then the program will divide x by y and note the r

(remainder). After that, the program will replace x with y and y

with r, then divide the new x by the new y and note the next r.

The program will repeat the last two steps until a remainder

valued 0 is found. When r reaches the value 0, the last y value

is the GCD of a and b.

function Method2 (a, b: integer) → integer

LOCAL VARIABLES
 x, y: integer
 r: integer

ALGORITHM
 if (a > b) then
 x  a
 y  b
 else
 x  b
 y  a

 r  x mod y

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

 while (r ≠ 0) do
 x  y
 y  r
 r  x mod y
 → y

Notation 2. The Euclidean algorithm method.

The algorithm above can be further elaborated as follows:

1. Declare local variables for integers x, y, and r.

2. Compare the integers a and b.

3. Assign the greater between a and b to x, and the

lesser to y.

4. Divide x by y using modulo and assign the

remainder to r.

5. While r is not equal to 0, repeat the following

process:

a. Replace the value of x with y.

b. Replace the value of y with r.

c. Divide the new x by the new y using

modulo and assign the remainder to r.

6. After r reaches the value 0, return y as the GCD for

integers a and b.

Both notations for functions Method1 and Method2 have

been applied, tested, and proven to yield expected results in a C

language program.

III. ALGORITHM COMPLEXITY

While the algorithms of the factorization method and the

Euclidean algorithm method do not seem to be much different

from the amount of lines they take, and the numbered steps of

both methods are quite similar, determining which of the two is

a more efficient algorithm is not so simple.

The efficiency of an algorithm is determined from the time

and space needed to execute the algorithm. The amount of time

and space required for an algorithm to work is called the

complexity of the algorithm, and is measured by the amount of

data the algorithm processes (n). Time complexity is denoted as

T(n), while space complexity is denoted as S(n).

The time complexity of an algorithm can be further divided

into three main categories:

• Tmin, which is the minimum amount of time for an

algorithm to process a number of data in the best-

case scenario.

• Tmax, which is the maximum amount of time for

an algorithm to process a number of data in the

worst-case scenario.

• Tavg, which is the average amount of time for an

algorithm to process a number of data. Tavg is

determined by the following equation:

𝑇𝑎𝑣𝑔 =
𝑇𝑚𝑖𝑛 + 𝑇𝑚𝑎𝑥

2

An efficient algorithm is one that fulfills its function using

the smallest amount of time and space. Determining algorithm

complexity will enable developers and programmers to save

time and computer storage, which will improve the performance

of the program overall.

The need for an efficient algorithm is especially important

when the algorithm has exponential complexity. For example,

let an algorithm’s time complexity be T(n) = 10-4 * 2n seconds.

With various amounts of data, we can observe the amount of

time this algorithm takes to finish.

When n = 10, the algorithm takes about 1/10 seconds;

when n = 20, the algorithm takes about 2 minutes; and

when n = 30, the algorithm takes more than a day [2].

After creating the algorithmic notation of the two methods

to find the GCD, we will now determine the complexity of the

two algorithms. The units we will use will be ambiguous, as

different computers may have different time required to run the

exact same process.

A. Factorization Algorithm

When using the factorization algorithm, the best-case

scenario is when n = y is the GCD of a and b, so that the

algorithm will only run once. In this case, the time complexity

is as such:

𝑇𝐴𝑚𝑖𝑛(𝑛) = 1

Meanwhile, in the worst-case scenario of this algorithm, a

and b are prime relatives, so GCD of a and b is 1. According to

the algorithm, the value of n spans from y to 2, and if even 2 is

not a common divisor of a and b, the answer will be 1. In this

case, the algorithm will run for n-1 times, and the time

complexity is written as

𝑇𝐴𝑚𝑎𝑥(𝑛) = 𝑛 − 1

The average time complexity of this particular process is

therefore

𝑇𝐴𝑎𝑣𝑔(𝑛) = 𝑇𝐴 min(𝑛) + 𝑇𝐴 max(𝑛)

𝑇𝐴𝑎𝑣𝑔(𝑛) =
1 + (𝑛 − 1)

2

𝑻𝑨𝒂𝒗𝒈(𝒏) =
𝒏

𝟐

in which n equals the smaller of two integers a and b.

B. Euclidean Algorithm

Meanwhile, for the Euclidean algorithm, the best-case

scenario is when the first x divided by y immediately results in

remainder = 0, and thus the algorithm will only run once. In

this case, the time complexity is written as

𝑇𝐵𝑚𝑖𝑛(𝑛) = 1

The worst-case scenario, however, is quite complicated to

analyze. In the worst-case scenario, the relationship of x and y

is illustrated as x = FN and y = FN-1, in which FN is the

Fibonacci sequence: {0,1,1,2,3,5,8,…}. In this case, the

algorithm will result in

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

𝐺𝐶𝐷(𝐹𝑁, 𝐹𝑁−1) = 𝐺𝐶𝐷(𝐹𝑁−1, 𝐹𝑁−2)

The final result for any x and y part of the Fibonacci

sequence will be GCD(x,y) = 1. To find the complexity of the

Euclidean algorithm, we must observe the Fibonacci sequence.

