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Abstract—The greatest common divisor (GCD) is the largest 

integer capable of dividing two different integers. There are two 

commonly known methods to find the GCD, which are 

factorization and Euclidean algorithm, both utilizing the modulo 

operation. This paper aims to prove that using the Euclidean 

algorithm to find the GCD is more effective compared to using the 

factorization method. Each method is translated into an 

algorithmic notation, which complexities will be then be analyzed. 

The result will be compared, and the algorithm which is least 

complicated will be the more efficient algorithm. 
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I. GREATEST COMMON DIVISOR 

The greatest integer that divides both of two integers is called 

the greatest common divisor of these integers, or GCD for short 

[1]. The GCD is mathematically denoted as 

 

𝐺𝐶𝐷(𝑎, 𝑏) = 𝑚𝑎𝑥 𝑜𝑓 {𝑑 ∈  𝑍;  𝑑 | 𝑎 𝑎𝑛𝑑 𝑑 | 𝑏}, 

 

where d | a means a is divisible by d, d | b means b is divisible 

by d, and so forth. In the case that both the value of a and b are 

0, the GCD of a and b will also equal to 0. 

There are at least two known methods to find the GCD of two 

random integers, which is using factorization or the Euclidean 

algorithm. 

 

A. Factorization Method 

The first method, factorization, begins with factoring or 

dividing both the integers (let them be a and b) into smaller 

integers called factors, which when multiplied will form a 

and/or b respectively. For example, the factors of a = 3 are 

{1,3}, since 3 is a prime number; the factors of a = 25 are 

{1,5,5,25}; and the factors of a = 16 are {1,2,4,4,8,16}. After 

factoring the two integers a and b, we look for the largest 

number belonging in the factor set of both a and b, which is the 

GCD of a and b. 

 

 
 

Image 1. A visualization of the factorization method. 

 

A thorough example of this method is as such: 

1. Let a = 12 and b = 15. 

2. The factors of a = 12 are A = {1,2,3,4,6,12}, while 

the factors of b = 15 are B = {1,3,5,15}. 

3. The largest number belonging in both A and B is 3, 

and thus 3 is the GCD of a = 12 and b = 15. 

 

B. Euclidean Algorithm Method 

The second method to find the GCD of two integers uses the 

Euclidean equation or Euclidean algorithm: 

 

𝑎 = 𝑏 ∙ 𝑞1 + 𝑟1, 
𝑏 = 𝑟1 ∙ 𝑞2 + 𝑟2, 

… 

etc. 
 

where a, b, q1, r1, q2 and r2 are integers and a is bigger than b 

[1]. The equation above illustrates the modulo operation, where 

r1 is the remainder of a divided by b, or the result of a mod b. 

For example, let a = 8 and b = 3. The integers are fitted into the 

equation as such: 

 

8 = 3 ∙ 2 + 2 

 

with q = 2 and r = 2. 

The Euclidean equation’s lemma concludes that 

 

𝐺𝐶𝐷(𝑎, 𝑏)  =  𝐺𝐶𝐷(𝑏, 𝑟1) 

 

By using the Euclidean algorithm consecutively, we will 

eventually come across a time where the equation results in rk = 

0. In that very same equation, qk is the GCD of a and b. 
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A thorough example of this method is as such: 

1. Let a = 12 and b = 15. 

2. Since b is the larger number, the modulo expression 

used is b mod a → 15 mod 12 → 15 = 12 * 1 + 3. 

Thus, the result is r1 = 3. 

3. Next, we use the results of the first equation to 

construct the expression 12 mod 3 → 12 = 3 * 4 + 0. 

Thus, the result is r2 = 0. 

4. Since r2 equals to 0, then 3 is the GCD of a = 12 and 

b = 15. 

It is important to note that the GCD obtained for a = 12 and b 

= 15 will always be the same, whether it is obtained using 

factorization or the Euclidean equation. 

