
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

Bcrypt: Secure Password Hashing Function

Daniel Ryan Levyson 13516132

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13516132@std.stei.itb.ac.id

Abstract—Password is a string which is used to authenticate

someone who want to gain access into certain resources. Password

should be kept secret by the owner in order to prevent resources

stealing or misuse by those who do not have permission. In order

to authenticate person by using password, computer should have

mechanism to verify the password. Saving plain password

somewhere to be used for verification produces security problem.

Someone who can somehow find the place where the password is

stored and read the password can gain access to any resources in

the system. The authentication system should have secure way to

store and verify password. Bcrypt is hashing function which can be

used to store and verify password securely.

Keywords—hash, encryption, security, password,

authentication.

I. INTRODUCTION

Naïve way and also insecure way to create authentication gate

of application is by registering new identity followed by the

password to verify the identity, then store the password

somewhere in one file, and sometime later get the stored

password to be matched with received string when doing the

verification. Attacker, someone who try to gain restricted

access, just need to find the way in the system to retrieve the file

which stores all the password used for verification. So, this kind

of authentication system is not reliable, when the attacker

succeed, authentication become useless.

The more sophisticated way to store the password is using

encryption technique which will be explained more in the next

chapter. Instead of storing plain password, the password will be

stored after it is encrypted. When the attacker gained access to

the stored passwords, the attacker can not know the real

passwords. It seems good, but to encrypt password, the

authentication system needs secret key which is used to change

password to encrypted form and reverse. After the attacker got

the encrypted passwords, the attacker only needs to search for

the secret key somewhere in the system. When the attacker

found the secret key, all encrypted passwords can be decrypted

and the real passwords are revealed.

Encryption, by its nature, is not reliable to be used for

password storage, because the real password definitely can be

revealed from the encrypted password by knowing the secret

key. In the other hand, hash function, by its nature, produces

possibility to store password securely, because hash function is

invented to be one way, that means the input of hash function

has no way to be retrieved by knowing its output.

Trying to protect password by creating own implementation

of hash function is a bad idea, because a hash function can be

said secure if it is studied extensively by attempting to break its

security. Moreover, the security can not be relied on hiding the

algorithm, because hiding the algorithm will produce another

concern of security. Through history of computer security,

various cryptographic algorithms have been invented. New kind

of algorithm was invented whenever the existing one’s security

had been severely compromised.

MD4, MD5, HAVAL-128, RIPEMD, and SHA-1 are known

as cryptographic hash function which are also known suffering

from collision attack. SHA-2 is general purpose hash function.

SHA-2 has fast calculation. With current power of hardware

computation performance, SHA-2 is not recommended for

password hashing by concerning brute force attack. SHA-3 is

the latest SHA and it is faster than SHA-2, so it has worse

concern than SHA-2. In the other hand, Bcrypt has been tested

and chosen for a long time for protecting password.

II. HASH FUNCTION AND ENCRYPTION

Hash function and encryption are the main players in

cryptography. The main difference between them is whether the

input can be known by knowing the output.

A. Hash Function

Hash function basically is a function which takes random size

input k and map k to value v which has fixed size. The very

simple hash function use modulo operation, it has following

form:

 h(k) = k mod m = v

In that case, the size of v will depend on m. Because v has

fixed size, there are cases when different input k will output the

same value v. For example, with m = 10, h(5) and h(15) will

have the same output v = 5. That condition is called collision.

When using hash function for any purpose besides security,

policy can be defined to handle the collision. For security

purpose, collision in hash function is weakness and should be

avoided for any security usage.

Good algorithm of cryptographic hash function should have

following properties:

1. Pre-Image Resistance

Input value k should be hard to find from known hash

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

value v.

2. Second Pre-Image Resistance

For input value k which has hash value v, it should be

hard to find another input value which also output the

same hash value v.

3. Collision Resistance

It should be hard to find pair of input value which has the

same output value.

In order to proof whether a hash function secure or not, we

just need to proof that the hash function does not have one of

above properties.

B. Encryption

Encryption is the process of hiding a message by changing its

form in such way so that unauthorized parties cannot read the

hidden message. The hidden message is called plaintext, and the

result of encryption is ciphertext. Authorized parties should

have the secret key to hide and read the message. The process of

returning the plaintext from ciphertext is known as decryption.

Mathematically, we can write encryption as a function which

map plaintext P to chipertext C.

 E(P) = C

In reverse, we can write decryption as a function which map

chipertext C to plaintext P.

 D(C) = P

We can also substitute C to E(P).