F0 → 0

F1 → 1

F2 → 1 = 1 * 1 + 0

But only when we reach F3 the pattern for the Fibonacci

sequence is apparent:

F3 → 2 = 1 * 2 + 0 (base)

F4 → 3 = 2 * 1 + 1

F5 → 5 = 3 * 1 + 2

…

FN → FN = FN-1 + FN-2

Through mathematical induction from the equations above,

we can conclude that, for the GCD of x = FN+1 and y = FN, it

will take N-2 steps to reach the base of the Fibonacci sequence

we have set.

However, up until here, we are still using N to describe the

time complexity. To compare between the factorization

algorithm and the Euclidean algorithm, N must be translated to

n. For this, we utilize φ which is something called the “golden

ratio”.

Image 2. A visualization of the golden ration theorem.

(Source: Wikipedia)

Image 3. The golden spiral, calculated using the Fibonacci

sequence (left) and the golden ratio (right).

(Source: Wikipedia)

The golden ratio theorem boils down to

(𝑎 + 𝑏)

𝑎
=

𝑎

𝑏
= 𝜑

Or in our case,
𝐹𝑛

𝐹𝑛−1

=
𝐹𝑛−1

𝐹𝑛−2

= 𝜑

If the program requires N-2 steps, then y is equal to N-1,

which in turn is equal to φN-3 [3]. Therefore,

𝑦 = 𝜑𝑁−3

log𝜑 𝑦 = 𝑁 − 3

And since

log𝜑 10 > 1/5 [4]

we can conclude that

log10 𝜑 ∙ log𝜑 𝑦 >
(𝑁 − 3)

5

log10 𝑦 >
(𝑁 − 3)

5

Thus,

5 ∙ log10 𝑦 + 3 > 𝑁

For our complexity problem, this translates to

𝑇𝐵𝑚𝑎𝑥(𝑛) < 5 ∙ log10 𝑛 + 3

Therefore, the average time complexity for this algorithm can

be written as

𝑇𝐵𝑎𝑣𝑔(𝑛) <
5 ∙ log10 𝑛 + 3 + 1

2

𝑻𝑩𝒂𝒗𝒈(𝒏) ≤
𝟓 ∙ 𝒍𝒐𝒈𝟏𝟎 𝒏

𝟐

in which n is the lesser integer between a and b.

C. Space Complexity

As visible from the algorithm notation of the factorization

method and the Euclidean algorithm method, both require initial

variable for two integers a and b. The factorization method

requires one additional variable for integer n, which will be used

to define the GCD.

𝑆𝐴 = 1

The Euclidean factorization method requires three additional

variables for integers x, y, and r.

𝑆𝐵 = 3

Alternately, we can simple switch the values of a and b as

needed, using one temporary variable for the switching process.

In this case, the space complexity will be

𝑆𝐵 = 2

Seeing as there is not much difference between the space

complexity of the factorization algorithm and the Euclidean

algorithm, we will refrain from using these values for further

comparison.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

IV. COMPARISON OF COMPLEXITY

To compare the two algorithms’ complexity, we use the

asymptotic complexity of both complexity values, also called

the “Big-O” notation.

The definition of the Big-O notation is as follows:

𝑇(𝑛) = 𝑂(𝑓(𝑛))

which means the largest order of T(n) is f(n), if there exists a

constant C and n0 so that

𝑇(𝑛) ≤ 𝐶 ∙ 𝑓(𝑛)

Observe the following table for an example of a time

complexity T(n) = n2 + 1:

n T(n) = 2n2 + 3n n2

1 5 1

10 230 100

100 20300 10000

1000 2003000 1000000

10000 200030000 100000000

Table 1. The comparison of two complexity notations.

(Source: [2])

It is clear that the time complexity T(n)’s growth is more

similar to the notation n2 rather than n. So we state that T(n) has

the order of n2 and we write the time complexity notation as

such

𝑇(𝑛) = 𝑂(𝑛2)

A theorem for the Big-O notation is that if

𝑇(𝑛) = 𝑛𝑚 ± 𝑛𝑚−1 ± 𝑛𝑚−2 ± ⋯ ± 𝑛

then

𝑇(𝑛) = 𝑂(𝑛𝑚)

This means that the term with higher order dominates the

terms with lower orders. “Dominates” means that the growth

rate of the time complexity is more similar to the dominating

term rather than the other terms of the complexity equation.