 

 

II. ALGORITHMIC NOTATION 

An algorithmic notation is more commonly called a 

pseudocode, and is a type of “language” used to illustrate 

program algorithms without using any specific programming 

language. The most obvious advantage of using an algorithmic 

notation is, once a convention has been created, programmers 

and developers hailing from different programming 

backgrounds and language can easily elaborate program 

structures and algorithms without relying on the others knowing 

their preferred programming language. 

There is no standard for an algorithmic notation, and 

algorithmic notation does not adhere to any single programming 

language. However, certain groups of developers may create 

their own convention, tailoring certain aspects of code to match 

certain language(s) for further ease of use.  

In this paper, we will use a specific algorithmic notation 

taught and used by the Bandung Institute of Technology, School 

of Electrical Engineering and Informatics. The algorithmic 

notation is used to illustrate how the two methods of finding 

GCD, factorization and Euclidean equation, are applied as 

program algorithms. 

 

A. Factorization Method 

In looking for GCD(a,b) using this method, there is a slightly 

different approach from the original factorization method, but it 

uses the same principles. The program will first compare 

between a and b to look for the greater integer between the two, 

resulting in x (greater) and y (lesser). The factorization method 

requires checking all the integers between n = 1 and y to find 

factors of y, which is every n meeting the condition n | y. 

But since we are looking for a common divider, there is no 

need to factor both x and y. Because we are looking for the 

“greatest”, we will start from the greatest integer between 1 and 

y, which is n = y. We will see if y is divisible by n. If it is 

divisible, we will then see if x is divisible by n. If it is divisible, 

then the integer n must be the GCD of a and b. 

 

function Method1 (a, b: integer) → integer 
 
LOCAL VARIABLES 
    n: integer 
 

ALGORITHM 
    if (a > b) then 
        n  b 
    else 
        n  a 
 
    while (n > 1) do 
        if (a mod n = 0) and (b mod n = 0)  
        then 
            → n 
        else 
            n  n - 1 
    → 1 

 

Notation 1. The factorization method. 

 

The algorithm above can be further elaborated as follows: 

1. Declare local variable for the integer n. 

2. Compare the integers a and b. 

3. Assigning the lesser between a and b to n. 

4. While n does not equal to 1, repeat the following 

process: 

a. Divide a by n using modulo, and check if 

the remainder is 0. 

b. Divide b by n using modulo, and check if 

the remainder is 0. 

c. If both (a) and (b) is true, return the value 

n as the GCD of a and b. 

d. If one of (a) and (b) is false, or both are 

false, decrement n by 1. 

5. If n reaches 1, return 1 as the GCD of a and b. 

 

B. Euclidean Algorithm Method 

In looking for GCD(a,b) using this method, the program will 

compare the greater between a and b, resulting in x (greater) and 

y (lesser). Then the program will divide x by y and note the r 

(remainder). After that, the program will replace x with y and y 

with r, then divide the new x by the new y and note the next r. 

The program will repeat the last two steps until a remainder 

valued 0 is found. When r reaches the value 0, the last y value 

is the GCD of a and b. 

 

function Method2 (a, b: integer) → integer 
 
LOCAL VARIABLES 
    x, y: integer 
    r: integer 
 
ALGORITHM 
    if (a > b) then 
        x  a 
        y  b 
    else 
        x  b 
        y  a 
     
    r  x mod y 
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    while (r ≠ 0) do 
        x  y 
        y  r 
        r  x mod y 
    → y 
 

Notation 2. The Euclidean algorithm method. 

 

The algorithm above can be further elaborated as follows: 

1. Declare local variables for integers x, y, and r. 

2. Compare the integers a and b. 

3. Assign the greater between a and b to x, and the 

lesser to y. 

4. Divide x by y using modulo and assign the 

remainder to r. 

5. While r is not equal to 0, repeat the following 

process: 

a. Replace the value of x with y. 

b. Replace the value of y with r. 

c. Divide the new x by the new y using 

modulo and assign the remainder to r. 

6. After r reaches the value 0, return y as the GCD for 

integers a and b. 

 

Both notations for functions Method1 and Method2 have 

been applied, tested, and proven to yield expected results in a C 

language program. 