 D(E(P)) = P

From above expression, we can conclude that decryption

function D is actually inverse of encryption function E.

Encryption has been used since the age of roman empire. The

Roman emperor, Julius Caesar, use encryption to hide message

sent to his governors, The encryption technique is called Caesar

Cipher. In Caesar Cipher, every alphabetical characters in the

plaintext is substituted by the next three character in the

alphabetical order.

Caesar Cipher can be represented more general with “three”

substituted by variable K. So mathematically, we can write

Caesar Cipher in the expression below.

 E(P) = (P + K) mod 26 = C

 D(C) = (C – K) mod 26 = P

In this case, K is the cipher key. Because the cipher key used

in encryption and decryption is the same, Caesar Chiper is called

symmetric-key encryption. If the key used for encryption and

decryption is different, the encryption is called asymmetric-key

encryption or also known as public-key encryption.

In asymmetric-key encryption, there are public key and

private key. As the name suggest, public key is for public use, it

is not secret for everyone. Public key is used to encrypt the

message. Private key is used to decrypt the ciphertext.

Therefore, in asymmetric-key encryption, everyone can encrypt

the message because the key used to encrypt is public. But only

authorized parties can read the hidden message.

RSA algorithm is known as one of asymmetric encryption

implementation. RSA algorithm has three parts: generating

public and private key pair, message encryption, and message

decryption. DES is known as one of symmetric encryption

algorithm. DES is no longer considered as secure, but it becomes

the fundamental understanding of block cipher.

Block cipher is a function which takes two input: k-bit string

and n-bit string, and then returns n-bit string. k-bit string is a

symmetric key for block cipher. Block cipher is known as

powerful technique behind the strong encryption algorithm. In

block cipher, there is basic component used to obscure the

relationship between the key and the ciphertext which is called

S-Box. Besides DES, another encryption algorithms that use the

concept of block cipher are AES and Blowfish. Both are

considered secure encryption algorithm until today.

Figure 1 DES S-Box

source: https://apprize.info/security/cryptography/9.html

C. Password Hashing Function

We already talked about two way function that is not good to

be used in creating password storage. Using two way function

for protecting password requires the system to store the secret

key to be used in verifying password. Problem will occur when

attacker can gain access to passwords and the secret key. All the

encrypted passwords can be decrypted using the secret key.

Instead of using two way function, we can use one way

Plaintext Ciphertex

t
Plaintext

encryption decryption

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

plaintext

chipertext

Encryption Decryption
plaintext ciphertext plaintext

public key private key

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

function to protect password. The authentication system does

not need to know the plain password, the system only needs to

enter password into the function and compare the result with the

one stored in password storage. It means we can actually use

hash function to protect password.

There are several known attacks to break password hashing

function besides brute force such as preimage attack, collision

attack, dictionary attack, and rainbow table attack. Any hash

function that is weak to preimage attack and collision attack

should be avoided for further usage in security. Dictionary

attack is faster version of brute force, because it narrows the

space of guessing by registering known words in dictionary to

be used in brute force.

Because human always needs to remember the password, the

password should be not too different from any meaningful and

familiar words for human. Human’s password is said to have

high entropy. Even though human combines the password with

number and non-alphabetical character, the entropy is still

relatively high. Suppose someone’s password is

“?/Qu1cKbR0wNf0X/?”. The password is hard enough but we

can still see that it is created by modifying the words “quick

brown fox”. This is why dictionary attack exists.

Dictionary attack is faster than brute force but it still needs

time. Rainbow attack is actually dictionary attack which

decreases the processing time significantly but in the same time

increases the required disk space. Rainbow attack precomputes

the dictionary and it makes the process of knowing the plain

password from its hash becomes much faster, because the

process only compare the precomputed hash and the password

hash, when any hash is matched, than the attacker knows the

plain password before the password is precomputed. Even

though this technique requires the attacker to gain access to all

the hashed password, but good password protection should be

able to become the next layer of security.

To overcome the weakness of human’s password, an attempt

is made to lower human’s password entropy. The idea is

generating another string to be combined with human’s

password so that the combination will produce more rainbow

table attack resistant hash. The generated string should be

random for each password and long enough. The longer the

string, the lower the entropy of password. This generated string

is called Salt. Salt can be put before or after the password. Salt

is also useful to make same password to have different hash. The

authentication system should also store the Salt to be used when

verifying password and it is considered as safe, not

compromising security.