Other domination theorems for the Big-O notation includes:

• Exponential terms dominate random exponents,

which means for every n > 1:

𝑦𝑛 > 𝑛𝑝

• Exponents dominate ln n, which means for every n

> 1:

𝑛𝑝 > ln 𝑛

• All logarithms have the same growth rate, which

means

log𝑎 𝑛 = log𝑏 𝑛

• The term n log n has a faster growth rate compared

to n, but slower growth rate compared to n2.

A summarization of the the domination chain for the Big-O

notation is as follows:

𝑂(1) < 𝑂(log 𝑛) < 𝑂(𝑛) < 𝑂(𝑛 log 𝑛) < 𝑂(𝑛2) <
𝑂(𝑛3) < ⋯ < 𝑂(2𝑛) < 𝑂(𝑛!) [2]

A. Factorization Algorithm

It has been concluded previously that the average time

complexity of the factorization algorithm is

𝑇𝐴(𝑛) =
𝑛

2

To compare the time complexity, we translate this value to its

equivalent Big-O notation, which is

𝑇𝐴(𝑛) =
𝑛

2
= 𝑶𝑨(𝒏)

B. Euclidean Algorithm

Meanwhile, the average time complexity of the Euclidean

algorithm is

𝑇𝐵(𝑛) ≤
5 ∙ 𝑙𝑜𝑔10 𝑛

2

We translate this value to its equivalent Big-O notation,

which is

𝑇𝐵(𝑛) ≤
5 ∙ 𝑙𝑜𝑔10 𝑛

2
= 𝑶𝑩(𝐥𝐨𝐠 𝒏)

C. Comparison

Since we have obtained the Big-O notation of the time

complexity for the factorization algorithm and the Euclidean

algorithm and they have different orders, we can compare them

by simple looking at the domination chain of the Big-O

notation. From it, we can derive that

𝑶𝑨(𝒏) > 𝑶𝑩(𝐥𝐨𝐠 𝒏)

which means that the time complexity for the factorization

algorithm (A) is higher than the time complexity for the

Euclidean algorithm (B).

Therefore, we can conclude that the Euclidean algorithm is a

more efficient way of obtaining the GCD of two integers,

compared to the factorization method algorithm.

V. CONCLUSION

The greatest common divisor, or the GCD, of two integers

has many uses in programming. One of the most common use

is to simplify algorithms for large integers where certain

operations are involved, where retaining the original values of

both integers are not necessary. It is also used in simplifying

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

fractions.

With the computer architecture development seemingly

reaching a dead-end period, while computer science only grows

more complex, the need for efficient algorithms is higher than

ever to keep the physical aspect of program development from

strain.

From this paper, we have proven that there are two algorithms

used to obtain the GCD of two integers, which are the

factorization method and the Euclidean algorithm method. We

have translated both methods into an algorithmic notation and

analyzed the complexity of each method’s algorithm. The result

is that the complexity of the Euclidean algorithm is lower than

the factorization method’s algorithm, and thus, the Euclidean

algorithm is a much more efficient method of obtaining the

GCD of two integers.

VI. ACKNOWLEDGMENTS

The author would like to express her gratitude to God

Almighty, for only because of His amazing grace the author is

able to find the inspiration to begin this paper, and the ability to

finish it. The author is also thankful to to Dr. Ir. Rinaldi Munir,

M.T., as the beloved lecturer of IF2120 Discrete Mathematics

of Class 01, for his dedication and enthusiasm, and unique little

quirks in lecturing his students for this semester. The author also

wishes to express gratitude to her parents, her sister and brother,

and her friends for all their support and help during the writing

process of this paper.

The author also remembers the teamwork her class has shown

in making sure that every student’s paper will be unique and

considerably different from each other’s. The efforts of the

people involved in making the database of paper titles is highly

appreciated.

REFERENCES

[1] Rosen, Kenneth H. (2013). Discrete Mathematics and Its Applications.

New York: McGraw-Hill, page 265.

[2] Munir, Rinaldi. (2010). Matematika Diskrit Edisi 3 (Revisi Keempat).
Bandung: Informatika Bandung, page 496-497.

[3] Mollin, R. A. (2008). Fundamental Number Theory with Applications

(2nd edition). Boca Raton: Chapman & Hall/CRC, page 21-22.

[4] Sloane, N. J. A. (1964). The On-Line Encyclopedia of Integer Sequences

– A000045. Taken from https://oeis.org/A000045 on December 9, 2018.

STATEMENT

I hereby state that the paper I have written is of my own

writing, and not a copy, or a translation, of another person’s

paper, and is not a result of plagiarism.

Bandung, December 9, 2018

Saskia Imani 13517142

https://oeis.org/A000045