 

 

III. ALGORITHM COMPLEXITY 

While the algorithms of the factorization method and the 

Euclidean algorithm method do not seem to be much different 

from the amount of lines they take, and the numbered steps of 

both methods are quite similar, determining which of the two is 

a more efficient algorithm is not so simple. 

The efficiency of an algorithm is determined from the time 

and space needed to execute the algorithm. The amount of time 

and space required for an algorithm to work is called the 

complexity of the algorithm, and is measured by the amount of 

data the algorithm processes (n). Time complexity is denoted as 

T(n), while space complexity is denoted as S(n). 

The time complexity of an algorithm can be further divided 

into three main categories: 

• Tmin, which is the minimum amount of time for an 

algorithm to process a number of data in the best-

case scenario. 

• Tmax, which is the maximum amount of time for 

an algorithm to process a number of data in the 

worst-case scenario. 

• Tavg, which is the average amount of time for an 

algorithm to process a number of data. Tavg is 

determined by the following equation: 

 

𝑇𝑎𝑣𝑔 =
𝑇𝑚𝑖𝑛 + 𝑇𝑚𝑎𝑥

2
 

 

An efficient algorithm is one that fulfills its function using 

the smallest amount of time and space. Determining algorithm 

complexity will enable developers and programmers to save 

time and computer storage, which will improve the performance 

of the program overall. 

The need for an efficient algorithm is especially important 

when the algorithm has exponential complexity. For example, 

let an algorithm’s time complexity be T(n) = 10-4 * 2n seconds. 

With various amounts of data, we can observe the amount of 

time this algorithm takes to finish. 

When n = 10, the algorithm takes about 1/10 seconds; 

when n = 20, the algorithm takes about 2 minutes; and 

when n = 30, the algorithm takes more than a day [2]. 

After creating the algorithmic notation of the two methods 

to find the GCD, we will now determine the complexity of the 

two algorithms. The units we will use will be ambiguous, as 

different computers may have different time required to run the 

exact same process. 

 

A. Factorization Algorithm 

When using the factorization algorithm, the best-case 

scenario is when n = y is the GCD of a and b, so that the 

algorithm will only run once. In this case, the time complexity 

is as such: 

 

𝑇𝐴𝑚𝑖𝑛(𝑛) = 1 

 

Meanwhile, in the worst-case scenario of this algorithm, a 

and b are prime relatives, so GCD of a and b is 1. According to 

the algorithm, the value of n spans from y to 2, and if even 2 is 

not a common divisor of a and b, the answer will be 1. In this 

case, the algorithm will run for n-1 times, and the time 

complexity is written as 

 

𝑇𝐴𝑚𝑎𝑥(𝑛) = 𝑛 − 1 

 

The average time complexity of this particular process is 

therefore 

𝑇𝐴𝑎𝑣𝑔(𝑛) = 𝑇𝐴 min(𝑛) + 𝑇𝐴 max(𝑛) 

 

𝑇𝐴𝑎𝑣𝑔(𝑛) =
1 + (𝑛 − 1)

2
 

 

𝑻𝑨𝒂𝒗𝒈(𝒏) =
𝒏

𝟐
 

 

in which n equals the smaller of two integers a and b. 

 

B. Euclidean Algorithm 

Meanwhile, for the Euclidean algorithm, the best-case 

scenario is when the first x divided by y immediately results in 

remainder = 0, and thus the algorithm will only run once. In 

this case, the time complexity is written as 

 

𝑇𝐵𝑚𝑖𝑛(𝑛) = 1 

 

The worst-case scenario, however, is quite complicated to 

analyze. In the worst-case scenario, the relationship of x and y 

is illustrated as x = FN and y = FN-1, in which FN is the 

Fibonacci sequence: {0,1,1,2,3,5,8,…}. In this case, the 

algorithm will result in 
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𝐺𝐶𝐷(𝐹𝑁, 𝐹𝑁−1)  =  𝐺𝐶𝐷(𝐹𝑁−1, 𝐹𝑁−2) 

 

The final result for any x and y part of the Fibonacci 

sequence will be GCD(x,y) = 1. To find the complexity of the 

Euclidean algorithm, we must observe the Fibonacci sequence. 