III. BCRYPT PASSWORD HASHING

As stated in the introduction, SHA-2 is actually good general

hash function, but it is not secure enough to be used for hashing

password. Hardware computational power is increasing over

time. There might be possibility for attacker to brute force

password by using combined high-end hardware computational

power. Moreover, quantum computer exists nowadays which

significantly faster than classical computer when doing brute

force. In order to make brute force almost impossible, we should

use slow hash function to hash password.

Bcrypt algorithm is hash function which has expensive key

setup phase. Bcrypt can follow the increasing computational

power of hardware, because it can be configured to be slower by

increasing the number of iteration. Bcrypt utilizes Blowfish to

setup the key. Blowfish is notable as complex symmetric-key

block cipher. Following parts will discuss Blowfish and Bcrypt

in more detail.

A. Blowfish

Blowfish is symmetric-key block cipher, designed by Bruce

Schneier, which is known by its large key-independent S-Boxes

and highly complex key schedule. Blowfish has 16 rounds

Feistel network. A round-specific data derived from the cipher

key is called a round key. A key schedule is an algorithm that

calculates all the round keys from the key. Blowfish has 64-bit

block size and 32 bits up to 448 bits key length.

Figure 2 Feistel Network and Key Schedule

source: https://en.wikipedia.org/wiki/Feistel_cipher;

https://en.wikipedia.org/wiki/Key_schedule

For every round, Blowfish algorithm does the following

actions:

1. XOR the left half of the data with the r-th P-array entry.

2. Use the XORed data as input for Blowfish’s F-function.

3. XOR the F-function’s output with right half of the data.

4. Swap L and R.

Blowfish’s F-function will split 32-bit input into four eight bit

quarters. S-boxes will transform the quarters which is 8-bit

length to 32-bit output. Then, the output is added module 232 and

XORed to produce the final 32-bit output.

Following are the steps of key schedule algorithm in

Blowfish:

1. Initialization of P-array and S-boxes with values derived

from hexadecimal digits of pi (first 12 digits of pi in

hexadecimal 3.243F6A8885A3…..).

https://en.wikipedia.org/wiki/Feistel_cipher
https://en.wikipedia.org/wiki/Key_schedule

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

2. Byte by byte, secret key is XORed with all the P-entries

in order.

3. A 64-bit all-zero block is then encrypted with the

algorithm as it stands.

4. The resultant ciphertext then replaces P1 and P2.

5. The same ciphertext is encrypted again with new

subkeys, and the new ciphertext replaces P3 and P4.

6. This process will continue to replace the entire P-array

and all the S-boxes.

Blowfish algorithm will run 521 times to generate all the

subkeys. Blowfish only needs about 4 KB space of RAM. Its

small usage of RAM makes Blowfish possible to be used in

embedded systems.

Figure 3 Feistel Network in Blowfish

source: https://en.wikipedia.org/wiki/Blowfish_(cipher)

B. Bcrypt

Bcrypt is hash function designed by Niels Provos specifically

for password hashing. It was developed to harden password

storage of Unix authentication system. Bcrypt is adaptive to

computational power of hardware. To make Bcrypt faster or

slower, the iteration count can be configured to the value which

is secure enough but also fast enough to do verification.

Bcrypt take advantages of the expensive key setup in

Eksblowfish. Eksblowfish refers to expensive key schedule

blowfish, it is a cost parameterizable and salted variation of the

Blowfish block cipher. Eksblowfish takes three parameters:

cost, salt, and key. The cost parameter is what makes this

algorithm adaptive. Increasing the value of cost creates more

expensive key schedule to compute. The key parameter is user-

chosen password. Eksblowfish will return set of subkeys and S-

boxes.

Following are steps of Eksblowfish algorithm:

1. Initialization by copying the digits of number π first into

subkeys, then into S-boxes.

2. Expand the key by modifying the P-array and S-boxes

based on the value of the 128-bit salt and the variable

length key. It XORs all the subkeys in the P-array with

encryption key. The i-th 32 bits of key are XORed with

i-th of P.

3. Encrypt the key (password) using Blowfish encryption

algorithm for 2cost times.

After getting set of subkeys and S-boxes from Eksblowfish,

Bcrypt encrypts the text “OrpheanBeholderScryDoubt”

repeteadly for 64 times in Electronic Codebook mode, that is

one of block cipher mode of operation. Result of encryption is

then concatenated with the cost and salt to provide information

for later verification process.

Even though there are several encryption process, Bcrypt is

not encryption algorithm. It does utilize encryption algorithm,

but there is no way to know user-chosen password from the

result of Bcrypt function. Note that, instead of trying to hide

user-chosen password by transforming the password to non-

meaningful string, in Bcrypt, the password is used as encryption

key by Blowfish algorithm in the key setup process. So the

password contributes in transforming the text

“OrpheanBeholderScryDoubt”. Authentication system does not

need to save user’s password which becomes the encryption key,

so Bcrypt is not encryption algorithm, it behaves like hash

function.

Bcrypt has following scheme (based on the latest scheme,

February 2014):

$2b$[iteration]$[salt][hash value]

Following Bcrypt’s password string has cost parameter equal

to 12 which indicates 212 key expansion rounds, salt

“ZMqo8uLOikgx2eNcRZoMy9”, and resulting hash

“xad68L7lJZdL1ZAgcfl7p92hWyIjldG”:

The length of salt used in Bcrypt is 128 bits with Radix-64

encoding, so it is 22 characters. The length of hash value of

Bcrypt is 184 bits, it is 31 characters length with Radix-64

encoding. So in total, authentication system will store string

with length 58 plus digit of iteration number. For the input, user-

chosen password length should not be longer than 72 bytes or

the password will be truncated.

Bcrypt has been implemented in many programming

languages such as C, C++, C#, Go, Java, Javascript, Perl, PHP,

Python, Ruby, and other languages. It was originally used for

OpenBSD authentication system, but nowadays it has been

widely used to securely store password in many web

applications.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

IV. EXAMPLE AND TEST

We are already known how Bcrypt works and also how

Blowfish which is utilized by Bcrypt works. We need to know

the example case of Bcrypt’s usage and also proof that it is

adaptive to hardware computational power.

Below is the code written in Javascript trying to demonstrate

the usage and the result of Bcrypt algorithm. The code below

use Bcrypt library from github.com/kelektiv/node.bcrypt.js.

What the code does is hashing a password

“?/Qu1cKbR0wNf0X/?” with different value of rounds, starting

from 4 until 20. We will see how big the difference of processing

duration among those various rounds value and also observer the

result of the hash function.

R Result ms

4 $2b$04$jGn2iQK6Pv4zi.RiUsQzouVeP1x3s

zXjdw7mePyTNt7BS5uWheS8u

1

5 $2b$05$tJzFpr0ulW9NRzAvP7ZXw.sITx67

tMm9LE3pjYYdWhKWeXF7AC3Aq

2

6 $2b$06$gST9qN7Cdjp5Kydo1ycd4.TT4Mu

EpXC5YR5R1v/6Kl7l9xFk5NXdC

5

7 $2b$07$9YT02ZA1FMDDJHeBC4AHQO0

EhS00iQrFrIoW2PDTbNBNQnKC3NcaC

9

8 $2b$08$qoqqmqCv8vVPF/I75FM.bekZV68

yo9JHRgNBfh.rcvk5Xcgj.3ArG

17

9 $2b$09$YKy/XQt6j55K2dfT7B.MIepXjVn

m87KjQETa8EBivAxdKWG.tMkb6

34

10 $2b$10$t9GOsh/PCjaJc7caC./SgOcBAJBs.i

o1GgJtbBcJhOYYeGwGnsBTC

66

11 $2b$11$b4tAAqnQhpSGnUev3vjGk.dAcOi

WM.8ZJ/9uU8H4y4xQD3rdlK.LO

131

12 $2b$12$qKZU/muNnbnWPuWiK9Oaiegthb

coSvw6N0nDzWN.mshPHa9DbK.16

252

13 $2b$13$ZFbSZyn1qkkXgqVZmiPhcu3DO5

EuOeM8b5EY3Ec/PA2UPqu0y4ewG

529

14 $2b$14$.Wyufgq0b2.PRA06avAF6O8YEHl

EFHxoWmtsi8SIDUicy05k3l5ny

1050

15 $2b$15$VdilfJOtX2RV7gE7DDKN/eR6W

KwcBu4R3cnp1FO6MjaUMHjUEjbEC

2049

16 $2b$16$zm3rZiRUrMiewXqIPVWd2u0N4C

.CN4UxzM6E3fuxrUqs0hrpLKtk2

4842

17 $2b$17$iFYcV0p36n3sJ08jeSMsj.BFMFyto

pTQS7QgqlXlTUZ7mUFoOkW3u

8194

18 $2b$18$AKm.jbepZVU0tpDNMAe5NuLM

A9UZ.aNtAp6nCLAADIAHvslvwmjQ6

18295

19 $2b$19$9jnC6HFVtOHoELnDpdls0.IYbRA

D/G2FJE1WJ/BWy481Mm5fvKh4q

36211

20 $2b$20$UthOBhRytt2HEd7zUEgwO.NNvJ

brYiu2kOTR8oaLH5WeM6sXLVrZy

73530

The first column is value of rounds used to get the hash. The

next column is the result of Bcrypt. The last column is the

processing duration in millisecond. The bold substring in the

second column is the encryption result of text

“OrpheanBeholderScryDoubt”, whereas the non-bold substring

is the hash identifier including: crypto prefix “$2b$”, the rounds

value, and the generated salt.