 

F0 → 0 

F1 → 1 

F2 → 1 = 1 * 1 + 0 

 

But only when we reach F3 the pattern for the Fibonacci 

sequence is apparent: 

 

F3 → 2 = 1 * 2 + 0 (base) 

F4 → 3 = 2 * 1 + 1 

F5 → 5 = 3 * 1 + 2 

… 

FN → FN = FN-1 + FN-2 

 

Through mathematical induction from the equations above, 

we can conclude that, for the GCD of x = FN+1 and y = FN, it 

will take N-2 steps to reach the base of the Fibonacci sequence 

we have set. 

However, up until here, we are still using N to describe the 

time complexity. To compare between the factorization 

algorithm and the Euclidean algorithm, N must be translated to 

n. For this, we utilize φ which is something called the “golden 

ratio”. 

 
Image 2. A visualization of the golden ration theorem. 

(Source: Wikipedia) 

 

      
Image 3. The golden spiral, calculated using the Fibonacci 

sequence (left) and the golden ratio (right). 

(Source: Wikipedia) 

 

The golden ratio theorem boils down to 

 
(𝑎 + 𝑏)

𝑎
=

𝑎

𝑏
= 𝜑 

 

Or in our case, 
𝐹𝑛

𝐹𝑛−1

=
𝐹𝑛−1

𝐹𝑛−2

= 𝜑 

 

If the program requires N-2 steps, then y is equal to N-1, 

which in turn is equal to φN-3 [3]. Therefore, 

 

𝑦 = 𝜑𝑁−3 

log𝜑 𝑦 = 𝑁 − 3 

 

And since 

log𝜑 10 > 1/5 [4] 

 

we can conclude that 

 

log10 𝜑 ∙ log𝜑 𝑦 >
(𝑁 − 3)

5
 

log10 𝑦 >
(𝑁 − 3)

5
 

Thus, 

5 ∙ log10 𝑦 + 3 > 𝑁 

 

For our complexity problem, this translates to 

 

𝑇𝐵𝑚𝑎𝑥(𝑛) < 5 ∙ log10 𝑛 + 3 

 

Therefore, the average time complexity for this algorithm can 

be written as 

 

𝑇𝐵𝑎𝑣𝑔(𝑛) <
5 ∙ log10 𝑛 + 3 + 1

2
 

 

𝑻𝑩𝒂𝒗𝒈(𝒏) ≤
𝟓 ∙ 𝒍𝒐𝒈𝟏𝟎 𝒏

𝟐
 

 

in which n is the lesser integer between a and b. 

 

C. Space Complexity 

As visible from the algorithm notation of the factorization 

method and the Euclidean algorithm method, both require initial 

variable for two integers a and b. The factorization method 

requires one additional variable for integer n, which will be used 

to define the GCD. 

 

𝑆𝐴 = 1 

 

The Euclidean factorization method requires three additional 

variables for integers x, y, and r. 

 

𝑆𝐵 = 3 

 

Alternately, we can simple switch the values of a and b as 

needed, using one temporary variable for the switching process. 

In this case, the space complexity will be  

 

𝑆𝐵 = 2 

 

Seeing as there is not much difference between the space 

complexity of the factorization algorithm and the Euclidean 

algorithm, we will refrain from using these values for further 

comparison. 
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IV.   COMPARISON OF COMPLEXITY 

To compare the two algorithms’ complexity, we use the 

asymptotic complexity of both complexity values, also called 

the “Big-O” notation. 

The definition of the Big-O notation is as follows: 

 

𝑇(𝑛) = 𝑂(𝑓(𝑛)) 

 

which means the largest order of T(n) is f(n), if there exists a 

constant C and n0 so that 

 

𝑇(𝑛) ≤ 𝐶 ∙ 𝑓(𝑛) 

 

Observe the following table for an example of a time 

complexity T(n) = n2 + 1: 

 

n T(n) = 2n2 + 3n n2 

1 5 1 

10 230 100 

100 20300 10000 

1000 2003000 1000000 

10000 200030000 100000000 

 

Table 1. The comparison of two complexity notations. 