We can see that, same password will produce different result.

It is caused by the random generated salt. Even same password

and same rounds value will also produce different result. The

processing duration is increasing about twice every time rounds

value increased by 1. The last trial with rounds value equal to 20

has processing duration more than 1 minute.

Now we have proof that Bcrypt can be scaled to follow

increasing computation power of hardware. The better the

performance of hardware, we can increase the rounds value, so

that brute force will be kept almost impossible. It is also proof

that we cannot use general hash function such as SHA-2,

because it does not scale with increasing hardware

computational power. With the same environement, running

SHA-2 hash function only needs 1 millisecond, same as Bcrypt

with rounds value equal to 4, and will always stuck there.

V. CONCLUSION

Password is become the main chosen way to do

authentication, although there are various ways of authentication

besides using password. Because of its extreme significance in

securing access to resources, a system should have reliable

authentication gate. Footprint of password should be kept inside

reachable place by the authentication system no matter how does

it look like as long as the authentication system can verify

corresponding password. When the password is reachable by the

authentication system, it means attacker also has possibility to

reach the password. Therefore, to give another layer of security,

the password should be stored in such way so that the attacker

get nothing after successfully stealing the passwords.

Hash function is good choice to change the form of password

so that password is not stored with its original form. Hash

function also give possibility to do password verification. Good

hash function should be resistance to preimage attack, second

preimage attack, and also collision attack. For password hash

function, it should also slow enough and should be able to scale

to follow increasing computational power of hardware to resist

brute force, dictionary, and rainbow table attack.

Bcrypt has already proven its security and scalability. By

utilizing strong symmetric-key block cipher, Blowfish, Bcrypt

use expensive and complex setup key, so that it always has

constantly changing S-boxes. Its Eksblowfish makes it scalable

by providing parameterized cost.

VII. ACKNOWLEDGMENT

The author would like to thank Mr. Dr. Ir. Rinaldi Munir, MT

as lecturer in Discrete Mathematics class who provides the basic

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2018/2019

knowledge needed to write this article and also his book always

fills the missing knowledge for author. The author also would

like to thank the contributors of node.bcrypt.js who provide

useful library for author’s project which gave inspiration for

author to write about this topic.

REFERENCES

[1] Munir, R. (2016). Matematika Diskrit. Bandung: INFORMATIKA.

[2] Niels Provos, David Mazières. (1999). A Future Adaptable Password
Scheme. Proceedings of the FREENIX Track: 1999 USENIX Annual

Technical Conference.

[3] Schneier, Bruce. (1994). Description of a New Variable-Length Key, 64-
Bit Block Cipher (Blowfish).

https://www.schneier.com/academic/archives/1994/09/description_of_a_

new.html. Accessed on December 7, 2018.
[4] Bellare, Mihir; Rogaway, Phillip (11 May 2005), Introduction to Modern

Cryptography (Lecture notes), chapter 3.

[5] Schneier, Bruce. (2005). Cryptanalysis of SHA-1.
https://www.schneier.com/blog/archives/2005/02/cryptanalysis_o.html.

Accessed on Deccember 5, 2018.

[6] Xiaoyun Wang, Dengguo Feng, Xuejia Lai, Hongbo Yu: Collisions for

Hash Functions MD4, MD5, HAVAL-128 and RIPEMD, Cryptology

ePrint Archive Report 2004/199, 16 Aug 2004, revised 17 Aug 2004.
Retrieved December 5, 2008.

[7] Kennedy, David. (2015). Of History & Hashes: A Brief History of

Password Storage, Transmission, & Cracking.
https://www.trustedsec.com/2015/05/passwordstorage. Accessed on

December 5, 2018.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 8 Desember 2018

Daniel Ryan Levyson 13516132

https://www.schneier.com/academic/archives/1994/09/description_of_a_new.html
https://www.schneier.com/academic/archives/1994/09/description_of_a_new.html
https://www.schneier.com/blog/archives/2005/02/cryptanalysis_o.html
https://www.trustedsec.com/2015/05/passwordstorage