(Source: [2]) 

 

It is clear that the time complexity T(n)’s growth is more 

similar to the notation n2 rather than n. So we state that T(n) has 

the order of n2 and we write the time complexity notation as 

such 

𝑇(𝑛) = 𝑂(𝑛2) 

 

A theorem for the Big-O notation is that if 

 

𝑇(𝑛) = 𝑛𝑚 ± 𝑛𝑚−1 ± 𝑛𝑚−2 ± ⋯ ± 𝑛 

 

then  

𝑇(𝑛) = 𝑂(𝑛𝑚) 

 

This means that the term with higher order dominates the 

terms with lower orders. “Dominates” means that the growth 

rate of the time complexity is more similar to the dominating 

term rather than the other terms of the complexity equation. 

Other domination theorems for the Big-O notation includes: 

• Exponential terms dominate random exponents, 

which means for every n > 1: 

 

𝑦𝑛 > 𝑛𝑝 

 

• Exponents dominate ln n, which means for every n 

> 1: 

𝑛𝑝 > ln 𝑛 

 

• All logarithms have the same growth rate, which 

means 

log𝑎 𝑛 = log𝑏 𝑛 

 

• The term n log n has a faster growth rate compared 

to n, but slower growth rate compared to n2. 

 

 

A summarization of the the domination chain for the Big-O 

notation is as follows: 

 

𝑂(1) < 𝑂(log 𝑛) < 𝑂(𝑛) < 𝑂(𝑛 log 𝑛) < 𝑂(𝑛2) <
𝑂(𝑛3) < ⋯ < 𝑂(2𝑛) < 𝑂(𝑛!) [2] 

 

A. Factorization Algorithm 

It has been concluded previously that the average time 

complexity of the factorization algorithm is  

 

𝑇𝐴(𝑛) =
𝑛

2
 

 

To compare the time complexity, we translate this value to its 

equivalent Big-O notation, which is 

 

𝑇𝐴(𝑛) =
𝑛

2
= 𝑶𝑨(𝒏) 

 

B. Euclidean Algorithm 

Meanwhile, the average time complexity of the Euclidean 

algorithm is 

𝑇𝐵(𝑛) ≤
5 ∙ 𝑙𝑜𝑔10 𝑛

2
 

 

We translate this value to its equivalent Big-O notation, 

which is 

 

𝑇𝐵(𝑛) ≤
5 ∙ 𝑙𝑜𝑔10 𝑛

2
= 𝑶𝑩(𝐥𝐨𝐠 𝒏) 

 

C. Comparison 

Since we have obtained the Big-O notation of the time 

complexity for the factorization algorithm and the Euclidean 

algorithm and they have different orders, we can compare them 

by simple looking at the domination chain of the Big-O 

notation. From it, we can derive that 

 

𝑶𝑨(𝒏) > 𝑶𝑩(𝐥𝐨𝐠 𝒏) 

 

which means that the time complexity for the factorization 

algorithm (A) is higher than the time complexity for the 

Euclidean algorithm (B). 

Therefore, we can conclude that the Euclidean algorithm is a 

more efficient way of obtaining the GCD of two integers, 

compared to the factorization method algorithm. 

 

 

V.   CONCLUSION 

The greatest common divisor, or the GCD, of two integers 

has many uses in programming. One of the most common use 

is to simplify algorithms for large integers where certain 

operations are involved, where retaining the original values of 

both integers are not necessary. It is also used in simplifying 
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fractions. 

With the computer architecture development seemingly 

reaching a dead-end period, while computer science only grows 

more complex, the need for efficient algorithms is higher than 

ever to keep the physical aspect of program development from 

strain. 

From this paper, we have proven that there are two algorithms 

used to obtain the GCD of two integers, which are the 

factorization method and the Euclidean algorithm method. We 

have translated both methods into an algorithmic notation and 

analyzed the complexity of each method’s algorithm. The result 

is that the complexity of the Euclidean algorithm is lower than 

the factorization method’s algorithm, and thus, the Euclidean 

algorithm is a much more efficient method of obtaining the 

GCD of two integers. 
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